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Abstract. MPI implementations that support the highest level of thread
safety for user programs, MPI THREAD MULTIPLE, are becoming widely
available. Users often expect that different threads can execute inde-
pendently and that the MPI implementation can provide the necessary
level of thread safety with only a small overhead. The MPI Standard,
however, requires only that no MPI call in one thread block MPI calls
in other threads; it makes no performance guarantees. Therefore, some
way of measuring an implementation’s performance is needed. In this
paper, we propose a number of performance tests that are motivated by
typical application scenarios. These tests cover the overhead of provid-
ing the MPI THREAD MULTIPLE level of thread safety for user programs,
the amount of concurrency in different threads making MPI calls, the
ability to overlap communication with computation, and other features.
We present performance results with this test suite on several plat-
forms (Linux cluster, Sun and IBM SMPs) and MPI implementations
(MPICH2, Open MPI, IBM, and Sun).

1 Introduction

With thread-safe MPI implementations becoming increasingly commonly avail-
able, users are able to write multithreaded MPI programs that make MPI calls
concurrently from multiple threads. Thread safety, however, does not come for
free because the implementation must protect certain data structures or parts
of the code with mutexes or critical sections. Developing a thread-safe MPI im-
plementation is a fairly complex task and the implementers must make several
design choices, both for correctness and performance [4]. To simplify the task,
implementations often focus on correctness first and performance later (if at all).
As a result, even though an MPI implementation may support multithreading,
its performance may be far from optimized. Users, therefore, need a way to deter-
mine how efficiently can an implementation support multiple threads. Similarly,
as implementers experiment with potential performance optimizations, they need
a way to measure the outcome of their efforts. (We ourselves face this need in
MPICH2.) To meet these needs, we have created a test suite that can shed light

1



on the performance of an MPI implementation in the multithreaded case. We
describe the various tests in the suite, the rationale behind them, and their per-
formance with several MPI implementations (MPICH2, Open MPI, IBM MPI,
and Sun MPI) on several platforms.

Related Work. Related work includes all the work on developing thread-safe MPI
implementations. Protopopov and Skjellum discuss a number of issues related
to threads and MPI, including a design for a thread-safe version of MPICH-
1 [7, 8]. Plachetka describes a mechanism for making a thread-unsafe PVM or
MPI implementation quasi-thread-safe by adding an interrupt mechanism and
two functions to the implementation [6]. Garćıa et al. present MiMPI, a thread-
safe implementation of MPI [3]. TOMPI [2] and TMPI [9] are thread-based MPI
implementations, where each MPI process is actually a thread. USFMPI is a
multithreaded implementation of MPI that internally uses a separate thread
for communication [1]. A good discussion of the issues in developing a thread-
safe MPI implementation is given in [4]. The MPI benchmarks from Ohio State
University [5] contain a multithreaded latency test, which is a ping-pong test
with one thread on the sender side and two (or more) threads on the receiver
side.

2 Overview of MPI and Threads

To understand the test suite and the rationale behind each test, it is essential
to understand the thread-safety specification in MPI. Below, we briefly describe
the relevant features of MPI’s thread-safety specification.

For performance reasons, MPI defines four “levels” of thread safety and allows
the user to indicate the level desired—the idea being that the implementation
need not incur the cost for a higher level of thread safety than the user needs.
The four levels of thread safety are:

1. MPI THREAD SINGLE Each process has a single thread of execution.
2. MPI THREAD FUNNELED A process may be multithreaded, but only the thread

that initialized MPI may make MPI calls.
3. MPI THREAD SERIALIZED A process may be multithreaded, but only one

thread at a time may make MPI calls.
4. MPI THREAD MULTIPLE A process may be multithreaded and multiple threads

may simultaneously call MPI functions (with some restrictions mentioned
below).

An implementation is not required to support levels higher than MPI THREAD SINGLE;
that is, an implementation is not required to be thread safe. A fully thread-
compliant implementation, however, will support MPI THREAD MULTIPLE. MPI
provides a function, MPI Init thread, by which the user can indicate the level
of thread support desired, and the implementation will return the level sup-
ported. A portable program that does not call MPI Init thread should assume
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Thread 0 Thread 1

MPI_Recv(src=0) MPI_Send(dest=0)MPI_Recv(src=1) MPI_Send(dest=1)

Thread 0 Thread 1

Process 0 Process 1

Fig. 1. An implementation must ensure that this example never deadlocks for any
ordering of thread execution.

that only MPI THREAD SINGLE is supported. The tests described in this paper
focus on the MPI THREAD MULTIPLE (fully multithreaded) case.

For MPI THREAD MULTIPLE, the MPI Standard specifies that when multiple
threads make MPI calls concurrently, the outcome will be as if the calls exe-
cuted sequentially in some (any) order. Also, blocking MPI calls will block only
the calling thread and will not prevent other threads from running or executing
MPI functions. MPI also says that it is the user’s responsibility to prevent races
when threads in the same application post conflicting MPI calls. For example,
the user cannot call MPI Info set and MPI Info free on the same info ob-
ject concurrently from two threads of the same process; the user must ensure
that the MPI Info free is called only after MPI Info set returns on the other
thread. Similarly, the user must ensure that collective operations on the same
communicator, window, or file handle are correctly ordered among threads.

A straightforward implication of the MPI thread-safety specification is that
an implementation cannot implement thread safety by simply acquiring a lock at
the beginning of each MPI function and releasing it at the end of the function: A
blocked function that holds a lock may prevent MPI functions on other threads
from executing, which in turn might prevent the occurrence of the event that is
needed for the blocked function to return. An example is shown in Figure 1. If
thread 0 happened to get scheduled first on both processes, and MPI Recv simply
acquired a lock and waited for the data to arrive, the MPI Send on thread 1 would
not be able to acquire its lock and send its data, which in turn would cause
the MPI Recv to block forever. Therefore, the implementation must release the
lock at least before blocking within the MPI Recv and then reacquire the lock if
needed after the data has arrived. (The tests described in this paper provide some
information about the fairness and granularity of how blocking MPI functions
are handled by the implementation.)

3 The Test Suite

Users of threads in MPI often have expectations of the performance of threads,
both those making MPI calls and those performing computation concurrently
with threads that are making MPI calls. In particular, threads are often used
for hiding latency by allowing the user to begin an operation that may need
to block while waiting for data, with the expectation that, while blocked, the
thread will consume little or no CPU resources. More specifically, users often
have the following expectations:
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– The cost of thread safety, compared with lower levels of thread support, such
as MPI THREAD FUNNELED, is low.

– Multiple threads making MPI calls, such as MPI SEND or MPI Bcast, can
make progress simultaneously.

– A blocking MPI routine in one thread does not consume excessive CPU
resources while waiting.

Our tests are designed to test these expectations. These tests are described in
more detail below; in terms of the above categories, they are:

Cost of thread safety One simple test to measure MPI THREAD MULTIPLE over-
head.

Concurrent progress Tests to measure concurrent bandwidth by multiple threads
of a process to multiple threads of another process, as compared with mul-
tiple processes to multiple processes. Both point-to-point and collective op-
erations are included.

Computation overlap Tests to measure the overlap of communication with
computation and the ability of the application to use a thread to provide
a nonblocking version of a communication operation for which there is no
corresponding MPI call, such as nonblocking collectives or I/O operations
that involve several steps.

We describe the tests below and present performance results on the following
platforms and MPI implementations.

Linux Cluster We used the Breadboard cluster at Argonne, in which each node
has two dual-core 2.8 GHz AMD Opteron CPUs. The nodes are connected
by gigabit ethernet. We used MPICH2 1.0.5 and Open MPI 1.2.1.

Sun Fire SMP We used a Sun Fire SMP from the Sun cluster at the RWTH
Aachen University. The specific machine we ran on was a Sun Fire E2900
with eight dual-core UltraSPARC IV 1.2 GHz CPUs. It runs Sun’s MPI
(ClusterTools 5).

IBM SMP We also used an IBM p655+ SMP from the DataStar cluster at the
San Diego Supercomputer Center. The machine has eight 1.7 GHz POWER4+
CPUs and runs IBM’s MPI.

3.1 MPI THREAD MULTIPLE Overhead

This test measures the ping-pong latency for two cases of a single-threaded pro-
gram: initializing MPI with just MPI Init and initializing it with MPI Init thread
for MPI THREAD MULTIPLE. It demonstrates the overhead of ensuring thread safety
for MPI THREAD MULTIPLE—typically implemented by acquiring and releasing
locks—even though no special steps are needed in this case because the pro-
cess is single threaded (but the implementation does not know that).

Figure 2 shows the results. On the Linux cluster, with both MPICH2 and
Open MPI, the overhead of MPI THREAD MULTIPLE is less than 0.5 µs. On the
IBM SMP with IBM MPI, it is less than 0.25 µs. On the other hand, on the Sun
SMP with Sun MPI, the overhead is very high—more than 3 µs.
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Fig. 2. Overhead of MPI THREAD MULTIPLE on the Linux cluster (left) and Sun and IBM
SMPs (right).

3.2 Concurrent Bandwidth

This test compares the cumulative bandwidth obtained when multiple threads of
a process communicate with multiple threads of another process, versus doing the
same with multiple processes instead of threads (see Figure 3). It demonstrates
how much thread locks affect the cumulative bandwidth; ideally, the multiprocess
and multithreaded cases should perform similarly.

Figure 4 shows the results. On the Linux cluster, the tests were run on two
nodes, with all communication happening across nodes. We ran two cases: one
where there were as many processes/threads as the number of processors on
a node (four) and one where there were eight processes/threads running on
four processors. In both cases, there was no measurable difference in bandwidth
between threads and processes with MPICH2. With Open MPI, there was decline
in bandwidth with threads in the oversubscribed case.

On the Sun and IBM SMPs, on the other hand, there was a substantial
decline (more than 50% in some cases) in the bandwidth when threads were
used instead of processes. Using threads on these machines has high overhead.
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Fig. 3. Communication test when using multiple threads (left) versus multiple pro-
cesses (right).
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Fig. 4. Concurrent bandwidth test on Linux cluster (left) and Sun and IBM SMPs
(right).

3.3 Concurrent Latency

This test is similar to the concurrent bandwidth test except that it measures
the time for individual short messages instead of concurrent bandwidth for large
messages. Figure 5 shows the results. On the Linux cluster with MPICH2, there is
a 20 µs overhead in latency when using concurrent threads instead of processes;
with Open MPI, the overhead is about 30 µs. With Sun and IBM MPI, the
latency with threads is about 10 times the latency with processes, which again
indicates that there is a substantial performance penalty with using threads on
these machines.
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Fig. 5. Concurrent latency test on Linux cluster (left) and Sun and IBM SMPs (right).

6



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 10  20  30  40  50  60  70  80  90

Ti
m

e 
(m

ic
ro

se
c.

)

Iteration

MPICH2 (with processes)
MPICH2 (with threads)

Open MPI (with processes)
Open MPI (with threads)

 0

 20

 40

 60

 80

 100

 120

 140

 10  20  30  40  50  60  70  80  90

Ti
m

e 
(m

ic
ro

se
c.

)

Iteration

Sun MPI (with processes)
Sun MPI (with threads)

IBM MPI (with processes)
IBM MPI (with threads)

Fig. 6. Concurrent short-long messages test on Linux cluster (left) and Sun and IBM
SMPs (right).

3.4 Concurrent Short-Long Messages

This test is a blend of the concurrent bandwidth and concurrent latency tests. It
has two versions. In the threads version, rank 0 has two threads: one sends a long
message to rank 1 and the other sends a series of short messages to rank 2. The
second version of the test is similar except that the two senders are processes
instead of threads. This test tests the fairness of thread scheduling and locking.
If they were fair, one would expect each of the short messages to take roughly
the same amount of time.

The results are shown in Figure 6. With both MPICH2 and Open MPI, the
cost of communicating the long message is evenly distributed among a number
of short messages. A single short message is not penalized for the entire time the
long message is communicated. This demonstrates that, in the threaded case,
locks are fairly held and released and that the thread blocked in the long-message
send does not block the other thread. With Sun and IBM MPI, however, one
sees spikes in the graphs, indicating that the scheduling and lock releasing are
not really fair.

3.5 Computation/Communication Overlap

This test measures the ability of an implementation to overlap communication
with computation and provides users an alternative way of achieving the same if
the implementation does not do so. The test has two versions. One version has an
iterative loop in which a process communicates with its four nearest neighbors
by posting nonblocking sends and receives, followed by a computation phase,
followed by an MPI Waitall for the communication to complete. The second
version is similar, except that before the iterative loop, each process spawns a
thread that blocks on an MPI Recv. The matching MPI Send is called by the main
thread only at the end of the program, just before MPI Finalize. The thread
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Fig. 7. Computation/communication overlap test on Linux cluster (left) and Sun and
IBM SMPs (right).

thus blocks in the MPI Recv while the main thread is in the communication-
computation loop. Since the thread is executing an MPI function, whenever it
gets scheduled by the operating system, it can cause progress to occur on the
communication initiated by the main thread. This technique effectively simulates
asynchronous progress by the MPI implementation. If the total time taken by
the communication-computation loop is less than in the nonthreaded version, it
indicates that the MPI implementation on its own cannot overlap communication
with computation.

Figure 7 shows the results. “no overlap” refers to the test without the thread
and “overlap” is the test with the thread. The results with MPICH2 demonstrate
that it does not do asynchronous progress as the overlap version of the test per-
forms better. With Open MPI, we ran two experiments. We first used the default
build, and the results indicate that it performs similar to MPICH2—no overlap
of computation and communication. Open MPI can also be optionally built to
use an extra thread internally for asynchronous progress. With this version of the
library, we see that indeed there is asynchronous progress, as the performance
is nearly the same as for the “overlap” test with the default build. That is, the
case with the implementation-created progress thread performs similarly to the
case with the user-created thread.

The results on the Sun and IBM SMPs indicate no overlap. In fact, with
eight processes, the performance was worse with the overlap thread because of
the high overhead with using threads with these MPI implementations.

3.6 Concurrent Collectives

This test compares the performance of concurrent calls to a collective func-
tion (MPI Allreduce) issued from multiple threads to that when issued from
multiple processes. The test uses multiple communicators, and processes are ar-
ranged such that the processes belonging to a given communicator are located
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Fig. 8. Left: Concurrent collectives test on the Linux cluster (4x3 refers to 4 pro-
cess/threads each on 3 nodes). Right: Concurrent collectives and computation test on
the Linux cluster.

on different nodes. In other words, collective operations are issued by multiple
threads/processes on a node, with all communication taking place across nodes
(similar to Figure 3 but for collectives and using multiple nodes).

Figure 8 (left) shows the results on the Linux cluster. MPICH2 has relatively
small overhead for the threaded version, compared with Open MPI.

3.7 Concurrent Collectives and Computation

This test evaluates the ability to use a thread to hide the latency of a collec-
tive operation while using all available processors to perform computations. It
uses p+1 threads on a node with p processors. Threads 0–(p-1) perform some
computation iteratively. Thread p does an MPI Allreduce with its corresponding
threads on other nodes. When the allreduce completes, it sets a flag, which stops
the iterative loop on the other threads. The number of iterations completed on
the threads is reported. This number is compared with the case when there is
no allreduce thread (the higher the better).

Figure 8 (right) shows the results on the Linux cluster. MPICH2 demon-
strates a better ability to hide the latency of the allreduce, compared with Open
MPI.

4 Concluding Remarks

As MPI implementations supporting MPI THREAD MULTIPLE become increasingly
available, there is a need for tests that can shed light on the performance and
overhead associated with using multiple threads. We have developed such a test
suite and presented its performance on multiple platforms and implementations.
The results indicate relatively good performance with MPICH2 and Open MPI
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on Linux clusters, but poor performance with IBM and Sun MPI on IBM and
Sun SMP systems.

We plan to add more tests to the suite, such as to measure the overlap of
computation/communication with the MPI-2 file I/O and connect-accept fea-
tures. We plan to make the test suite ready for public use and release it soon.
We will also accept contributions from others to the test suite.
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