
Toward Message Passing for a Million Processes:

Characterizing MPI on a Massive Scale Blue Gene/P∗

P. Balaji1 A. Chan1 R. Thakur1 W. Gropp2 E. Lusk1

1Math. and Comp. Science,
Argonne National Laboratory,

{balaji, chan, thakur, lusk}@mcs.anl.gov

2Dept. of Computer Science,
U. Illinois, Urbana Champaign,

wgropp@illinois.edu

Abstract

High-end computing (HEC) systems have passed the petaflop barrier

and continue to move toward the next frontier of exascale computing.

Systems with hundreds of thousands of cores are already available and

upcoming exascale capable systems are expected to comprise more

than a million processing elements. As companies and research insti-

tutes continue to work toward architecting these enormous systems, it

is becoming increasingly clear that these systems will utilize a signif-

icant amount of shared hardware between processing units, including

shared caches, memory management engines and network infrastruc-

ture. Thus, understanding how effective current message passing and

communication infrastructure is in tying these processing elements to-

gether, is critical to making educated guesses on what we can expect

from such future machines. Thus, in this paper, we characterize the

communication performance of the message passing interface (MPI)

implementation on 32 racks (131,072 cores) of the largest Blue Gene/P

(BG/P) system in the world (80% of the total system size). Our studies

show various interesting insights into the communication characteris-

tics of MPI on the BG/P.

1 Introduction

As we move into an era of petaflop computing, and look for-

ward to multi-petaflop and exaflop computing, modern high-

end computing (HEC) systems are rapidly increasing in size.

With processor speeds no longer doubling every 18-24 months

due to the exponential increase in power consumption and heat

dissipation, modern HEC systems tend to rely lesser on the per-

formance of single processing units, but rather try to extract

parallelism out of a massive number of processing elements.

IBM Blue Gene/L [5] was one of the early supercomputers to

follow this architectural model and was soon followed by other

systems such as the Blue Gene/P (BG/P) [9] and SiCortex [4].

Today, large systems using these architectures already scale to

hundreds of thousands of processing elements. With plans un-

derway for exascale systems to emerge within the next decade,

it is expected that we will soon have systems that comprise more

than a million processing elements. As researchers work toward

architecting these enormous systems, it is becoming increas-

ingly clear that these systems will utilize a significant amount

of shared hardware. This includes shared caches, shared mem-

ory and memory management devices, and shared network in-

∗This work was supported in part by the Office of Advanced Scientific Com-

puting Research, Office of Science, U.S. Department of Energy under contract
DE-AC02-06CH11357 and in part by the Department of Energy award DE-

FG02-08ER25835

frastructure. One of the primary challenges in such architec-

tures, that use a massive quantity of modestly powerful pro-

cessing units instead of a few very powerful processing units, is

their capability to tie these units together into a tightly coupled

network fabric that allows them to appear as one fast super-

computer. This challenge is even more formidable given the

increasing amount of shared hardware in such systems. Thus,

understanding how effective the current message passing and

communication infrastructure is in tying these processing ele-

ments together is critical to making educated guesses on what

we should expect from future exascale machines that follow a

similar architecture.

In this paper, we characterize the communication performance

of the Message Passing Interface (MPI) on 32 racks (131,072

cores) of the largest Blue Gene/P system in the world (80%

of the total system size). Our studies include tests that stress

the shared hardware in the system. The paper documents

several interesting observations including the impact of swap-

free memory, DMA engine utilization model, impact of mul-

tiple network hops and network congestion behavior. We also

demonstrate the aggregate effect of all these observations using

the communication kernel of the NRL Layered Ocean model

(NLOM) [14]—a simulation model the allows scientists to

understand the behavior of semi-enclosed seas, major ocean

basins and the global ocean.

2 BG/P Hardware and Software Stacks

Here we describe the hardware and software stacks of BG/P.

2.1 BG/P Hardware Architecture

As shown in Figure 1, the BG/P uses a 4-core architecture with

each core having a separate L2 cache and a semi-distributed L3

cache (shared between two cores). Each node is connected to

five different networks [10]. Two of them, 10-Gigabit Ethernet

and 1-Gigabit Ethernet with JTAG interface, are used for file

I/O and system management. The other three are used for MPI

communication as described below.

3-D Torus Network: This network is used for MPI point-to-

point and multicast operations and connects all compute nodes

to form a 3-D torus. Thus, each node has six nearest-neighbors.

Each link provides a bandwidth of 425 MB/s per direction, for

a total bi-directional bandwidth of 5.1 GB/s. As shown in Fig-

ure 1, though each node has six bidirectional links on each node,

there is only one shared DMA engine.

Global Collective Network: This is a one-to-all network for

1

256 bits

256 bits

DDR2

controller

with ECC

L2

Snoop

filter

4 MB

eDRAM

L3 cache

or

on-chip

memory

4 MB

eDRAM

L3 cache

or

on-chip

memory

L2

Snoop

filter

L2

Snoop

filter

128 bits

128 bits

128 bits

128 bits

L2

Snoop

filter

M
u

lt
ip

le
x

in
g
 s

w
it

ch

DMA

M
u

lt
ip

le
x

in
g
 s

w
it

ch

64

bits
Shared

SRAM

PMU

Shared L3

directory

for

eDRAM

with ECC

Shared L3

directory

for

eDRAM

with ECC

Arb

512 bits data

72 bits ECC

512 bits data

72 bits ECC

Ethernet

10 Gb

JTAG

access
CollectiveTorus

Global

barrier

DDR2

controller

with ECC

13.6 GB/s

DDR2 DRAM bus
JTAG 10 Gb/sSix 3.4 Gb/s

bidirectional

Four global

barriers or

interrupts

Three 6.8 Gb/s

bidirectional

L1

PPC450

Double FPU

L1

PPC450

Double FPU

L1

PPC450

Double FPU

L1

PPC450

Double FPU

Figure 1: BG/P Architecture [9]

compute and I/O nodes used for MPI collective communication

(for regular collectives with small amounts of data) and I/O ser-

vices. Each node has three links to this network (total of 5.1

GB/s bidirectional bandwidth).

Global Interrupt Network: This is an extremely low-latency

network that is specifically used for global barriers and inter-

rupts. Messaging on this network is extremely scalable. For

example, the global barrier latency of a 72K-node partition is

approximately 1.3µs.

The compute cores in the nodes do not handle packets on the

torus network; a DMA engine on each node offloads most of

the network packet injecting and receiving work, which enables

better overlap of computation and communication. However,

the cores directly handle sending/receiving packets from the

collective network.

2.2 BG/P Software Architecture

BG/P is designed for multiple programming models. The Deep

Computing Messaging Framework (DCMF) and the Compo-

nent Collective Messaging Interface (CCMI) are used as gen-

eral purpose libraries to support different programming mod-

els [13]. DCMF implements point-to-point and multisend pro-

tocols. The multisend protocols connect the abstract implemen-

tation of collective operations in CCMI to targeted communica-

tion networks. DCMF provides three types of message-passing

operations: two-sided send, multisend and one-sided get, all

three with nonblocking semantics.

The MPI implementation on BG/P is MPICH2 [19] layered on

top of DCMF. MPICH2 provides an internal abstraction layer,

called the abstract device interface (ADI), that allows it to be

implemented and tuned for new platforms with modest effort,

while still retaining most of its upper-level code, including the

ROMIO implementation of MPI-IO and the MPE profiler. IBM

wrote, and contributed back to the open-source MPICH2 code

base, a new implementation of the ADI, called dcmfd. This

enables MPICH2 to run efficiently on BG/P and re-implements

many of the collective communication functions to take advan-

tage of the special networks and hardware features of BG/P.

3 Experimental Analysis

In this section, we perform several experiments to understand

the communication characteristics of MPI on BG/P.

3.1 Two-process Point-to-point Benchmarks

This section characterizes two-process benchmarks on BG/P.

3.1.1 Inter-node Performance

Figure 2(a) illustrates the one-way ping-pong latency achieved

by MPI on BG/P between two nodes separated by a single net-

work hop. In this experiment, the sender sends a message of

size S to the receiver. On receiving this message, the receiver

sends back another message of the same size to the sender. This

is repeated several times and the total time averaged over the

number of iterations, which gives the average round-trip time.

The ping-pong latency reported here is one half of the round trip

time, i.e., the time taken for a message to be transferred from

one node to another.

The figure shows two legends: in-cache and out-of-cache. For

“in-cache”, the same buffer is used for each communication it-

eration, so the buffer is always in cache. Conversely, for “out-

of-cache”, a different buffer is used for each iteration, causing

the buffer to be out-of-cache each time. We notice that there is

no difference between in-cache and out-of-cache performance,

both achieving about 2.8 µs small message latency. This is be-

cause of the memory management functionality of BG/P which

does not maintain any virtual address swap space. Thus, all

its virtual address space is always pinned to physical memory

pages. Therefore, unlike other cluster network interconnects

such as InfiniBand [6] and Quadrics [21], BG/P does not have

to perform any separate memory pinning before communica-

tion and the DMA engine can directly communicate from any

buffer in a zero-copy manner. Consequently, the processor does

not have to touch the data for any processing, thus causing no

degradation in performance irrespective of whether the data be-

ing communicated is in cache or not.

Figure 2(b) illustrates the unidirectional bandwidth. In this ex-

periment, the sender sends a message of size S a number of

times to the receiver. On receiving all the messages, the receiver

sends back one small message to the sender, indicating that it

has received the messages. The sender calculates the total time,

subtracts the one-way latency of the message sent by the re-

ceiver, and based on the remaining time, calculates the amount

of data it had transmitted per unit time. Like the latency ex-

periment, we notice that there is no impact on bandwidth either

based on whether the data is in cache or not; both forms achieve

about 3 Gb/s unidirectional bandwidth for large messages.

3.1.2 Intra-node Performance

Figures 3(a) and 3(b) show MPI ping-pong latency and unidi-

rectional bandwidth between cores on the same node. Commu-

nication performance is measured between core 0 and one other

core as indicated by the legend. We make several observations

2

8

10

12

14

16

18

20

In-Cache

Out-of-Cache

La
te

n
cy

 (
u

s)

0

2

4

6

8

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Message Size (bytes)

La
te

n
cy

 (
u

s)

1500

2000

2500

3000

3500

In-Cache

Out-of-Cache

B
a

n
d

w
id

th
 (

M
b

p
s)

0

500

1000

1500

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

8
K

1
6
K

3
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

Message Size (bytes)

B
a

n
d

w
id

th
 (

M
b

p
s)

Figure 2: Inter-node Performance: (a) One-way Latency; (b) Unidirectional bandwidth

3

4

5

6

7

8

Core 1

Core 2

Core 3

La
te

n
cy

 (
u

s)

0

1

2

3

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Message Size (bytes)

La
te

n
cy

 (
u

s)

8000

10000

12000

14000

16000

18000

20000

Core 1

Core 2

Core 3

B
a

n
d

w
id

th
 (

M
b

p
s)

0

2000

4000

6000

8000

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

Message Size (bytes)

B
a

n
d

w
id

th
 (

M
b

p
s)

Figure 3: Intra-node Performance: (a) One-way Latency; (b) Unidirectional Bandwidth

in these two experiments. First, for ping-pong latency, we no-

tice no performance difference irrespective of which two cores

communicate. Second, the intra-node and inter-node latencies

(Figures 3(a) and 2(a)) are identical (about 2.8 µs) for small

messages. These two observations have the same underlying

reason: the processing power of each core on the BG/P is only

a modest 850 MHz; so unlike fast Intel and AMD processors,

the time taken for memory copies is much higher on such pro-

cessors. Accordingly, instead of using the processor for shared-

memory communication, BG/P uses the hardware DMA engine

for both intra-node and inter-node communication. Thus, there

is no difference in performance in the two. Due to the same

reason, it does not matter, with respect to performance, which

two cores perform communication.

For the unidirectional bandwidth, we again notice no perfor-

mance difference based on which two cores communicate due

to the same reason as above. We also notice that the intra-

node communication bandwidth (Figure 3(b)) is about six-fold

higher than the inter-node bandwidth (Figure 2(b)). This differ-

ence is due to the capability of the DMA engine. As mentioned

in Section 2.1, the DMA engine is shared between all the six

torus links of the node. Thus, in order to be able to drive all six

bidirectional links, it has to be capable of six times the single-

link communication bandwidth for data going out as well as

for data coming in. In an intra-node communication test, the

data from one process’ address space has to go down to the

DMA engine and come back up to the second process’ address

space, which the engine can perform six times faster than what

an inter-node link can support.

3.1.3 Impact of Hops on an Idle Network

Figure 4 shows the impact of the system size on communication

latency by performing the inter-node latency test using the two

farthest nodes in the system. Thus, as the system size increases,

the number of hops the message has to traverse also increases.

As shown in the figure, the system size has a large impact

on communication latency, especially for small and medium-

sized messages. For example, for a zero-byte message, the per-

formance degradation is close to 100% when the system size

changes from 4 to 131,072 cores. Even for medium-sized mes-

sages of up to 1 KB, the impact is still 40%, which is significant.

This illustrates that for latency-sensitive applications, the place-

ment of the processes can play a significant role in performance

as how far apart they are can determine their communication

performance. For large messages, however, the impact of num-

ber of hops is minimal.

We performed a similar experiment with the bandwidth test, but

did not notice any impact on performance (less than 3%). This

is expected as messages are pipelined across network hops; thus

3

40

55

70

85

100

0 bytes 32 bytes

1K bytes 32K bytes

1M bytes

P
e

rc
e

n
ta

g
e

P
e

rf
o

rm
a

n
ce

D
e

g
ra

d
a

ti
o

n
 (

%
)

-5

10

25

4

3
2

1
2

8

3
8

4

8
6

4

1
5

3
6

2
5

6
0

4
0

0
0

5
7

6
0

8
0

6
4

1
0

9
7

6

1
4

3
3

6

1
8

4
3

2

2
3

3
2

8

2
8

8
0

0

3
5

2
0

0

4
2

5
9

2

5
0

6
8

8

5
9

9
0

4

7
0

3
0

4

8
1

5
3

6

9
4

0
8

0

1
0

8
0

0
0

1
2

2
8

8
0

System Size

P
e

rc
e

n
ta

g
e

D
e

g
ra

d
a

ti
o

n
 (

%
)

Figure 4: Impact of Number of Hops on One-way Latency

the number hops should not matter for streaming communica-

tion, such as the bandwidth test.

We also analyzed the impact of network hardware sharing at

each hop. This experiment was designed to analyze to what

extent flow-through data (i.e., data that passes through a partic-

ular node on the torus, but is neither sourced at or destined to

this node) utilizes the network hardware on each hop. Specifi-

cally, while a heavy amount of traffic is flowing through a node,

we performed an intra-node bandwidth test on the same node.

Since intra-node communication utilizes the DMA engine (as

described in Section 3.1.2), if there is sharing of the DMA en-

gine with the flow-through data, bandwidth performance should

suffer. Our experiments revealed no such impact showing that

flow-through data has other dedicated hardware and does not

use the node’s DMA engine. A similar test was done for inter-

node bandwidth as well, but utilizing a different torus link for

the bandwidth test than the one used for the flow-through data;

no performance impact was noticed for that either.

3.2 Multi-process Point-to-point Benchmarks

This section characterizes multiprocess point-to-point commu-

nication for MPI on BG/P.

3.2.1 Network Congestion Behavior

In this section, we study the communication behavior on BG/P

in the presence of network congestion by pushing multiple

streams of data on the same link and measuring the performance

achieved by each data stream. We pick four processes on a full

torus system partition that are contiguously located along a sin-

gle dimension (say P0, P1, P2 and P3). These four processes

form two pairs, with each pair performing the bandwidth test.

In the first experiment (Figure 5), P0 sends data to P3 (which

takes the route P0–P1–P2–P3) and P1 sends data to P2 (which

takes a direct one hop route, P1–P2). Thus, the link connect-

ing P1 and P2 is shared for both communication streams. As

shown in the figure, we see that the communication between

P0 and P3 (legend “P0-P3”) achieves the same bandwidth as an

uncongested link (legend “No overlap”) illustrating that the link

congestion has no performance impact on this stream. How-

2000

2500

3000

3500

P0 P3

P1 P2

No!overlap

(M
b
p
s)

Congestion Behavior (Fully Overlapped Communication)

0

500

1000

1500

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

8
K

1
6
K

3
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

Message Size (bytes)

B
a
n
d
w
id
th

Figure 5: Network Congestion Behavior

ever, for the communication between P1 and P2 (legend “P1-

P2”), there is a significant performance impact. The reason

for this asymmetric performance for these two streams is re-

lated to the congestion management mechanism of BG/P. Like

most other networks, BG/P uses a sender driven data-rate throt-

tling mechanism to manage network congestion. Specifically,

when the sender is trying to send data, if the immediate link on

which data needs to be transmitted is busy, the sender throttles

the sending rate. On the other hand, for flow-through data the

sender is not directly connected to the congested link and hence

cannot “see” that the link is busy. Thus, there is no throttling

for flow-through data causing it to achieve high-performance,

but at the expense of other flows.

Another observation we make is that there are several paths be-

tween the pairs P0-P3 and P1-P2 that do not overlap with each

other. However, the loss in performance for the P1-P2 pair il-

lustrates that none of these additional paths are utilized and data

is always sent in a statically pre-configured path.

The second experiment we performed is similar to the previous

one, but using P0-P2 (routed as P0–P1–P2) and P1-P3 (routed

as P1–P2–P3) as the process pairs. Thus, both flows have P1–

P2 as the common link, and both flows are partially congested

by each other. The performance observations are similar to the

previous experiment, with the P0–P1–P2 achieving peak band-

width, and P1–P2–P3 achieving a throttled bandwidth.

3.2.2 Multistream Bandwidth

The multistream bandwidth test is similar to the unidirectional

bandwidth test described in Section 3.1.1, except that instead

of just two processes performing the test, multiple pairs of pro-

cesses perform the same test. Specifically, since each node is

equipped with four cores, the test allows multiple cores on the

node to participate in the communication. Thus, for the case

of N cores, there are N streams of communication between the

same two nodes. The aggregate bandwidth of all flows is com-

puted and reported in Figure 6(a). As shown in the figure, the

peak bandwidth achieved in all cases is the same. This is ex-

pected, as irrespective of the number of flows, the performance

will eventually be limited by the link bandwidth. However,

4

1500

2000

2500

3000

3500

1 Core 2 Cores

3 Cores 4 Cores

B
a

n
d

w
id

th
 (

M
b

p
s)

0

500

1000

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

Message Size (bytes)

B
a

n
d

w
id

th
 (

M
b

p
s)

10000

100000

1000000

10000000

0 bytes

1K bytes

1M bytes

y
 (
u
s)

1

10

100

1000

10000

2 8 16 32 128 512 1024 2048 8192

System Size

La
te
n
cy

Figure 6: (a) Multi-stream Communication; (b) Hot-spot Communication

we notice that for medium-sized messages, the performance

difference between just one core performing communication

vs. multiple cores being involved in communication is close

to twofold in some cases. Since the communication message

sizes for many applications are in this range, this experiment

gives a strong indication to application developers that utilizing

multiple cores for communication can be significantly helpful

especially while using low-frequency processing cores.

3.2.3 Hot-spot Communication

In this section, we measure the performance of hot-spot com-

munication, where a single “master” process performs a latency

test with a group of “worker” processes, thus forming a com-

munication hot-spot. This test is designed to emulate master-

worker kind of communication models. Figure 6(b) illustrates

the average latency noticed by each worker processes for dif-

ferent message sizes over a range of system sizes (log-log plot).

For all message sizes, we see an exponential increase in the

hot-spot latency with increasing system size. This is attributed

to the congestion that occurs when multiple messages arrive via

the limited number of links surrounding a single master pro-

cess. As the system size increases, more and more messages

are pushed to the same process, further increasing congestion

and causing significant performance loss.

In summary, the flat network topology of BG/P is not well

suited for master-worker kind of communication, especially

when the messages being communicated are large. Our mea-

surements reveal that the system size at which performance be-

gins to degrade is very small. For applications using such a

communication pattern, hierarchical master-worker communi-

cation can alleviate bottlenecks in some cases, but can have se-

rious performance constraints when scaled to very large sizes.

3.2.4 Fan Communication

In this section, we measure the performance of fan-based com-

munication where a node communicates with its six physical

neighbors that are directly connected along the links of the 3D

torus. The fan-in test measures the process’ capability to re-

ceive data from its neighbors and the fan-out test measures the

process’ capability to send data to its neighbors. Figures 7(a)

and 7(b) show the fan-in and fan-out performance measure-

ments, respectively, with increasing number of neighbors com-

municated with. As the number of neighbors increase, the

overall performance increases in general. For the fan-out test,

the peak performance achieved is about 18,000 Mb/s, which

is close to the maximum performance capability of the DMA

engine, as illustrated in Section 3.1.2. However, for the fan-

in test, the peak performance saturates at only 13,000 Mb/s.

This shows that the data-receiving path of the stack has more

overhead compared with the sending path. Thus, one process

sending data to multiple processes is expected to achieve better

performance as compared to one process receiving data from

multiple processes.

3.3 Collective Communication

In this section, we evaluate MPI collective communication.

3.3.1 MPI Barrier

Figure 8(a) shows the performance of MPI Barrier

for different communicators with increasing system size:

MPI COMM WORLD, dup of MPI COMM WORLD and a split

communicator containing all processes in MPI COMM WORLD

except the last process. As shown in the figure, both

MPI COMM WORLD and a direct dup of MPI COMM WORLD

perform identically. However, for a non-standard communi-

cator such as MPI COMM WORLD without the last process, the

performance is significantly worse. This is because communi-

cation for standard communicators such as MPI COMM WORLD

is handled in hardware using the global interrupt network de-

scribed in Section 2.1. For non-standard communicators, how-

ever, the barrier takes place in software, which has significantly

higher overhead. We also notice a large variation in the bar-

rier time based on the system size. Some of this is attributed to

the system topology as different system sizes use different torus

topologies. The rest is attributed to the software stack itself.

Figure 8(b) shows the performance of multiple parallel barriers

happening on the same set of nodes. Specifically, the processes

on core 0 of all nodes perform a barrier while the processes

on core 1 of all nodes perform another parallel barrier, and so

on. Since all the barriers share the same physical network, they

might interfere with each other causing performance loss. We

5

6000

8000

10000

12000

14000

1 Peer 2 Peers

3 Peers 4 Peers

5 Peers 6 Peers

B
a

n
d

w
id

th
 (

M
b

p
s)

Fan-in Bandwidth

0

2000

4000

6000

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message Size (bytes)

B
a

n
d

w
id

th
 (

M
b

p
s)

8000

10000

12000

14000

16000

18000

20000

1 Peer 2 Peers

3 Peers 4 Peers

5 Peers 6 Peers

B
a

n
d

w
id

th
 (

M
b

p
s)

Fan-out Bandwidth

0

2000

4000

6000

8000

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message Size (bytes)

B
a

n
d

w
id

th
 (

M
b

p
s)

Figure 7: Fan Tests: (a) Fan-in; (b) Fan-out

30

40

50

60

Comm World

Comm World - 1

Comm Dup

T
im

e
 (

u
s)

Barrier

0

10

20

System Size

T
im

e
 (

u
s)

40

50

60

70

80

1 Communicator

2 Communicators

3 Communicators

4 Communicators

T
im

e
 (

u
s)

Barrier (Parallel Communicators)

0

10

20

30

System Size

T
im

e
 (

u
s)

Figure 8: Barrier Performance: (a) Variance with Communicators; (b) Parallel Barriers

notice that for small system sizes, this interference is minimal.

However, as the system size increases, we notice a counter-

intuitive behavior—the average barrier time decreases with in-

creasing number of parallel communicators! This behavior is

attributed to the potential for software optimizations with par-

allel barriers. That is, with multiple parallel barriers occurring

on the same set of nodes, the network stack has an opportunity

to perform message coalescing. This allows the average time

of the barrier to reduce as the information equivalent to mul-

tiple messages is carried out in a single message. In fact, for

a system size of 131,072 cores, we notice that the interference

actually causes a performance improvement of nearly 75%.

3.3.2 MPI Bcast

We evaluated MPI Bcast for the three different communi-

cators described in Section 3.3.1 and found that MPI Bcast

on standard communicators performs nearly 10-fold better than

non-standard communicators on a system size of 131,072 cores

(Figure 9). Such performance difference can be critical for

many application developers, since many scalable applications

do not perform operations on MPI COMM WORLD in the perfor-

mance critical path; instead they break up processes into smaller

communicators (such as a Cartesian map) and perform opera-

tions on these smaller communicators.

Figures 10(a) and 10(b) show the performance of multiple par-

allel broadcasts for message sizes of 4 bytes and 16 KB, re-

���������������
� � �� �� �� ��� ��� ��� �� �� �� �� ��� ��� ��� ����

	
�� �
��	
�� �
�� � �	
�� ���
������ ����

���� !"#
$%&'()'�� *+ ,����-

Figure 9: Broadcast on Different Communicators

spectively. This experiment is similar to the one described in

Section 3.3.1, except that it uses MPI Bcast instead of an

MPI Barrier. For a 4-byte broadcast, we see that the trend

is similar to MPI Barrier. That is, as the number of parallel

communicators increases, the average time taken by the broad-

cast reduces due to message coalescing. However, for a 16 KB

broadcast, we see a trend reversal—performance degrades as

the number of parallel communicators increases. This is be-

cause, for large messages, there is no real possibility for mes-

sage coalescing. However, since the physical link is shared,

this can result in communication interference leading to per-

6

./012
34567

2 6 /4 10 42 /06 034 3/0 /8 08 28 68 /48 108 428 /068
/ 9:;;<=>?@A:B0 9:;;<=>?@A:BC1 9:;;<=>?@A:BC2 9:;;<=>?@A:BCDEFGHI DJKH

LMNOPQRS
TUVWXYWFG Z[WUW\\H\]VII^_JYWGVUF`a b cEGHF

dedfdgdhdiddiedifdigdihdedd
f h ig je gf ieh ekg kie il el fl hl igl

i mnoopqrstunve mnoopqrstunvwj mnoopqrstunvwf mnoopqrstunvw
xyz{|} x~�|

��������
�������z{ �������|� ��}}��~��{��z�� ��� �y{|z

Figure 10: Parallel Broadcast Performance: (a) 4 byte message; (b) 16 KB message

formance loss. As the system size increases to 16K processes,

we see a performance degradation of threefold going from one

communicator to four.

3.3.3 MPI Allreduce and MPI Allgather

Figure 11(a) shows the performance of multiple parallel

MPI Allreduce operations. Unlike, barrier and broadcast,

we notice that the performance of allreduce does not vary with

multiple parallel communicators even for a 16 KB operation.

This is because at each intermediate node, MPI Allreduce

has to process the incoming data, which is a bigger bottleneck

than data communication itself. Thus, the communication in-

terference is not visible in this operation.

Figure 11(b) shows the performance of multiple parallel

MPI Allgather operations. In this test, we see that even

for a 4-byte Allgather, there is significant communication

interference as the system size increases. This is because

MPI Allgather is an accumulative operation where the to-

tal data size increases with system size. Thus, even for a 4-byte

MPI Allgather, a 131,072-core system can cause very large

messages, and consequently communication interference.

In summary, our experiments with parallel execution of col-

lective operations show that the performance of an operation

as perceived by real applications can be significantly different

from what usual micro-benchmarks indicate, because of its in-

terference with other communication in the system. Many ap-

plications divide processes into small groups, and each group

communicates within itself. However, because of such com-

munication interference, these applications might suffer from

unexpected communication penalties.

3.4 Process Mapping Effects on NLOM

The NRL Layered Ocean Model (NLOM) [14] simulates semi-

enclosed seas, major ocean basins, and the global ocean. The

current implementation of the model uses tiled data-parallel

programming style. Its general nature allows implementations

in various programming models including MPI, OpenMP, Co-

Array Fortran, and shared memory. This makes NLOM a good

candidate for benchmarking both hardware and the associated

communication software. The HALO benchmark simulates an

NLOM 2-D exchange for an NxN sub-domain for different

values of N. HALO puts a premium on low latency, much as

NLOM as a whole does. In general, Halo exchanges are impor-

tant operations whenever domain decomposition is used, but

HALO can also be treated as a generic low-level communica-

tion benchmark. Small N performance is dominated by latency,

and large N by bandwidth.

In this section, we analyze the effect of process mapping on the

performance achieved by HALO. Several parameters affect the

performance of HALO; these include (a) application specific

parameters (such as whether the messages communicated are

in cache or not, and how much intra-node vs. inter-node com-

munication it performs) and (b) where exactly each application

process is on the system and which other processes it commu-

nicates with (this determines the number of hops the messages

have to traverse, how much congestion they create in the net-

work and how much interference they have with other parallel

communication in the system). Thus, varying the process map-

pings allows us to observe the extent of the overall effect of

these parameters from an end-user’s perspective.

Figure 12 illustrates the overall performance of HALO for dif-

ferent process mappings (XYZT, TXYZ, ZYXT, and TZYX)

and system sizes (16K and 128K processes). Different map-

pings indicate how MPI ranks are allocated, e.g., XYZT indi-

cates that ranks are ordered first with respect to the X-axis on

the 3D torus, then Y-axis, and so on. T-axis refers to the cores

within the node. As shown in the figure, these mappings can

have up to twofold impact for a system size of 16K processes.

As the system size increases to 128K processes, this impact in-

creases to up to threefold. This indicates that, as the system

sizes keep growing, such mapping will become even more im-

portant. In general, which mapping is the best is not a trivial

question to answer as it depends on a number of parameters in-

cluding several of those we described in this paper, as well as

many others including the characteristics of the application.

4 Related Work and Discussion

There has been a significant amount of prior work related to un-

derstanding the performance characteristics of MPI on different

architectures [17, 16, 15, 12, 8, 7]. However, this prior work

7

������������������������
� �¡ �� ¡� �� ��¡ ��� �¢ �¢ �¢ ¢ �¡¢

� £¤¥¥¦§¨©ª«¤¬� £¤¥¥¦§¨©ª«¤¬� £¤¥¥¦§¨©ª«¤¬� £¤¥¥¦§¨©ª«¤¬
®¯°±²³ ®´µ²

¶·̧¹º»¼½
¾¿¿À²ÁÂÃ² ÄÅÆÀÆ¿¿²¿ ÇÈ³³ÂÉ´ÃÆ±ÈÀ°ÊË ÌÍÎ Ï¯±²°

ÐÑÐÐÐÐÒÐÐÐÐÓÐÐÐÐÔÐÐÐÐÕÐÐÐÐÖÐÐÐÐ×ÐÐÐÐØÐÐÐÐÙÐÐÐÐÑÐÐÐÐÐ Ñ ÚÛÜÜÝÞßàáâÛãÒ ÚÛÜÜÝÞßàáâÛãäÓ ÚÛÜÜÝÞßàáâÛãäÔ ÚÛÜÜÝÞßàáâÛãä
åæçèéê åëìé

íîïðñòóô
õöö÷øèùéú ûüøúøööéö ýþêêÿ�ë�øèþúç�� � �æèéç

Figure 11: Parallel Collective Performance: (a) Allreduce (16 KB message); (b) Allgather (4 byte message)

400

500

600

700

800

900

XYZT TXYZ

ZYXT TZYX

E
x

e
cu

ti
o

n
 T

m
ie

 (
u

s)

System Size: 16K processes

0

100

200

300

400

2 4 8 16 32 64 128 256 512 1K

Grid Partition (bytes)

E
x

e
cu

ti
o

n
 T

m
ie

 (
u

s)

1000

1500

2000

2500

XYZT TXYZ

ZYXT TZYX

E
x

e
cu

ti
o

n
 T

m
ie

 (
u

s)

System Size: 128K processes

0

500

1000

2 4 8 16 32 64 128 256 512 1K

Grid Partition (bytes)

E
x

e
cu

ti
o

n
 T

m
ie

 (
u

s)

Figure 12: Nearest Neighbor Performance: (a) 16K processes; (b) 128K processes

primarily lags with respect to characterizing MPI on the scale

that we study in this paper. Specifically, as we reach out toward

exascale-capable systems in the next decade, there is no clear

understanding so far on what can be expected from the massive

parallelism that is available and the potentially huge amount of

hardware sharing that is quickly becoming common with multi-

core architectures, SMTs and flat networks. Our work attempts

to bridge this gap.

Recently, there has also been interest in trying on understand

what the most prominent parallel programming model for exas-

cale systems would be. There has been work in extending MPI

itself [18] as well as other models including UPC [1], Co-Array

Fortran [2], Global Arrays [3], OpenMP [20] and hybrid pro-

gramming models (MPI + OpenMP [11], MPI + UPC). Thus,

to decouple ourselves from this aspect, while this paper uses

MPI as a vehicle for evaluation, the studies bring out interesting

observations in the low-level network communication of BG/P

that are relevant to most prominent programming models and

not just MPI.

In summary, this paper extends on existing prior work and

brings out interesting performance aspects that are already true

for current large-scale systems and will only become more

prominent and visible for larger systems. Thus, we believe this

work would be an interesting and highly relevant contribution

to high-end computing research.

5 Conclusions and Future Work

In this paper, we characterized the communication performance

of MPI on 32 racks (131,072 cores) of the largest Blue Gene/P

system in the world (80% of the total system size). Our stud-

ies included benchmarks that stressed the shared hardware on

the system. We identified various interesting insights that can

have significant implications on applications as well as archi-

tectural reconsiderations needed for future larger systems fol-

lowing similar hardware characteristics.

As future work, we plan to apply the insights gained from our

studies to specific application kernel cases such as libraries us-

ing Cartesian-grid communication (e.g., FFT) which can be

impacted by network congestion, or applications that rely on

master-worker models (e.g., mpiBLAST) which be impacted

from hot-spot communication. We also plan to carry out this

study on SiCortex that follows a similar architectural model,

but with a Kautz network topology.

References

[1] Berkeley Unified Parallel C (UPC) Project. http://upc.lbl.gov/.

[2] Co-Array Fortran. http://www.co-array.org/.

8

[3] Global Arrays. http://www.emsl.pnl.gov/docs/global/.

[4] http://www.sicortex.com/products/sc5832.

[5] http://www.research.ibm.com/journal/rd/492/gara.pdf.

[6] InfiniBand Trade Association. http://www.infinibandta.com.

[7] S. Alam, B. Barrett, M. Bast, M. R. Fahey, J. Kuehn, C. McCurdy,

J. Rogers, P. Roth, R. Sankaran, J. Vetter, P. Worley, and W. Yu. Early

Evaluation of IBM BlueGene/P. In SC, 2008.

[8] P. Balaji, A. Chan, R. Thakur, W. Gropp, and E. Lusk. Non-Data-

Communication Overheads in MPI: Analysis on Blue Gene/P. In Euro

PVM/MPI Users’ Group Meeting, Dublin, Ireland, 2008.

[9] Overview of the IBM Blue Gene/P project. http://www.research.ibm.com/

journal/rd/521/team.pdf.

[10] IBM System Blue Gene Solution: Blue Gene/P Application Develop-

ment. http://www.redbooks.ibm.com/redbooks/pdfs/sg247287.pdf.

[11] Franck Cappello and Daniel Etiemble. MPI versus MPI+OpenMP on

IBM SP for the NAS benchmarks. In Supercomputing ’00: Proceedings of

the 2000 ACM/IEEE conference on Supercomputing (CDROM), page 12,

Washington, DC, USA, 2000. IEEE Computer Society.

[12] A. Chan, P. Balaji, R. Thakur, W. Gropp, and E. Lusk. Communication

Analysis of Parallel 3D FFT for Flat Cartesian Meshes on Large Blue

Gene Systems. In HiPC, Bangalore, India, 2008.

[13] S. Kumar, G. Dozsa, G. Almasi, D. Chen, M. Giampapa, P. Heidelberger,

M. Blocksome, A. Faraj, J. Parker, J. Ratterman, B. Smith, and C. Archer.

The Deep Computing Messaging Framework: Generalized Scalable Mes-

sage Passing on the Blue Gene/P Supercomputer. In ICS, 2008.

[14] Naval Research Laboratory. Naval research laboratory layered ocean

model (nlom). http://www.navo.hpc.mil/Navigator/Fall99 Feature.html.

[15] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W. Yu, D. Buntinas,

P. Wyckoff, and D. K. Panda. Performance Comparison of MPI Imple-

mentations over InfiniBand Myrinet and Quadrics. In Supercomputing

2003: The International Conference for High Performance Computing

and Communications, Nov. 2003.

[16] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas,

W. Gropp, and B. Toonen. Design and Implementation of MPICH2 over

InfiniBand with RDMA Support. In Proceedings of Int’l Parallel and

Distributed Processing Symposium (IPDPS ’04), April 2004.

[17] J. Liu, J. Wu, S. Kini, R. Noronha, P. Wyckoff, and D. K. Panda. MPI

Over InfiniBand: Early Experiences. In IPDPS, 2002.

[18] Message Passing Interface Forum. MPI: A Message-Passing Interface

Standard, March 1994.

[19] MPICH2. http://www.mcs.anl.gov/mpi/mpich2.

[20] Venkatesan Packirisamy and Harish Barathvajasankar. Openmp in multi-

core architectures. Technical report, University of Minnesota.

[21] Fabrizio Petrini, Wu-Chun Feng, Adolfy Hoisie, Salvador Coll, and Ei-

tan Frachtenberg. The Quadrics Network: High Performance Clustering

Technology. IEEE Micro, 22(1):46–57, January-February 2002.

9

