
Improving the Performance of Tensor Matrix
Vector Multiplication in Quantum Chemistry
Codes

W. D. Gropp, D. K. Kaushik, M. Minkoff, and B. F. Smith

Argonne National Laboratory {gropp,kaushik,minkoff,bsmith}@mcs.anl.gov

Abstract

Cumulative reaction probability (CRP) calculations provide a viable compu-
tational approach to estimate reaction rate coefficients. However, in order to
give meaningful results these calculations should be done in many dimensions
(ten to fifteen). This makes CRP codes memory intensive. For this reason,
these codes use iterative methods to solve the linear systems, where a good
fraction of the execution time is spent on matrix-vector multiplication. In this
paper, we discuss the tensor product form of applying the system operator on
a vector. This approach shows much better performance and provides huge
savings in memory as compared to the explicit sparse representation of the
system matrix.

1 Introduction and Motivation

The prevalence of parallel processors makes many areas of simulation accessi-
ble that was only possible in the recent past on specialized facilities. One area
of application is the use of computational methods to calculate reaction rate
coefficients. These coefficients are often estimated experimentally. However,
the simulations approaches [4] provide a reasonable alternative. Typically
the ab initio approach is only applicable to small atomic systems. In these
models the dimensionality of the problem is the number of degrees of freedom
in the molecular system. If we consider torsion, stretching, etc., the maximum
number of DOF for a molecule is proportional to N, the number of atoms.
Thus dealing with problems of only three to five degrees of freedom is quite
restrictive. The alternative to ab initio methods is the use of statistical studies
of reaction paths and thus obtain the reaction rate coefficients statistically.
This approach is founded however on a less solid theoretical basis.

Reaction rate calculation involves a dimensional effect based upon degrees
of freedom (DOF). That is we consider the reactions that involve molecules



2 W. D. Gropp, D. K. Kaushik, M. Minkoff, and B. F. Smith

Fig. 1. Sample parallel performance of the CRP code on up to 128 processor of
IBM SP3 at NERSC.

having various independent coordinates. For a simple two atom molecule in
which we only consider one dimension and a variable representing the distance
between the two atoms, we would have one DOF. However, if we add the angle
between the atoms in two dimensional space and also add the torsion effect
we would have three DOF. We are interested in problems of up to ten or
more DOF. This leads to large-scale problems in which parallel computation
is a central aspect of the algorithmic approach. For such problems the Greens
function solutions (see Section 2) cannot be done by direct linear solvers. A
standard approach even applied to lower DOF is to use iterative methods such
as GMRES for solving the linear systems. The solution of these linear systems
is the fundamental computational cost in the method as we and others have
observed. In some of our computational experiments (see Figure 1) we have
obtained an accurate eigenvalue in only two to three iterations, however we
require from five hundred to a thousand GMRES iterations for each of the
Greens function solves. Thus the principal focus of this paper is the effective
solution of the matrix-vector multiply.

Normally the matrix vector multiplication is done by first building up the
large sparse matrix from the tensor products of one dimensional operators
with the identity matrix. The sparse matrix vector product is well known to
give poor performance since it is memory bandwidth limited computation with



Tensor Matrix Vector Product 3

poor data reuse [3, 7]. Since this kernel is responsible for a large fraction (over
80 %) of overall execution time, addressing its performance issues is crucial to
obtain a reasonable percentage of machine peak. In this paper, we suggest an
alternative approach (in Section 4) that transforms the memory bandwidth
limited sparse matrix vector products to matrix-matrix multiplications with
high level of data locality. This approach holds the potential to improve the
performance of the overall code by a large factor.

The rest of the paper is organized as follows. We discuss the background
of the CRP approach in Section 2.1. Next we analyze the performance char-
acteristics of the sparse matrix vector multiplication approach in Section 3.
We present the details of the tensor matrix vector multiplication approach in
Section 4. Then we compare the performance of these two choices for matrix
vector multiplication on Intel Madison processor in Section 5.

2 Background of the CRP Approach

The Cumulative Reaction Probability function is:

k(T ) = [2πh̄Qr(T )]−1

∫ ∞

−∞
dEe−E/kT N(E) (1)

where Qr is the reactant partition function. The rate constant is given as

k(E) = [2πh̄ρr(E)]−1N(E) (2)

Therefore the CRP is key in calculating the rate constant. In fact, N(E)
can be expressed in terms of the trace of the reaction probability operator, P̂

N(E) = tr[P̂ (E)] ≡
∑

kpk(E) (3)

and
P̂ (E) = 4ε̂1/2

r Ĝ(E)ε̂pĜ(E)ε̂1/2
r (4)

The Green’s function is

Ĝ(E) = (E + iε̂− Ĥ)−1 (5)

Ĥ is the Hamiltonian and ε̂ = ε̂r+ε̂p where ε̂ is a given absorbing potential,
and ε̂r and ε̂p are, respectively are the part of ε̂ in the reactant and product
regions.

In summary, we seek to obtain the major components of the trace of P̂ (E).
Thus we seek the largest few eigenvalues of this operator. This can be accom-
plished by means of a Lanczos iteration of (4). For each Lanczos iteration we
require the solution of two linear systems (5):

(E + iε̂− Ĥ)y = x (6)

and its adjoint when x is known. The matrix on the left hand side of Equation 6
is obtained from one dimensional operators as described next.



4 W. D. Gropp, D. K. Kaushik, M. Minkoff, and B. F. Smith

2.1 Matrix Vector Multiplication in CRP

For simplicity, let us consider a three dimensional system with n mesh points
in each dimension. Then, we need to multiply matrix A (n3×n3) with a vector
v of size n3.

w = Av (7)

with w being the output vectors of size n3. The system matrix A is sparse
with the following components:

A = Bz ⊗ I ⊗ I + I ⊗By ⊗ I + I ⊗ I ⊗Bx (8)

Where, ⊗ denotes the tensor (Kronecker) product of one dimensional opera-
tors (Bx, By, Bz) with the identity matrix(I). The operators Bx, By, and Bz

are dense matrices of size n× n.
For d dimensions, we will have d terms in Equation 8 involving d tensor

products of dense matrices of size n×n with the identity matrices of order n.
As stated earlier, doing the matrix vector multiplication (Equation 7) is a key
operation in the CRP algorithm. Next we discuss the sparse representation of
matrix A.

3 Sparse Matrix Vector Product

The sparse matrix-vector product is an important part of many iterative
solvers used in scientific computing. While a detailed performance modeling
of this operation can be complex, particularly when data reference patterns
are included [6, 7, 8], a simplified analysis can still yield upper bounds on the
achievable performance of this operation. To illustrate the effect of memory
system performance, we consider a generalized sparse matrix-vector multiply
that multiplies a matrix by N vectors. This code, along with operation counts,
is shown in Figure 2.

3.1 Estimating the Memory Bandwidth Bound

To estimate the memory bandwidth required by this code, we make some
simplifying assumptions. We assume that there are no conflict misses, meaning
that each matrix and vector element is loaded into cache only once. We also
assume that the processor never waits on a memory reference, that is, any
number of loads and stores can be issued in a single cycle.

For the algorithm presented in Figure 2, the matrix is stored in compressed
row storage format (similar to PETSc’s AIJ format [1]). For each iteration of
the inner loop in Figure 2, we transfer one integer (ja array) and N + 1 dou-
bles (one matrix element and N vector elements), and we do N floating-point
multiply-add (fmadd) operations or 2N flops. Finally, we store the N output
vector elements. If we just consider the inner loop and further assume that



Tensor Matrix Vector Product 5

for (i = 0, i < m; i++) {

jrow = ia(i+1) // 1 Of, AT, Ld

ncol = ia(i+1) - ia(i) // 1 Iop

Initialize, sum1, ..., sumN // N Ld

for (j = 0; j < ncol; j++) { // 1 Ld

fetch ja(jrow), a(jrow),

x1(ja(jrow)), ..., xN(ja(jrow)) // 1 Of, N+2 AT, N+2 Ld

do N fmadd (floating multiply add) // 2N Fop

jrow++

} // 1 Iop, 1 Br

Store sum1, ..., sumN in

y1(i), ..., yN(i) // 1 Of, N AT, N St

} // 1 Iop, 1 Br

Fig. 2. General form of sparse matrix-vector product algorithm: storage format is
AIJ or compressed row storage; the matrix has m rows and nz non-zero elements
and gets multiplied with N vectors; the comments at the end of each line show the
assembly level instructions the current statement generates, where AT is address
translation, Br is branch, Iop is integer operation, Fop is floating-point operation,
Of is offset calculation, LD is load, and St is store.

vectors are in cache (and not loaded from memory), we load one double and
one integer for 2N flops or 6 bytes/flop for one vector and 1.5 bytes/flop for
four vectors (see [3] for more detailed treatment). The STREAM [5] bench-
mark bandwidth on Intel Madison processor is about 4,125 MB/s. This gives
us the maximum achievable performance of 687 Mflops/s for one vector and
2,750 Mflops/s for four vectors while the corresponding observed numbers are
627 Mflops/s and 1,315 Mflops/s (out of the machine peak of 6 Gflops/s).

Following a similar procedure, we show the memory bandwidth bound, the
actual performance and the peak performance for IBM Power 4, Intel Xeon,
IBM BlueGene, and Intel Madison processors (assuming only one vector) in
Figure 3. It is clear that the performance of sparse matrix vector multiplication
is memory bandwidth limited and the peak processor performance is pretty
much irrelevant for this computation. We next discuss the tensor product form
of the system operator that does not suffer from this limitation.

4 Tensor Matrix Vector Product

The system matrix in the CRP code comes from the tensor products of one
directional dense operators with the identity matrix. This allows us to do the
matrix vector multiplication without ever forming the large sparse matrix.
Though a cheap approximation to the system matrix is usually needed for
preconditioning purpose, we assume that it can be obtained in some other
suitable way.



6 W. D. Gropp, D. K. Kaushik, M. Minkoff, and B. F. Smith

0

1000

2000

3000

4000

5000

6000

Power 4 (1.3 GHz) Pentium 4 Xeon (2.4 GHz) BlueGene (700 MHz) Madison (1.5 GHz)

Theoretical Peak Mem BW Peak Observed

Fig. 3. Memory bandwidth bound for sparse matrix-vector product. Only one vector
(N = 1) is considered here. The matrix size has m = 90,708 rows and nz = 5,047,120
nonzero entries. The processors are 1.3 GHz IBM Power 4, 2.4 GHz Intel Xeon, 700
MHz IBM BlueGene, and 1.5 GHz Intel Madison. The memory bandwidth values
are measured using the STREAM benchmark.

We can combine the identity matrix tensor products in Equation 8 (and
its higher dimensional counterparts). In general, the matrix vector product
of Equation 7 will be the sum of the terms made from the three types of
operations: (I ⊗B)v, (B ⊗ I)v, and (I ⊗B ⊗ I)v. We describe how to carry
out each of these operations efficiently next. The three dimensional case is
described in detail in [2]

Type A: (I ⊗ B)v

We need to evaluate
(Ip×p ⊗Bm×m)v

with v = (v1, v2, ..., vpm)T . We can view the vector v as a matrix (V ) of size
m× p and then

(Ip×p ⊗Bm×m)v = Bm×m × Vm×p

.



Tensor Matrix Vector Product 7

It should be noted that the memory layout of the vectors v and w does not
change in this operation. Since the matrix V is stored columnwise, its data
access pattern in the above matrix-matrix multiplication is ideal (unit stride).
As the number of dimensions increases, the order (p) of the identity matrix
gets larger and larger. Therefore, the above algorithm multiplies a small square
matrix (B) with a highly rectangular matrix (V ) for large dimensions. We will
see in Section 5 that many matrix-matrix multiplication implementations do
not perform well under this situation.

Type B: (B ⊗ I)v

Here we need to evaluate
(Bm×m ⊗ Ip×p)v

We can view the vector v as a matrix (V ) of size p×m and then

(Bm×m ⊗ Ip×p)v = Vp×m ×BT
m×m

where BT
m×m is the transpose of Bm×m ([2]). Again, the memory layout

of the vector v and w does not change with this operation and this is also
a matrix-matrix multiplication. The data access pattern for the matrix V is
not unit stride here (with the normal triply nested loop implementation) and
transposing this matrix may bring significant performance gains.

Type C: (I ⊗ B ⊗ I)v

Here we need to evaluate

(Ip×p ⊗Bm×m ⊗ Ir×r)v

with v = (v1, v2, ..., vpmr)
T .

This can be evaluated by looping over Type B term algorithm p times [2].
Each iteration of this loop will evaluate the Type B term Vr×m × BT

m×m.
Again this can be done without changing the memory layout of the vectors v
and w.

5 Results and Discussion

In the previous section, we saw that all terms of the generalized form (for
d dimensions) of Equation 8 can be evaluated as dense matrix-matrix multi-
plication, which inherently has very high data reuse and usually performs at
a large fraction of machine peak (if implemented properly). We present here
some sample performance results on Intel Madison processor (1.5 GHz, 4 MB
L2 cache, and 4GB memory). We discuss three implementations:



8 W. D. Gropp, D. K. Kaushik, M. Minkoff, and B. F. Smith

Fig. 4. Performance of the tensor matrix vector multiplication for three dimensions
on Intel Madison (1.5 GHz) processor. The custom code is manually optimized
code, MXM code is from [2] and DGEMM() routine is from Intel’s MKL library.
Note that the sparse matrix vector multiplication will only do at most about 687
Mflops/s based on the memory bandwidth bound on this processor.

• Custom code: this is the hand optimized code specifically written for
evaluating the Type A, B, and C terms.

• MXM code: this is taken from Deville, et al. [2].
• DGEMM: this is from a vendor library (Intel MKL).

We show the performance advantage of the tensor matrix vector multi-
plication in three dimensions for n = 5 to 100 in Figure 4. If we had done
the matrix vector multiplication by explicitly building the sparse matrix, the
performance would have been limited to about 687 Mflops/s (see the dotted
line in Figure 4, which is based on the memory bandwidth bound) on this
processor. All the three variants give good performance for reasonably large
n (≥ 15).

While vendors have invested considerable effort in optimizing the matrix-
matrix multiplication, it is usually done for large and balanced matrix sizes.
The CRP code involves matrix-matrix multiplications between small square
matrices (typically 7× 7 to 10× 10) and highly rectangular matrices (arising
from the matrix view of the input vector v). We show this situation in Figure 5



Tensor Matrix Vector Product 9

Fig. 5. Performance of the tensor matrix vector multiplication for n = 7 in all
dimensions. The sharp drop in performance is due to the working set of the problem
going out of the L2 cache (4 MB) of the Intel Madison processor. We are trying to
contain this drop (to some extent) with better implementation (with extra blocking).
Notice that the DGEMM() does not perform well for small values of matrix sizes
and especially when the two matrix sizes are vastly different (large dimension case).

for n = 7. The DGEMM gives the worst performance of all for this case,
especially for higher dimensions (when the matrix coming from the input
vector becomes very elongated, e.g., 7×77 for eight dimensional problem). The
custom code also shows sharp drop in performance (typically characteristic of
the working set getting out of a fast memory level). We are trying some other
implementations to reduce this performance drop.

Figure 6 shows the same scenario as in Figure 5 except that there are more
mesh points (51) along the reaction coordinate than in the other directions
(7). This is more consistent with the linear systems being solved in the CRP
code (Figure 1). Again the performance is much better with the custom code
than is possible with the corresponding sparse matrix-vector multiplication
code (the dotted line in Figure 6).



10 W. D. Gropp, D. K. Kaushik, M. Minkoff, and B. F. Smith

Fig. 6. This case has 51 points along the reaction path and 7 points in other dimen-
sions. This represents the CRP code more closely. The performance advantage of
the tensor matrix vector multiplication over the sparse approach is still maintained.

Storage Advantage

The chemistry codes work with many dimensions and are memory intensive
for that reason. If we never form the large sparse system matrix, there is
huge saving in memory. The memory needed for tensor representation of the
operator in d dimensions is O(dn2) while it will be O(nd) we explicitly store
it as sparse matrix. Therefore, the tensor product form of the operator will
allow larger problems to be solved for the same amount of available memory.

6 Conclusions and Future Work

We have demonstrated the performance advantages of applying the system
operator in the tensor product form (rather than as a sparse matrix). Since
matrix-vector multiplication takes a large chunk of the overall execution time,
we hope to see a big improvement in the overall performance of the CRP
code if we can exploit the tensor product form of the operator. Our final
paper will include the results of using this alternative approach. We are also
evaluating some more competing implementations (like transposing the input



Tensor Matrix Vector Product 11

vector for a more efficient evaluation of Type B terms, doing more blocking to
contain the performance drops when the computation goes out of L2 cache,
etc). Additionally, we will include the results of parallel implementation of the
tensor matrix vector multiplication in our final paper.

Acknowledgments

We thank Paul Fischer, Ron Shepard, and Al Wagner of Argonne National
Laboratory for many helpful discussions. The computer time was supplied by
DOE (through Argonne, NERSC, and ORNL) and NSF (through Teragrid at
SDSC).

References

1. S. Balay, K. R. Buschelman, W. D. Gropp, D. K. Kaushik, M. G. Knepley, L. C.
McInnes, and B. F. Smith. PETSc home page. http://www.mcs.anl.gov/petsc,
2002.

2. M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for Incom-
pressible Fluid Flow. Cambridge University Press, 2002.

3. W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. Toward realistic
performance bounds for implicit CFD codes. In D. Keyes, A. Ecer, J. Periaux,
N. Satofuka, and P. Fox, editors, Proceedings of Parallel CFD’99, pages 233–240.
Elsevier, 1999.

4. U. Manthe and W. H. Miller. The cumulative reactions probability as eigenvalue
problem. J. Chem. Phys, pages 3411–3419, 1999.

5. J. D. McCalpin. STREAM: Sustainable memory bandwidth in high
performance computers. Technical report, University of Virginia, 1995.
http://www.cs.virginia.edu/stream.

6. O. Temam and W. Jalby. Characterizing the behavior of sparse algorithms on
caches. In Proceedings of Supercomputing 1992, pages 578–587. IEEE Computer
Society, 1992.

7. S. Toledo. Improving the memory-system performance of sparse-matrix vector
multiplication. IBM Journal of Research and Development, 41:711–725, 1997.

8. J. White and P. Sadayappan. On improving the performance of sparse matrix-
vector multiplication. In Proceedings of the 4th International Conference on High
Performance Computing (HiPC ’97), pages 578–587. IEEE Computer Society,
1997.


