
RC22851 (W0307-150) July 22, 2003
Computer Science

IBM Research Report

MPI on BlueGene/L: Designing an Efficient General Purpose
Messaging Solution for a Large Cellular System

Gheorge Almási1, Charles Archer2, José G. Castaños1, Manish Gupta1,
Xavier Martorell1, José E. Moreira1, William Gropp3, Silvius Rus4,

Brian Toonen3

1IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

2IBM Rochester
Rochester, MN 55901

3Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439

4Computer Science Department
Texas A&M University

College Station, TX 77840

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

MPI on Blue Gene/L : Designing an Efficient General Purpose Messaging
Solution for a Large Cellular System

George Almási�, Charles Archer�, José G. Castaños�, Manish Gupta�, Xavier Martorell�, José E. Moreira�, William
Gropp�, Silvius Rus�, and Brian Toonen�

� IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598-0218

�gheorghe,castanos,jmoreira,mgupta,xavim�@us.ibm.com
� IBM Rochester MN 55901
archerc@us.ibm.com

� Mathematics and Computer Science Division
Argonne National Laboratory

Argonne IL 60439
�gropp,toonen�@mcs.anl.gov

� Computer Science Department
Texas A&M University

College Station TX 77840
rus@tamu.edu

Abstract. The Blue Gene/L supercomputer uses system-on-a-chip integration and a highly scalable 65,536 node
cellular architecture to deliver 360 Teraflops of peak computing power. Efficient operation of the machine requires
a fast, scalable and standards compliant MPI library. Researchers at IBM and Argonne National Labs are porting
the MPICH2 library to Blue Gene/L . We present the current state of the design and project the features critical to
achieving performance and scalability.

1 Introduction

In November 2001 IBM announced a partnership with Lawrence Livermore National Laboratory to build the
Blue Gene/L supercomputer, a 65,536-node machine designed around embedded PowerPC processors. Through the
use of system-on-a-chip integration [8], coupled with a highly scalable cellular architecture, Blue Gene/L will deliver
180 or 360 Teraflops of peak computing power, depending on utilization mode. Blue Gene/L represents a scalability
jump of almost two orders of magnitude when compared to existing large scale systems, such as ASCI White [2], the
Earth Simulator [4], Cplant [3] and ASCI Red [1].

MPICH2 [5], developed by researchers at Argonne National Laboratories, is an all-new implementation of MPI
that is intended to support research into both MPI-1 and MPI-2. The MPICH2 design features optimized MPI datatypes,
optimized remote memory access (RMA), high scalability, usability and robustness.

In this paper we present and analyze the software design for a fast, scalable and standards compliant MPI com-
munication library, based on MPICH2 , for the Blue Gene/L machine. The rest of this paper is organized as follows.
Section 2 presents a brief description of the Blue Gene/L supercomputer. Section 3 discusses the system software.
Section 4 gives a high level architectural overview of the communication library, and Section 5 discusses the design
choices we are facing during implementation. Section 6 describes the methodology we employed to measure perfor-
mance, and preliminary results. We conclude with Section 7.

2 Blue Gene/L hardware overview

A detailed description of the Blue Gene/L hardware is provided in [7]. In this section we present a short overview of
the hardware as background for the discussion on the design of the communication library.

The basic building block of the system is a custom system-on-a-chip that integrates processors, memory and
communications logic in the same piece of silicon. A chip contains two 32-bit embedded PowerPC 440 cores. Each
core has embedded L1 instruction and data caches (32 KBytes each); the L2 cache is 2 KBytes, is shared by the
processors, and acts as a prefetch buffer for the 4 MBytes of L3 cache (also shared).

2

Each core drives a custom 128-bit “double” FPU: essentially a pair of conventional PPC 440 FPUs joined together
in SIMD mode, that can perform four double precision floating-point operations per cycle, and load/store 128 bit
operands. The theoretical peak FPU performance of the core pair is 5.6GFlop/s assuming the projected clock speed of
700 MHz.

The PPC440 cores are not designed to support multiprocessor architectures. Their L1 caches are not coherent and
the architecture lacks atomic memory operations. To compensates, the chip provides a number of synchronization
devices: a lockbox unit for fast atomic test-and-set operations, 8 KBytes of shared SRAM and an EDRAM scratchpad
for inter-core data exchange, and a “blind device” for explicit cache management.

Large Blue Gene/L systems are built as shown in Figure 1. Two chips, together with about 256 MBytes of DDR
memory, are placed on a compute card. Sixteen compute cards are plugged in a node board; 32 node boards fit into a
cabinet. The complete target system has 64 cabinets, totaling 64K compute nodes and 16 TB of memory.

In addition to the 64K compute nodes, Blue Gene/L contains a number of I/O nodes (1024 in the current design),
which are connected to a Gigabit ethernet and serve as control and file I/O concentrators for the compute nodes.

Blue Gene/L has five different networks. The torus network is designed for communication among compute nodes,
and is the primary network for the MPI library. The tree network encompasses all nodes and is used by MPI, by
the control system for program loading and by file I/O. The other networks are the multipurpose Gigabit ethernet
connecting a small number of nodes, the JTAG network used for booting and control and the global interrupt network
used for job start, checkpoints and barriers.

The 64K nodes are organized into a partitionable 64x32x32 three-dimensional torus network. Each compute node
contains six bi-directional torus links for direct connection with nearest neighbors. The network hardware guarantees
reliable and deadlock-free, but unordered, delivery of variable length (up to 256 bytes) packets, using a minimal
adaptive routing algorithm. It also provides simple broadcast functionality by depositing packets along a route. At 1.4
Gb/s per direction, the bisection bandwidth of a 64K node system is 360 GB/s. The I/O nodes are not connected to the
torus network.

The tree network supports fast configurable point-to-

Fig. 1. High-level organization of Blue Gene/L

point, broadcast and reductions of packets, with a hard-
ware latency of 1.5 microseconds for a 64K node sys-
tem. An ALU in the network can combine incoming
packets using bitwise and integer operations, forward-
ing a resulting packet along the tree. Floating point re-
ductions can be performed in two phases (one for the
exponent and another one for the mantissa) or in one
phase by converting the floating-point number to an ex-
tended 2048-bit representation. I/O and compute nodes
share the tree network. Tree packets are the main mech-
anism for communication between these nodes.

3 Blue Gene/L System Software

The Blue Gene/L computational core is divided into partitions: self-contained and completely (electrically) isolated
subsets of the machine. This isolation can be effected at midplane boundaries. The smallest physically isolated con-
tiguous torus in Blue Gene/L consists of 512 compute nodes. It is possible to create smaller (128 node) contiguous
meshes, but not tori, by selectively disabling certain torus and tree links on some chips.

The system software architecture is presented in Figure 2. The smallest unit independently controlled by software
is called a processing set (or pset) and consists of 64 compute nodes and an associated I/O node. Components of a
pset communicate through the tree network; file I/O and control are managed by the associated I/O node through the
Ethernet network. The smallest logical entity that can run a job is made of two psets and forms a 128 node contiguous
mesh. The whole Blue Gene/L computational core consists of 1024 psets.

The I/O nodes run an embedded Linux kernel (currently version 2.4.19) for PowerPC 440GP processors. The
kernel has custom drivers for the Ethernet and tree devices. The main function of I/O nodes is to run a control program
called CIOD (console I/O daemon) that is used by system management software and by the compute nodes’ file I/O
operations.

3

The control software running on compute nodes is a minimalist POSIX compliant custom kernel that provides a
simple, flat, fixed-size 256MB address space, with no paging, accomplishing a role similar to PUMA [17]. The kernel
and application program share the same address space. In the current implementation, the entire torus network is
mapped into user space while the tree network is partitioned between the kernel and the user. The kernel also provides
support for a range of options of using the two processors on the chip, which will be discussed later in the paper.

The system management software provides a range

MMCS lib

Scheduler

tree

tree

torus

torus

torus torus

JTAG

JTAG

ciod

Linux

user apps user apps

ciod

Linux

user apps user apps

IDo

Pset 0

Pset 1023

I/O Node 0

I/O Node 1023

Compute Node 0 Compute Node 63

Compute Node 0 Compute Node 63

MMCS

IDo lib

Service
Node

MMCS lib

Front end
Console

File servers

Ethernet

Ethernet
Control

CNK CNK

CNK CNK

DB

Fig. 2. Blue Gene/L system software

of services for the whole machine, including machine
initialization and booting, system monitoring, job launch
and termination, and file I/O. System management is
provided by external service nodes; from a system point
of view the compute and I/O nodes are stateless. We
chose to maintain all the state of a Blue Gene/L sys-
tem using standard database technology, which naturally
provides scalability, reliability, security, portability, log-
ging, and robustness.

Job execution in Blue Gene/L is accomplished through
a combination of I/O nodes and service node function-
ality. When submitting a job for execution in Blue Gene/L ,
the user specifies the desired shape and size of the par-
tition to execute that job. Each compute node executes
exactly one compute process of the parallel job. The scheduler selects an appropriate set of compute nodes to form the
partition. The compute (and corresponding I/O) nodes selected by the scheduler are configured into a partition by the
service node using the control network. We have developed techniques for efficient allocation of nodes in a toroidal
machine that are applicable to Blue Gene/L [13].

Once a partition is created, job launch and file I/O are accomplished via messages passed between the compute
node and its control node over the tree network, using a point-to-point packet addressing mode. This functionality is
provided by the I/O node for all compute nodes in a pset.

4 Communication Software Architecture

The Blue Gene/L communication software architecture is divided into three layers. At the bottom is the packet layer,
a thin software library that allows access to network hardware. At the top is the MPI library. Traditional systems
have many other layers of software in between. The relatively high bandwidth/FLOP ratio of the Blue Gene/L design
requires low software overhead for communication; therefore a single layer, called the message layer, glues the system
together.

4.1 Packet layer

The Blue Gene/L chip network hardware is a set of memory mapped FIFO registers and device control registers
(DCRs). The torus/tree packet layer is a thin layer of software designed to abstract and simplify access to hardware.
It abstracts FIFO registers into torus and tree devices and presents an API consisting of essentially three functions:
initialization, packet send and packet receive. The packet layer provides a mechanism to use the network hardware but
doesn’t impose any policies on how to use it.

Some restrictions imposed by hardware are not abstracted at packet level for performance reasons. For example
the length of a torus packet must be a multiple of 32 bytes, and can be no more than 256 bytes. Tree packets have
exactly 256 bytes.

Packets sent and received by the packet layer have to be aligned to a 16 byte address boundary, to enable the
efficient use of 128 bit loads and stores to the network hardware through dual floating point registers.

All packet layer send and receive operations are non-blocking, leaving it up to the higher layers to implement
synchronous, blocking and/or interrupt driven communication models. In its current implementation the packet layer
is stateless.

4

4.2 Message layer

The message layer is an active message system [19, 10, 15, 18] built on top of the packet layer that allows the trans-
mission of arbitrary buffers among compute nodes. Its architecture is shown by Figure 3:

The connection manager controls the overall progress

...

...

ARank n−1

Rank n P

SendQ RecvQ

PRank 2

Rank 1

Rank 0 A

P

SendQ RecvQ

Connection Manager

msg1 msg2 msgP

User buffer Protocol info

Packetizer state

Message Data

Receive Queue

Fig. 3. The message layer architecture

of the system and contains a list of virtual connections
to other nodes.

Each virtual connection is responsible for commu-
nicating with one peer. The connection has a send queue
and a receive queue. Outgoing messages are always sent
in order. Incoming packets, however, can arrive out of
order: the message layer has to determine which mes-
sage a packet belongs to. Thus, each packet has to carry
a message ID.

Message buffers are used for sending and receiv-
ing packets belonging to the same message. A message

buffer contains the state of the message (in progress, complete etc.). It also has an associated region of user memory,
and a packetizer/unpacketizer that is able to generate packets or to place incoming packets into memory. Message
buffers also handle the message protocol (i.e. what packets to send when).

[Un]packetizers drive the packet layer. Packetizers build and send packets out of message buffers; unpacketizers
re-constitute messages from the component packets. Packetizers also handle the alignment and packet size limitations
imposed by the network hardware.

The three main functions implemented by the message layer API are Init, advance and postsend. Init
initializes the message layer. advance is called often to ensure that the message layer makes progress, i.e. sends the
packets it has to send, checks the torus hardware for incoming packets and processes them accordingly. postsend
allows a message to be submitted into the send queue. Other functions, not described here, allow the implementation
of application-supported checkpointing.

Just like packet layer functions, message layer functions are non-blocking and designed to be used in either polling
mode, or driven by hardware interrupts. Completion of a send, and the begin and end of a receive are all signalled
through callbacks. Thus, when a message is sent and is ready to be taken off the send queue the senddone function
is invoked. When a new message starts arriving, the recvnew callback is invoked; at the end of reception recvdone
is invoked.

4.3 MPICH2

The large number of MPI processes on

BlueGene/L additions

MPI pt2pt datatype topology debug collectives

MPID (Abstract Device Interface)

CH3 (Channel Interface)

TCP/IP

bgltorus

collectives

tree based
collectives

torus based

Management
Process

forker

sim
ple

bgltorus

Fig. 4. The Blue Gene/L MPI roadmap

a Blue Gene/L machine create scalability prob-
lems for most MPI implementations we con-
sidered for this machine. MPICH2 , currently
under development at Argonne National Lab-
oratories, is an MPI implementation designed
from the ground up for scalability to hun-
dreds of thousands of processors. Figure 4
shows the roadmap of developing an MPI li-
brary for Blue Gene/L . MPICH2 has a mod-

ular build, and therefore the Blue Gene/L port consists of a number of plug-in modules, leaving the code structure of
MPICH2 intact.

Point-to-point messages. The most important addition of the Blue Gene/L port is an implementation of ADI3, the
MPICH2 Abstract Device Interface [12]. A thin layer of code transforms e.g. MPI Request objects and MPI Send
function calls into calls into sequences of message layer postsend function calls and various message layer call-
backs.

Process management. Another part of the Blue Gene/L port is related to the process management primitives,
documented in [6]. In MPICH2 process management is split into two parts: a process management interface (PMI),

5

called from within the MPI library, and a set of process managers (PM) which are responsible for starting up and
terminating down MPI jobs and implementing the PMI functions.

MPICH2 includes a number of process managers suited for clusters of general purpose workstations. The Blue Gene/L pro-
cess manager makes full use of its hierarchical system management software, including the CIOD processes running
on the I/O nodes, to start up and shut down MPI jobs. The Blue Gene/L system management software is expressly
designed to deal with the scalability problem inherent in starting up, synchronizing and killing 65,536 MPI processes.

When complete, the system management software will also allow us to completely implement most of the PMI
functions specified by MPICH2 . Currently our PMI implementation is only minimally functional, and e.g. only allows
a default mapping of MPI ranks to torus coordinates; when fully functional, the PMI will be coupled with the system
manager’s implementation of mpirun to allow users to ask for specific physical topologies and MPI rank assignments
to run their jobs on.

Optimized collectives. MPICH2 has default implementations for all MPI collectives, and therefore becomes func-
tional the moment point-to-point primitives are implemented. The default implementations are oblivious of the un-
derlying physical topology of the torus and tree networks. Optimized collective operations can be implemented for
communicators whose physical layouts conform to certain properties.

Building optimized collectives for MPICH2 involves several steps. First, the process manager interface will be
expanded to allow the calculation of the torus and tree layouts of particular communicators. Next, a list of optimized
collectives, for partilar combinations of communicator layouts and message types, will be implemented. The best
implementation of a particular MPI collective will then be selected based on the type of communicator involved (as
calculated using the process manager interface).

– The torus hardware can be used to efficiently implement broadcasts on contiguous 1, 2 and 3 dimensional meshes,
using a feature of the torus that allows depositing a packet on every node it traverses (as mentioned in Section 2).
Collectives best suited for this implementation e.g. Bcast, Allgather, Alltoall, Barrier, all involve
broadcast in some form.

– The tree hardware can be used for almost every collective that is executed on the MPI COMM WORLD communi-
cator, including some reduction operations. Integer operand reductions are directly supported by hardware. IEEE
compliant floating point reductions can also be implemented by the tree using separate reduction phases for the
mantissa and the exponent.

– Non MPI COMM WORLD collectives can also be implemented using the tree, but care must be taken to ensure
deadlock free operation. The tree is a locally class routed network, with packets belonging to one of a small
number of classes and tree nodes making local decisions about routing. The tree network guarantees deadlock-
free simultaneous delivery of no more than two class routes. One of these routes is used for control and file I/O
purposes; the other is available for use by collectives.

Optimized collectives are not yet implemented, since our priority is to achieve a fully functional MPI implemen-
tation before the Blue Gene/L hardware arrives.

5 Design Decisions in the Message Layer

The message layer’s design was driven by the requirement to find a low overhead solution with good scaling properties
that interfaces the MPI library with the packet layer. The design was influenced by specific Blue Gene/L hardware
features, such as

– the network’s reliability,
– packetization and alignment restrictions,
– out-of-order arrival of torus packets, and
– the existence of non-coherent processors in a chip.

These hardware features, together with the requirements, led us to design decisions that deserve closer examination.

6

5.1 The impact of hardware reliability

The Blue Gene/L network hardware is completely reliable. Once a packet is injected into the network, hardware
guarantees its arrival at the destination unless a non-correctable error condition occurs at one of the nodes (resulting in
an abort and checkpoint restart). The Blue Gene/L message layer does not implement a packet recovery protocol. This
decision allows for better scaling and a large reduction of software overhead, but also introduces problems related to
checkpointing and recovery from software failures.

5.2 Dealing with network hardware: packetizing and alignment

The packet layer requires data to be sent in 256 byte chunks aligned at 16 byte boundaries. This forces the message
layer to either optimize the alignment of arbitrary buffers or to copy memory to/from aligned data buffers.

Figure 5 illustrates the principle of op-

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

aligned packets

non−aligned buffer

Fig. 5. Packetizing non-aligned data

timizing the alignment of long buffers. The
buffer is carved up into aligned chunks where
possible. The two non-aligned chunks at the
beginning and at the end of the buffer are
copied and sent together. This strategy is not
always applicable, because the alignment phase

(i.e. the offset from the closest aligned address) of the sending and receiving buffers may differ. MPI has no control
over the allocation of user buffers. In such cases at least one of the participating peers, preferrably the sender, has to
adjust alignment by performing memory to memory copies. For rendezvous messages the receiver can send back the
desired alignment phase with the first acknowledgement packet.

The alignment problem only affects zero copy message sending strategies. If either peer in a message exchange
uses memory-to-memory copies for any reason, that memory copy can absorb the cost of re-alignment.

5.3 Out-of-order packets

The routing algorithm of the torus network allows packets from the same sender to arrive to the receiver out of order.
The task of re-ordering packets falls to the message layer.

Packet order anomalies affect the message layer in one of two ways. The simpler case occurs when packets be-
longing to the same message are received out of order. This affects the way in which packets are re-assembled into
messages, and the way in which MPI matching is done at the receiver (since typically MPI matching information is in
the first packet of a message).

Packet order reversal can also occur to packets belonging to different messages. To prevent the mixing of packets
belonging to different messages, each packet has to carry a message identifier. This identifier is maintained by the
sender’s virtual channel, and incremented for every message sent. To comply with MPI semantics, the receiver is
responsible to present incoming messages to MPI in strictly increasing order of the message identifier.

5.4 Cache coherence and processor use policy

As mentioned before, each Blue Gene/L compute node incorporates two non cache-coherent PowerPC 440 cores
sharing the main memory and the torus and tree devices. Several scenarios for using these CPUs have been proposed.

– Heater mode does not do anything with the second processor beyond booting it and putting it into an idle loop.
Heater mode is easy to implement, because it sidesteps all the issues related to the lack of cache coherency of the
cores, and to resource sharing.

– Virtual node mode allows the co-existence of the two processors but severly limits interaction between the two:
the applications running on them have separate allocations of memory and communication resources. Virtual node
mode doubles the available processing power available to the user at the cost of halving all other resources per
process. It is well suited for computation-intensive jobs that require little in the way of memory or communication.
Neither the torus nor the tree networks are suitable for communication between two processes on the same chip.
A shared area of memory is called for, either in a non-L1-cached portion of the main memory or in the scratchpad
memory area (described in Section 2). The shared memory can be viewed as a virtual torus/tree device, and we
plan to implement a virtual packet layer over this shared memory to send/receive packets in the same way as with
other nodes.

7

– Co-processor mode, envisioned by the designers of Blue Gene/L as the default mode of operation, assigns one
processor to computation and another to communication, effectively overlapping them by freeing the main (“com-
pute”) processor from communication tasks.

The main obstacle to implementing co-processor mode efficiently is the lack of cache coherence between the
processors doing computation and communication. A naive way to avoid this issue is to set up a shared memory area
and a virtual torus device just like in virtual node mode; the computate processor treats the virtual torus device, backed
by shared memory buffers, as the only torus device in the system. The communication processor is reduced to moving
data between the real device and the virtual device.

The naive implementation of co-processor mode still requires the compute processor to packetize and copy data
into the shared memory area. However, reads and writes to/from the shared memory area can be done about four times
faster than to/from the network devices, reducing the load on the compute processor by the same amount.

For better performance, however, it is necessary to de-couple the process of message processing from the compute
processor even more. The communication processor is able to touch application memory assuming that the correct
cache invalidation/flush protocol is observed by both the compute and communication processors. Before sending
an MPI message the compute processor has to insure that the user’s buffer has been flushed to main memory. The
communication processor accesses all main memory in non-cached mode, because there is no benefit from temporal
reuse for what is essentially a network DMA engine streaming data. When receiving a message, the compute processor
has to invalidate the cache lines associated with its receive buffer before allowing the communication processor to fill
it in with data.

Special care must be taken when receiving data that is not aligned at cache line boundaries, because the compute
processor may inadvertently touch data on the same cache line as the received buffer while the message is being
received, resulting in data corruption. We expect not to receive such data using the communication co-processor.

There are also other situations when the communication co-processor should not be used at all: for short blocking
messages latency is the main issue and offloading the compute processor doesn’t bring any benefits. In this case even
heater mode may work better than co-processor mode.

5.5 Scaling issues and virtual connections.

In MPICH2 point to point communication is executed over virtual connections between pairs of nodes. Virtual con-
nections are established between each pair of nodes in a lazy manner. In a 65,536 node machine the large number of
such connections maintained by every participating peer limit scalability.

Because the network hardware guarantees packet delivery, virtual connections do not have to execute a per-
connection wake-up protocol when the job starts. Thus startup time on the Blue Gene/L machine will be a constant,
not a linear function of the number of participating nodes.

Another factor limiting scalability is the amount of memory needed by an MPI process to maintain state for
each virtual connection. The current design of the message layer uses only about 50 bytes of data for every virtual
connection for the torus coordinates of the peer, pointer sets for the send and receive queues and state information.
Even so, 65,536 virtual connections, add to 3 MBytes of main memory per node, more than 1% of the available total
(256 MBytes), just to maintain the connection table.

5.6 Application-supported checkpointing

There is no software in place to re-send packets lost on the network during checkpointing. The torus and the tree
hardware to be emptied of packets prior to taking a checkpoint snapshot.

For system-initiated checkpoints this means querying the network hardware to make sure that no packets are in the
system. But application driven checkpoints do not have access to low level network hardware. Because packets on the
torus network may arrive out of order, the only way to guarantee that no packet is in transit is to checkpoint in a state
where the receive queues of all virtual connections are empty. Checkpoint markers have to be sent, and acknowledged,
by every virtual connection to their peers. Application initiated checkpointing implies a barrier operation.

8

5.7 Transmitting non-contiguous data

The MPICH2 abstract device interface allows non-contiguous data buffers to percolate down to message layer level,
affording us the opportunity to optimize the marshalling and unmarshalling of these data types at the lowest (packet)
level. Our current strategy centers on iovec data structures generated by utility functions in the ADI layer.

5.8 Communication protocol in the message layer

Early in the design we made the decision to implement the communication protocol in the message layer for perfor-
mance reasons. Integration with MPICH2 is somewhat harder, forcing us to implement an abstract device interface
(ADI3) based port instead of using the easier, but less flexible channel interface [12]. In our view the additional flexi-
bility gained by with this decision is well worth the effort.

The most important reason for abandoning the channel interface was the need for a custom protocol in the message
layer. The protocol design is crucial because it is influenced by virtually every aspect of the Blue Gene/L system: the
reliability and out of order nature of the network, scalability issues and latency and bandwidth requirements.

– Because of the reliable nature of the network no acknowledgements are needed. Thus a simple “fire and forget”
eager protocol is a viable proposition; any packet out the send FIFO can be considered safely received by the other
end.

– A special case of the eager protocol is represented by single-packet messages, which should be handled with a
minimum of overhead to achieve good ping-pong latency.

– The main limitation of the eager protocol is the inability of the receiver to control incoming traffic. For high
volume messages the rendezvous protocol is called for, possibly the optimistic form implemented in Portals [9].

– The message protocol is also influenced by out-of-order arrival of packets. The first packet of any message contains
information not repeated in other packets, such as the whole message’s lenght and MPI matching information. If
this packet is delayed on the network, the receiver is unable to handle the subsequent packets, and has to allocate
temporary buffers or to discard the packets, with obvious undesirable consequences.
This problem does not affect the rendezvous protocol because the first packet is always explicitly acknowledged
and thus cannot arrive out of order. For short messages, where the rendezvous protocol is not desirable, the problem
can be mitigated in several ways. The torus network permits us to assign higher priority to the lead packet of a
message, lowering the probability of an out-of-order situation. However, the problem can only be fully handled by
replicating the extra information in all packets of a message, at the price of substantial (10-20%) loss of bandwidth.

– The most promising solution to the out-of-order problem for mid-size messages involves a variation on the ren-
dezvous protocol that replicates the MPI matching information in the first few packets belonging to a message,
and requires the receiver to acknowledge the first packet it receives. The number of packets that have to carry
extra information is determined by the average roundtrip latency of the torus network. The sender will not have
to stop and wait for an acknowledgement if it is received before the allotment of special packets carrying extra
information has been exhausted.

6 Simulation Framework and Measurements

BGLSIM is a functionally correct multichip Blue Gene/L simulator based on the MAMBO [16] project. BGLSIM is
not architecturally accurate. All instructions take one one cycle to execute. Up to 2,000,000 instructions per second
are simulated on a 1GHz Pentium III machine. The high execution speed has enabled us to run multi-chip simulations
of up to 512 simulated nodes.

BGLSIM is our primary vehicle for software development. It is equipped with an implementation of HPM [11]
which allows us to measure the number of instructions executed by regions of instrumented code.

This section illustrates the measurement methodology we are using to drive our design decisions, and how we
are planning to optimize the implementation of the MPI port. The numbers presented here are current as of April
2003, and were measured with the first version of the Blue Gene/L port of MPICH2 that was able to run in the
multichip simulation environment. We were interested in measuring the software overhead in the MPICH2 port and
in the message layer. The workloads for our experiments consisted of a subset of the NAS parallel benchmarks [14],
running on 8 processors.

9

Figure 6 shows a simplified call graph for sending a blocking MPI message, with the functions of interest to us
highlighted. We instrumented these functions, and their counterparts on the receive end, with HPM library calls. HPM
counted the average number of instructions per invocation.

Table 1 summarizes the measurements. The left panel Application

MPIR_Wait

BGLMLConnection_postsend

m
s
g
l
a
y
e
r

A
D
I

M
P
I

p
k
t
l
a
y
e
r

MPIDI_BGLTS_Request_complete

MPID_Send

MPI_Send

MPID_Progress_wait

BGLMLMsgSend_Init

BGLPacketizer_Init

BGLMLMsgSend_advance

BGLPacketizer_advance BGLPacketizer_isdone

BGLMLMsgSend_isdone

BGLMLConnection_senddone_callbackBGLMLConnection_advance

BGLTorusDevice_send

Fig. 6. The callgraph of an MPI Send() call

in the table contains measurements for the high level
functions of the MPICH2 port. As the table shows, block-
ing operations (MPI Send and MPI Recv) are not very
good indicators of software overhead, because the in-
struction counts include those spent waiting for the sim-
ulated network to deliver packages. The numbers as-
sociated with non-blocking calls like MPI Isend and
MPI Irecv are a much better measure of software over-
head.

Overhead (insns.) FT BT SP CG MG IS LU

MPI Send 11652 10479 3746 7129
MPID Send 1759 1613 1536 1744
MPI Isend 2043 2162
MPID Isend 1833 1782 1901
MPI Irecv 541 542 549 564 536 557
MPID Irecv 280 279 280 293 308 280 301
MPI Recv 13811
MPID Recv 406

Overhead (insns.) FT BT SP CG MG IS LU

postsend 1107 1271 1401 1230 1114 1220 1265
senddonecb 115 115 115 115 115 115 115
recvnewcb 445 344 353 349 335 341 328
recvdonecb 16179 418 333 267 150 204 127
advance 2181 1643 1781 1429 1669 2865 955
msgsend adv 671 653 648 620 556 642 594
dispatch 520 518 516 598 661 533 620

Table 1. Software overhead measurements for MPICH2 and message layer functions

The right panel in the table contains data for message layer functions. postsend is the function called to post
a message for sending; it includes the overhead for sending the first packet. senddonecb is called at the end of
every message send. It shows the same number of instructions in every benchmark. recvnewcb (called for every
new incoming message) has a slightly higher overhead because this is the function that performs the matching of an
incoming message to the requests posted in the MPI request queue. The recvdonecb numbers show a high variance,
because in certain conditions this callback copies the message buffer from the unexpected queue to the posted queue.
In our measurements this happened in the FT benchmark.

The remaining two lines in the right panel of the table represent the amount of instructions spent by the message
layer to get a packet into the torus hardware (msgsend adv) or out of the torus hardware (dispatch).

An MPI Isend call in the BT benchmark takes about 2000 instructions. Out of these, the call to postsend in the
message layer accounts for 1300 instructions. postsend calls msgsend adv to send the first packet of the message.
msgsend adv spends an average of 671 instructions sending the packet. Thus the software overhead of MPID Send
can be broken down as ���� � ���� � ��� instructions spent in the MPICH2 software layers, ���� � ��� � ���

instructions spent in administering the message layer itself and ��� instructions spent to send every packet from the
message layer.

The above reasoning points at least one place to where the message layer can be improved. The minimum number
of instructions necessary to send/receive an aligned packet is 50. However, the message layer spends more than 650 in-
structions for the same purpose, partially because of suboptimal implementation, alignment adjustment through mem-
ory copies and packet layer overhead. We are confident that a better implementation of the message sender/receiver
can reduce the packet sending overhead by 25-50%.

7 Conclusions

In this paper we have presented a software design for a communications library for the Blue Gene/L supercomputer
based on the MPICH2 software package. Because of the high bandwidth per chip speed ratio of the machine, the

10

design concentrates on achieving very low software overheads. Concentrating on point-to-point communication, the
paper presents the design decisions we have already made and the simulation-based methodology we are planning to
use to drive our design.

References

1. ASCI Red Homepage. http://www.sandia.gov/ASCI/Red/.
2. ASCI White Homepage. http://www.llnl.gov/asci/platforms/white.
3. Cplant homepage. http://www.cs.sandia.gov/cplant/.
4. Earth Simulator Homepage. http://www.es.jamstec.go.jp/.
5. The MPICH and MPICH2 homepage. http://www-unix.mcs.anl.gov/mpi/mpich.
6. Process Management in MPICH2. Personal communication from William Gropp.
7. N. R. Adiga et al. An overview of the BlueGene/L supercomputer. In SC2002 – High Performance Networking and Computing,

Baltimore, MD, November 2002.
8. G. Almasi et al. Cellular supercomputing with system-on-a-chip. In IEEE International Solid-state Circuits Conference ISSCC,

2001.
9. R. Brightwell and L. Shuler. Design and Implementation of MPI on Puma portals. In In Proceedings of the Second MPI

Developer’s Conference, pages 18–25, July 1996.
10. G. Chiola and G. Ciaccio. Gamma: a low cost network of workstations based on active messages. In Proc. Euromicro PDP’97,

London, UK, January 1997, IEEE Computer Society., 1997.
11. L. DeRose. The Hardware Performance Monitor Toolkit. In Proceedings of Euro-Par, pages 122–131, August 2001.
12. W. Gropp, E. Lusk, D. Ashton, R. Ross, R. Thakur, and B. Toonen. MPICH Abstract Device Interface Version 3.4 Reference

Manual: Draft of May 20, 2003. http://www-unix.mcs.anl.gov/mpi/mpich/adi3/adi3man.pdf.
13. E. Krevat, J. Castanos, and J. Moreira. Job scheduling for the Blue Gene/L system. In Job Scheduling Strategies for Parallel

Processing, volume 2537 of Lecture Notes in Computer Science, pages 38–54. Springer, 2002.
14. NAS Parallel Benchmarks. http://www.nas.nasa.gov/Software/NPB.
15. S. Pakin, M. Lauria, and A. Chien. High performance messaging on workstations: Illinois Fast Messages (FM) for Myrinet. In

Supercomputing ’95, San Diego, CA, December 1999, 1995.
16. H. Shafi, P. Bohrer, J. Phelan, C. Rusu, and J. Peterson. Design and Validation of a Performance and Power Simulator for

PowerPC Systems. IBM Journal of Research and Development, 2003.
17. L. Shuler, R. Riesen, C. Jong, D. van Dresser, A. B. Maccabe, L. A. Fisk, and T. M. Stallcup. The PUMA operating system for

massively parallel computers. In In Proceedings of the Intel Supercomputer Users’ Group. 1995 Annual North America Users’
Conference, June 1995.

18. T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net: A user-level network interface for parallel and distributed computing.
In Proceedings of the 15th ACM Symposium on Operating Systems Principles, Copper Mountain, Colorado, December 1995.

19. T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages: a mechanism for integrated communication
and computation. In Proceedings of the 19th International Symposium on Computer Architecture, May 1992.

