
Learning from the Success of MPI

William. D. Gropp

Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, Illinois 60439, gropp@mcs.anl.gov,
WWW home page: www.mcs.anl.gov/~gropp

Abstract. The Message Passing Interface (MPI) has been extremely
successful as a portable way to program high-performance parallel com-
puters. This success has occurred in spite of the view of many that mes-
sage passing is difficult and that other approaches, including automatic
parallelization and directive-based parallelism, are easier to use. This
paper argues that MPI has succeeded because it addresses all of the
important issues in providing a parallel programming model.

1 Introduction

The Message Passing Interface (MPI) is a very successful approach for writing
parallel programs. Implementations of MPI exist for most parallel computers,
and many applications are now using MPI as the way to express parallelism (see
[1] for a list of papers describing applications that use MPI). The reasons for the
success of MPI are not obvious. In fact, many users and researchers complain
about the difficulty of using MPI. Commonly raised issues include the complexity
of MPI (often as measured by the number of functions), performance issues
(particularly the latency or cost of communicating short messages), and the
lack of compile or runtime help (e.g., compiler transformations for performance;
integration with the underlying language to simplify the handling of arrays,
structures, and native datatypes; and debugging). More subtle issues, such as
the complexity of nonblocking communication and the lack of elegance relative to
a parallel programming language, are also raised [2]. With all of these criticisms,
why has MPI enjoyed such success?
One might claim that MPI has succeeded simply because of its portability,

that is, the ability to run an MPI program on most parallel platforms. But
while portability was certainly a necessary condition, it was not sufficient. Af-
ter all, there were other, equally portable programming models, including many
message-passing and communication-based models. For example, the socket

interface was (and remains) widely available and was used as an underlying
communication layer by other parallel programming packages, such as PVM [3]
and p4 [4]. An obvious second requirement is that of performance: the ability of
the programming model to deliver the available performance of the underlying
hardware. This clearly distinguishes MPI from interfaces such as sockets. How-
ever, even this is not enough. This paper argues that six requirements must all
be satisfied for a parallel programming model to succeed, that is, to be widely



adopted. Programming models that address a subset of these issues can be suc-
cessfully applied to a subset of applications, but such models will not reach a
wide audience in high-performance computing.

2 Necessary Properties

The MPI programming model describes how separate processes communicate.
In MPI-1 [5], communication occurs either through point-to-point (two-party)
message passing or through collective (multiparty) communication. Each MPI
process executes a program in an address space that is private to that process.

2.1 Portability

Portability is the most important property of a programming model for high-
performance parallel computing. The high-performance computing community
is too small to dictate solutions and, in particular, to significantly influence the
direction of commodity computing. Further, the lifetime of an application (often
ten to twenty years, rarely less than five years) greatly exceeds the lifetime of
any particularly parallel hardware. Hence, any application must be prepared to
run effectively on many generations of parallel computer, and that goal is most
easily achieved by using a portable programming model.
Portability, however, does not require taking a “lowest common denomina-

tor” approach. A good design allows the use of performance-enhancing features
without mandating them. For example, the message-passing semantics of MPI
allows for the direct copy of data from the user’s send buffer to the receive buffer
without any other copies.1 However, systems that can’t provide this direct copy
(because of hardware limitations or operating system restrictions) are permitted,
under the MPI model, to make one or more copies. Thus MPI programs remain
portable while exploiting hardware capabilities.
Unfortuately, portability does not imply portability with performance, often

called performance portability. Providing a way to achieve performance while
maintaining portability is the second requirement.

2.2 Performance

MPI enables performance of applications in two ways. For small numbers of
processors, MPI provides an effective way to manage the use of memory. To
understand this, consider a typical parallel computer as shown in Figure 1.
The memory near the CPU, whether it is a large cache (symmetric mul-

tiprocessor) or cache and memory (cluster or NUMA), may be accessed more
rapidly than far-away memory. Even for shared-memory computers, the ratio of
the number of cycles needed to access memory in L1 cache and main memory is
roughly a hundred; for large, more loosely connected systems the ratio can ex-
ceed ten to one hundred thousand. This large ratio, even between the cache and
1 This is sometimes called a zero-copy transfer.



CPU

Mem N
IC

N
IC

Mem

CPUCPU

Mem N
IC

N
IC

Mem

CPU

Interconnect

Fig. 1. A typical parallel computer

local memory, means that applications must carefully manage memory locality
if they are to achieve high performance.

The separate processes of the MPI programming model provide a natural
and effective match to this property of the hardware.

This is not a new approach. The C language provides register, originally
intended to aid compilers in coping with a two-level memory hierarchy (regis-
ters and main memory). Some parallel languages, such as HPF [6], UPC [7],
or CoArray Fortran [8], distiguish between local and shared data. Even pro-
gramming models that do not recognize a distinction between local and remote
memory, such as OpenMP, have implementations that often require techniques
such as “first touch” to ensure that operations make effective use of cache. The
MPI model, based on communicating processes, each with its own memory, is a
good match to current hardware.

For large numbers of processors, MPI also provides effective means to develop
scalable algorithms and programs. In particular, the collective communication
and computing routines such as MPI Allreduce provide a way to express scalable
operations without exposing system-specific features to the programmer. Also
important for supporting scalability is the ability to express the most powerful
scalable algorithms; this is discussed in Section 2.4.

Another contribution to MPI’s performance comes from its ability to work
with the best compilers; this is discussed in Section 2.5. Also discussed there is
how MPI addresses the performance-tradeoffs in using threads with MPI pro-
grams.

Unfortunately, while MPI achieves both portability and performance, it does
not achieve perfect performance portability, defined as providing a single source
that runs at (near) acheivable peak performance on all platforms. This lack is
sometimes given as a criticism of MPI, but it is a criticism that most other pro-
gramming models also share. For example, Dongarra et al [9] describe six differ-
ent ways to implement matrix-matrix multiply in Fortran for a single processor;
not only is no one of the six optimal for all platforms but none of the six are
optimal on modern cache-based systems. Another example is the very existence
of vendor-optimized implementations of the Basic Linear Algebra Subroutines
(BLAS). These are functionally simple and have implementations in Fortran
and C; if compilers (good as they are) were capable of producing optimal code
for these relatively simple routines, the hand-tuned (or machined-tuned [10])
versions would not be necessary. Thus, while performance portability is a desir-



able goal, it is unreasonable to expect parallel programming models to provide
it when uniprocessor models cannot. This difficulty also explains why relying
on compiler-discovered parallelism has usually failed: the problem remains too
difficult. Thus a successful programming model must allow the programmer to
help.

2.3 Simplicity and Symmetry

The MPI model is often criticized as being large and complex, based on the
number of routines (128 in MPI-1 with another 194 in MPI-2). The number of
routines is not a relevant measure, however. Fortran, for example, has a large
number of intrinsic functions; C and Java rely on a large suite of library routines
to achieve external effects such as I/O and graphics; and common development
frameworks have hundreds to thousands of methods.
A better measure of complexity is the number of concepts that the user must

learn, along with the number of exceptions and special cases. Measured in these
terms, MPI is actually very simple.
Using MPI requires learning only a few concepts. Many MPI programs can

be written with only a few routines; several subsets of routines are commonly
recommended, including ones with as few as six functions. Note the plural: for
different purposes, different subsets of MPI are used. For example, some recom-
mend using only collective communiation routines; others recommend only a few
of the point-to-point routines. One key to the success of MPI is that these subsets
can be used without learning the rest of MPI; in this sense, MPI is simple. Note
that a smaller set of routines would not have provided this simplicity because,
while some applications would find the routines that they needed, others would
not.
Another sign of the effective design in MPI is the use of a single concept to

solve multiple problems. This reduces both the number of items that a user must
learn and the complexity of the implementation. For example, the MPI com-
municator both describes the group of communicating processes and provides
a separate communication context that supports component-oriented software,
described in more detail in Section 2.4. Another example is the MPI datatype;
datatypes describe both the type (e.g., integer, real, or character) and layout
(e.g., contiguous, strided, or indexed) of data. The MPI datatype solves the two
problems of describing the types of data to allow for communication between sys-
tems with different data representations and of describing noncontiguous data
layouts to allow an MPI implementation to implement zero-copy data transfers
of noncontiguous data.
MPI also followed the principle of symmetry : wherever possible, routines were

added to eliminate any exceptions. An example is the routine MPI Issend. MPI
provides a number of different send modes that correspond to different, well-
established communication approaches. Three of these modes are the regular
send (MPI Send) and its nonblocking versions (MPI Isend), and the synchronous
send (MPI Ssend). To maintain symmetry, MPI also provides the nonblocking
synchronous send MPI Issend. This send mode is meaningful (see [11, Section



7.6.1]) but is rarely used. Eliminating it would have removed a routine, slightly
simplifying the MPI documentation and implementation. It would have created
an exception, however. Instead of each MPI send mode having a nonblocking
version, only some send modes would have nonblocking versions. Each such ex-
ception adds to the burden on the user and adds complexity: it is easy to forget
about a routine that you never use; it is harder to remember arbitrary decisions
on what is and is not available.
A place where MPI may have followed the principle of symmetry too far is in

the large collection of routines for manipulating groups of processes. Particularly
in MPI-1, the single routine MPI Comm split is all that is needed; few users
need to manipulate groups at all. Once a routine working with MPI groups was
introduced, however, symmetry required completing the set. Another place is in
canceling of sends, where significant implementation complexity is required for
an operation of dubious use.
Of course, more can be done to simplify the use of MPI. Some possible

approaches are discussed in Section 3.1.

2.4 Modularity

Component-oriented software is becoming increasingly important. In commecial
software, software components implementing a particular function are used to
implement a clean, maintainable service. In high-performance computing, com-
ponents are less common, with many applications being built as a monolithic
code. However, as computational algorithms become more complex, the need to
exploit software components embodying these algorithms increases.
For example, many modern numerical algorithms for the solution of partial

differential equations are hierarchical, exploiting the structure of the underlying
solution to provide a superior and scalable solution algorithm. Each level in that
hierarchy may require a different solution algorithm; it is not unusual to have
each level require a different decomposition of processes. Other examples are
intelligent design automation programs that run application components such
as fluid solvers and structural analysis codes under the control of a optimization
algorithm.
MPI supports component-oriented software. Both describe the subset of pro-

cesses participating in a component and to ensure that all MPI communication is
kept within the component, MPI introduced the communicator.2 Without some-
thing like a communicator, it is possible for a message sent by one component
and intended for that component to be received by another component or by
user code. MPI made reliable libraries possible.
Supporting modularity also means that certain powerful variable layout tricks

(such as assuming that the variable a in an SPMD program is at the same address
on all processors) must be modified to handle the case where each process may
have a different stack-use history and variables may be dynamically allocated
with different base addresses. Some programming models have assumed that all

2 The context part of the communicator was inspired by Zipcode [12].



processes have the same layout of local variables, making it difficult or impossible
to use those programming models with modern adaptive algorithms.
Modularity also deals with the complexity of MPI. Many tools have been built

using MPI to provide the communication substrate; these tools and libraries
provide the kind of easy-to-use interface for domain-specific applications that
some developers feel are important; for example, some of these tools eliminate
all evidence of MPI from the user program. MPI makes those tools possible.
Note that the user base of these domain-specific codes may be too small to
justify vendor-support of a parallel programming model.

2.5 Composability

One of the reasons for the continued success of Unix is the ease with which new
solutions can be built by composing existing applications.
MPI was designed to work with other tools. This capability is vital, because

the complexity of programs and hardware continues to increase. For example,
the MPI specification was designed from the beginning to be thread-safe, since
threaded parallelism was seen by the MPI Forum as a likely approach to sys-
tems built from a collection of SMP nodes. MPI-2 took this feature even further,
acknowledging that there are performance tradeoffs in different degrees of thread-
edness and providing a mechanism for the user to request a particular level of
thread support from the MPI library. Specificically, MPI defines several degrees
of thread support. The first, called MPI THREAD SINGLE, specifies that there is
a single thread of execution. This allows an MPI implementation to avoid the
use of thread-locks or other techniques necessary to ensure correct behavior with
multithreaded codes. Another level of thread support, MPI THREAD FUNNELLED,
specifies that the process may have multiple threads but all MPI calls are made
by one thread. This matches the common use of threads for loop parallelism, such
as the most common uses of OpenMP. A third level, MPI THREAD MULTIPLE, al-
lows multiple threads to make MPI calls. While these levels of thread support do
introduce a small degree of complexity, they reflect MPI’s pragmatic approach
to providing a workable tool for high-performance computing.
The design of MPI as a library means that MPI operations cannot be opti-

mized by a compiler. However, it also means that any MPI library can exploit
the newest and best compilers and that the compiler can be developed without
worrying about the impact of MPI on the generated code—from the compiler’s
point of view, MPI calls are simply generic function calls.3 The ability of MPI
to exploit improvements in other tools is called composability. Another example
is in debuggers; because MPI is simply a library, any debugger can be used with
MPI programs. Debuggers that are capable of handling multiple processes, such
as TotalView [14], can immediately be used to debug MPI programs. Additional
refinements, such as an interface to an abstraction of message passing that is

3 There are some conflicts between the MPI model and the Fortran language; these are
discussed in [13, Section 10.2.2]. The issues are also not unique to MPI; for example,
any asynchronous I/O library faces the same issues with Fortran.



described in [15], allows users to use the debugger to discover information about
pending communication and unreceived messages.
More integrated approaches, such as language extensions, have the obvious

benefits, but they also have significant costs. A major cost is the difficulty of
exploiting advances in other tools and of developing and maintaining a large,
integrated system.
OpenMP is an example of a programming model that achieves the effect of

composability with the compilers because OpenMP requires essentially orthog-
onal changes to the compiler; that is, most of the compiler development can
ignore the addition of OpenMP in a way that more integrated languages cannot.

2.6 Completeness

MPI provides a complete programming model. Any parallel algorithm can be
implemented with MPI. Some parallel programming models have sacrified com-
pleteness for simplicity. For example, a number of programming models have re-
quired that synchronization happens only collectively for all processes or tasks.
This requirement significantly simplifies the programming model and allows the
use of special hardware affecting all processes. Many existing programs also fit
into this model; data-parallel programs are natural candidates for this model.
But as discussed in Section 2.4, many programs are becoming more complex
and are exploiting software components. Such applications are difficult, if not
impossible, to build using restrictive programming models.
Another way to look at this is that while many programs may not be easy

under MPI, no program is impossible. MPI is sometimes called the “assembly
language” of parallel programming. Those making this statement forget that
C and Fortran have also been described as portable assembly languages. The
generality of the approach should not be mistaken for an unnecessary complexity.

2.7 Summary

Six different requirements have been discussed, along with how MPI addresses
each. Each of these is necessary in a general-purpose parallel programming sys-
tem.
Portability and performance are clearly required. Simplicity and symmetry

cater to the user and make it easy to learn and use safely. Composibility is
required to prevent the approach from being left behind by the advance of other
tools such as compilers and debuggers.
Modularity, like completeness, is required to ensure that tools can be built

on top of the programming model. Without modularity, a programming model is
suitable only for turnkey applications. While those may be important and easy
to identify as customers, they represent the past rather than the future.
Completeness, like modularity, is required to ensure that the model supports

a large enough community. While this does not mean that everyone uses every
function, it means that the functionality that a user may need is likely to be



present. An early poll of MPI users [16] in fact found that while no one was
using all of the MPI-1 routines, essentially all MPI-1 routines were in use by
someone.
The open standards process (see [17] for a description of the process used

to develop MPI) was an important component in its success. Similar processes
are being adopted by others; see [18] for a description of the principles and
advantages of an open standards process.

3 Where Next?

MPI is not perfect. But any replacement will need to improve on all that MPI
offers, particularly with respect to performance and modularity, without sacri-
ficing the ability to express any parallel program. Three directions are open to
investigation: improvements in the MPI programming model, better MPI imple-
mentations, and fundamentally new approaches to parallel computing.

3.1 Improving MPI

Where can MPI be improved? A number of evolutionary enhancements are pos-
sible, many of which can be made by creating tools that make it easier to build
and maintain MPI programs.

1. Simpler interfaces. A compiler (or a preprocessor) could provide a simpler,
integrated syntax. For example, Fortran 90 array syntax could be supported
without requiring the user to create special MPI datatypes. Similarly, the
MPI datatype for a C structure could be created automatically. Some tools
for the latter already exist. Note that support for array syntax is an ex-
ample of support for a subset of the MPI community, many of whom use
data structures that do not map easily onto Fortran 90 arrays. A precom-
piler approach would maintain the composability of the tools, particularly if
debuggers understood preprocessed code.

2. Elimination of function calls. There is no reason why a sophisticated system
cannot remove the MPI routine calls and replace them with inline opera-
tions, including handling message matching. Such optimizations have been
performed for Linda programs [19] and for MPI subsets [20]. Many compil-
ers already perform similar operations for simple numerical functions like
abs and sin. This enhancement can be achieved by using preprocessors or
precompilers and thus can maintain the composability of MPI with the best
compilers.

3. Additional tools and support for correctness and performance debugging.
Such tools include editors that can connect send and receive operations so
that both ends of the operation are presented to the programmer, or per-
formance tools for massively parallel programs. (Tools such as Vampir and
Jumpshot [21] are a good start, but much more can be done to integrate the
performance tool with source-code editors and performance predictors.)



4. Changes to MPI itself, such as read-modify-write additions to the remote
memory access operations in MPI-2. It turns out to be surprisingly difficult
to implement an atomic fetch-and-increment operation [22, Section 6.5.4] in
MPI-2 using remote memory operations (it is quite easy using threads, but
that usually entails a performance penalty).

3.2 Improving MPI Implementations

Having an implementation of MPI is just the beginning. Just as the first com-
pilers stimulated work in creating better compilers by finding better ways to
produce quality code, MPI implementations are stimulating work on better ap-
proaches for implementing the features of MPI. Early work along this line looked
at better ways to implement the MPI datatypes [23, 24]. Other interesting work
includes the use of threads to provide a lightweight MPI implementation [25, 26].
This work is particularly interesting because it involves code transformations to
ensure that the MPI process model is preserved within a single, multithreaded
Unix process.

In fact, several implementations of MPI fail to achieve the available asymp-
totic bandwidth or latency. For example, at least two implementations from
different vendors perform unnecessary copies (in one case because of layering
MPI over a lower-level software that does not match MPI’s message-passing
semantics). These implementations can be significantly improved. They also un-
derscore the risk in evaluating the design of a programming model based on a
particular implementation.

1. Improvement of the implementation of collective routines for most platforms.
One reason, ironically, is that the MPI point-to-point communication rou-
tines on which most MPI implementations build their collective routines are
too high level. An alternative approach is to build the collective routines on
top of stream-oriented methods that understand MPI datatypes.

2. Optimization for new hardware, such as implementations of VIA or Infini-
band. Work in this direction is already taking place, but more can be done,
particularly for collective (as opposed to point-to-point) communication.

3. Wide area networks (1000 km and more). In this situation, the steps used
to send a message can be tuned to this high-latency situation. In particular,
approaches that implement speculative receives [27], strategies that make use
of quality of service [28], or alternatives to IP/TCP may be able to achieve
better performance.

4. Scaling to more than 10,000 processes. Among other things, this requires
better handling of internal buffers; also, some of the routines for managing
process mappings (e.g., MPI Graph create) do not have scalable definitions.

5. Parallel I/O, particularly for clusters. While parallel file systems such as
PVFS [29] provide support for I/O on clusters, much more needs to be done,
particularly in the areas of communication aggregation and in reliability in
the presence of faults.



6. Fault tolerance. The MPI intercommunicator (providing for communication
between two groups of processes) provides an elegant mechanism for general-
izing the usual “two party” approach to fault tolerance. Few MPI implemen-
tations support fault tolerance in this situation, and little has been done to
develop intercommunicator collective routines that provide a well-specified
behavior in the presence of faults.

7. Thread-safe and efficient implementations for the support of “mixed model”
(message-passing plus threads) programming. The need to ensure thread-
safety of an MPI implementation used with threads can significantly increase
latency. Architecting an MPI implementation to avoid or reduce these penal-
ties remains a challenge.

3.3 New Directions

In addition to improving MPI and enhancing MPI implementations, more revo-
lutionary efforts should be explored.
One major need is for a better match of programming models to the multilevel

memory hierarchies that the speed of light imposes, without adding unmanage-
able complexity. Instead of denying the importance of hierarchical memory, we
need a memory centric view of computing.
MPI’s performance comes partly by accident; the two-level memory model is

better than a one-level memory model at allowing the programmer to work with
the system to achieve performance. But a better approach needs to be found.
Two branches seem promising. One is to develop programming models tar-

geted at hardware similar in organization to what we have today (see Figure 1).
The other is to codevelop both new hardware and new programming models.
For example, hardware built from processor-in-memory, together with hardware
support for rapid communication of functions might be combined with a pro-
gramming model that assumed distributed control. The Tera MTA architecture
may be a step in such a direction, by providing extensive hardware support
for latency hiding by extensive use of hardware threads. In either case, better
techniques must be provided for both data transfer and data synchronization.
Another major need is to make it harder to write incorrect programs. A

strength of MPI is that incorrect programs are usually deterministic, simplify-
ing the debugging process compared to the race conditions that plague shared-
memory programming. The synchronous send modes (e.g., MPI Ssend) may also
be used to ensure that a program has no dependence on message buffering.

4 Conclusion

The lessons from MPI can be summed up as follows: It is more important to
make the hard things possible than it is to make the easy things easy. Future pro-
gramming models must concentrate on helping programmers with what is hard,
including the realities of memory hierarchies and the difficulties in reasoning
about concurrent threads of control.



Acknowledgment

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

References

1. Papers about MPI (2001) www.mcs.anl.gov/mpi/papers.
2. Hansen, P.B.: An evaluation of the Message-Passing Interface. ACM SIGPLAN
Notices 33 (1998) 65–72

3. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, B., Sunderam, V.:
PVM: Parallel Virtual Machine—A User’s Guide and Tutorial for Network Parallel
Computing. MIT Press, Cambridge, MA. (1994)

4. Boyle, J., Butler, R., Disz, T., Glickfeld, B., Lusk, E., Overbeek, R., Patterson,
J., Stevens, R.: Portable Programs for Parallel Processors. Holt, Rinehart, and
Winston, New York (1987)

5. Message Passing Interface Forum: MPI: A Message-Passing Interface standard.
International Journal of Supercomputer Applications 8 (1994) 165–414

6. Koelbel, C.H., Loveman, D.B., Schreiber, R.S., Jr., G.L.S., Zosel, M.E.: The High
Performance Fortran Handbook. MIT Press, Cambridge, MA (1993)

7. Carlson, W.W., Draper, J.M., Culler, D., Yelick, K., Brooks, E., Warren, K.: In-
troduction to UPC and language specification. Technical Report CCS-TR-99-157,
Center for Computing Sciences, IDA, Bowie, MD (1999)

8. Numrich, R.W., Reid, J.: Co-Array Fortran for parallel programming. ACM SIG-
PLAN FORTRAN Forum 17 (1998) 1–31

9. Dongarra, J., Gustavson, F., Karp, A.: Implementing linear algebra algorithms for
dense matrices on a vector pipeline machine. SIAM Review 26 (1984) 91–112

10. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimizations of
software and the ATLAS project. Parallel Computing 27 (2001) 3–35

11. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message Passing Interface, 2nd edition. MIT Press, Cambridge, MA
(1999)

12. Skjellum, A., Smith, S.G., Doss, N.E., Leung, A.P., Morari, M.: The design and
evolution of Zipcode. Parallel Computing 20 (1994) 565–596

13. Message Passing Interface Forum: MPI2: A message passing interface standard.
International Journal of High Performance Computing Applications 12 (1998) 1–
299

14. TotalView Multiprocess Debugger/Analyzer (2000)
http://www.etnus.com/Products/TotalView.

15. Cownie, J., Gropp, W.: A standard interface for debugger access to message queue
information in MPI. In Dongarra, J., Luque, E., Margalef, T., eds.: Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface. Volume 1697 of
Lecture Notes in Computer Science., Berlin, Springer (1999) 51–58

16. MPI poll ’95 (1995) http://www.dcs.ed.ac.uk/home/trollius/www.osc.edu/Lam/
mpi/mpi poll.html.

17. Hempel, R., Walker, D.W.: The emergence of the MPI message passing standard
for parallel computing. Computer Standards and Interfaces 21 (1999) 51–62



18. Krechmer, K.: The need for openness in standards. IEEE Computer 34 (2001)
100–101

19. Carriero, N., Gelernter, D.: A foundation for advanced compile–time analysis
of linda programs. In Banerjee, U., Gelernter, D., Nicolau, A., Padua, D., eds.:
Proceedings of Languages and Compilers for Parallel Computing. Volume 589 of
Lecture Notes in Computer Science., Berlin, Springer (1992) 389–404

20. Ogawa, H., Matsuoka, S.: OMPI: Optimizing MPI pro-
grams using partial evaluation. In: Supercomputing’96. (1996)
http://www.bib.informatik.th-darmstadt.de/sc96/OGAWA.

21. Zaki, O., Lusk, E., Gropp, W., Swider, D.: Toward scalable performance visu-
alization with Jumpshot. High Performance Computing Applications 13 (1999)
277–288

22. Gropp, W., Lusk, E., Thakur, R.: Using MPI-2: Advanced Features of the Message-
Passing Interface. MIT Press, Cambridge, MA (1999)

23. Gropp, W., Lusk, E., Swider, D.: Improving the performance of MPI derived
datatypes. In Skjellum, A., Bangalore, P.V., Dandass, Y.S., eds.: Proceedings of
the Third MPI Developer’s and User’s Conference, MPI Software Technology Press
(1999) 25–30

24. Traeff, J.L., Hempel, R., Ritzdoff, H., Zimmermann, F.: Flattening on the fly:
Efficient handling of MPI derived datatypes. Volume 1697 of Lecture Notes in
Computer Science., Berlin, Springer (1999) 109–116

25. Demaine, E.D.: A threads-only MPI implementation for the development of par-
allel programs. In: Proceedings of the 11th International Symposium on High
Performance Computing Systems. (1997) 153–163

26. Tang, H., Shen, K., Yang, T.: Compile/run-time support for threaded MPI exe-
cution on multiprogrammed shared memory machines. In Chien, A.A., Snir, M.,
eds.: Proceedings of the 1999 ACM Sigplan Symposium on Principles and Practice
of Parallel Programming (PPoPP‘99). Volume 34.8 of ACM Sigplan Notices., New
York, ACM Press (1999) 107–118

27. Tatebe, O., Kodama, Y., Sekiguchi, S., Yamaguchi, Y.: Highly efficient implemen-
tation of MPI point-to-point communication using remote memory operations. In:
Proceedings of the International Conference on Supercomputing (ICS-98), New
York, ACM press (1998) 267–273

28. Roy, A., Foster, I., Gropp, W., Karonis, N., Sander, V., Toonen, B.: MPICH-GQ:
Quality of service for message passing programs. Technical Report ANL/MCS-
P838-0700, Mathematics and Computer Science Division, Argonne National Lab-
oratory (2000)

29. Carns, P.H., Ligon III, W.B., Ross, R.B., Thakur, R.: PVFS: A parallel file sys-
tem for Linux clusters. In: Proceedings of the 4th Annual Linux Showcase and
Conference, Atlanta, GA, USENIX Association (2000) 317–327


