
SANDIA REPORT
SAND2007-XXXX
Unlimited Release
Printed

Workshop on Programming
Languages for High Performance
Computing (HPCWPL)
Final Report

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
TMENT OF EN

E
R

G
Y

•� •�U
N

I
T

E
D

STATES OF A
M

E
R

I
C

A

2

SAND2007-XXXX
Unlimited Release

Printed

Workshop on Programming Languages for High
Performance Computing (HPCWPL)

Final Report

Richard C. Murphy
HPCWPL Technical Chair

Abstract

This report summarizes the deliberations and conclusions of the Workshop on Pro-
gramming Languages for High Performance Computing (HPCWPL) held at the San-
dia CSRI facility in Albuquerque, NM on December 12-13, 2006.

3

Acknowledgment

This report would be impossible without the efforts of a large number of people.
Each of the participants presenters provided invaluable expert input into our effort
to understand the state of applications, architecture, and programming models. We
are very thankful for their active participation.

The workshop’s steering and program committees were invaluable in shaping its con-
tent and direction: Ron Brightwell, Bill Carlson, David Chase, Bill Gropp, Bruce
Hendrickson, Mike Heroux, Fred Johnson, Peter Kogge, Bob Lucas, Bob Numrich,
Marc Snir, Thomas Sterling, Jeffrey Vetter, Christoph von Praun, Zhaofang Wen,
and Hans Zima.

We are thankful to the chairs for providing direction for each of their sessions: Pe-
ter Kogge served as the workshop chair, Thomas Sterling chaired the architecture
session, Jeffrey Vetter chaired the applications session, Marc Snir chaired the HPCS
Languages Panel, which served as the basis for many of the recommendations given
in this report, Bill Gropp chaired the programming models session, and Bob Lucas
chaired final conclusions session.

Each of the deputy chairs from Sandia also provided invaluable input into the final
report: Keith Underwood, Mike Heroux, Arun Rodrigues, and Ron Brightwell.

Richard C. Murphy, Technical Chair
Neil D. Pundit, Sandia Host

4

Executive Summary

This report describes the critical need for additional research in programming lan-
guages for high performance computing to enable new applications and the architec-
tures to support those applications. It is the result of a synthesis of the contents of the
Workshop on Programming Languages for High Performance Computing (HPCWPL)
held at Sandia National Laboratories’ Computer Science Research Institute on De-
cember 12-13, 2006. This report makes the following observations:

1. Today’s High Performance Computing (HPC) applications consist
of large, slowly evolving software frameworks. These frameworks are
typically decades old and have already survived large transitions in computer
architecture (e.g., Vector to MPP).

2. Emerging HPC applications are very different from their traditional
scientific computing counterparts. As a result, the “lessons” from scientific
computing do not address the problems of these applications.

3. Programmers within the DOE are typically experts. Consequently,
performance is more important than rapid prototyping.

4. HPC workloads share little in common with commercial workloads.
Thus, very little reuse can be made of commercial programming models. For
example, Transactional Memory is touted as the correct mechanism for pro-
gramming multicore architectures, but it is inappropriate for HPC workloads.

5. The memory wall dominates computer architecture and is increas-
ingly problematic. Even in the commodity space, the transition to multi-
core architectures will tremendously increase the demands on memory systems.
Memory latency dominates the performance of individual processor cores, while
memory bandwidth dominates the number of cores that can be put on a die.
Both are problems.

6. While supercomputer scaling was previously dominated by intercon-
nect performance future machine scaling will be dominated by mem-
ory. Because current programming models focus on interconnection networks
rather than memory, this could significantly limit the ability to scale applica-
tions.

7. Both conventional and emerging architectures require additional con-
currency to be easily specified. MPI is virtually certain not to be able to
provide all of the required concurrency.

5

8. Emerging heterogeneous architectures (such as Cell) pose a significant
workload partitioning problem. The job of performing this partitioning is
currently the programmer’s, and there is little hope for automation on the
horizon.

As a result, the following recommendations are proffered:

I. We should pursue an evolutionary rather than revolutionary approach
to HPC languages. There are both historical precedents (in the form of MPI)
and practical requirements (in the form of a multi-billion dollar investment in
existing code) that dictate this path. These languages must be compatible with
existing tools and legacy code.

II. The evolutionary path should address application requirements first
and machine architecture requirements second (but should address
both). New programming models (and architectures) have already been adopted
to solve problems that cannot be addressed using the conventional MPI/MPP
model. There are common features among radically different problems that
cannot be solved today that should be the focus of new programming language
extensions. These features include requirements for fine-grained parallelism,
synchronization, and data access.

III. An evolutionary language should introduce a minimal set of abstrac-
tions, which should match HPC’s unique requirements. MPI succeeded
by introducing a very small number of key routines that mapped well onto ap-
plications and architectures. In the commercial space, Transactional Memory
introduces small extensions to introduce nondeterminism into programs (and
find parallelism). However, HPC applications typically require deterministic
parallelism.

IV. Languages need to support large numbers of efficient, light-weight,
locality aware threads. This serves to increase concurrency, address the core
problem of the memory wall, and begin to address the cache coherency problem.

V. We must identify problems that cannot be solved today, and de-
velop programming languages (and architectures) that solve those
problems. This supports recommendations I-IV by enabling the creation of a
significant user-base to support the early development of these languages, and
focusing language development on satisfying a specific need.

We are currently at a unique point in the evolution of HPC. Application and un-
derlying technology requirements dictate programming models to support new ways
of solving humanity’s problems. Today, architectures and applications are evolving
faster than the programming models needed to support them. These recommenda-
tions are intended as a first cut strategy for addressing those needs and enabling the
solution to new, larger-scale problems.

6

Table 1. HPCWPL Participants

Name Affiliation Name Affiliation
Berry, Jon SNL Lucas, Bob ISI
Brightwell, Ron SNL Maccabe, Barney UNM
Chamberlain, Brad Cray Mehrotra, Piyush NASA
Chase, David Sun Murphy, Richard SNL
Chtchelkanova, Almadena NSF Numrich, Bob U. of Minnesota
DeBenedictis, Erik SNL Olukotun, Kunle Stanford
DeRose, Luiz Cray Perumalla, Kalyan ORNL
Doerfler, Doug SNL Poole, Stephen ORNL
Gao, Guang U. of Delaware Pundit, Neil SNL
Gokhale, Maya LANL Rodrigues, Arun SNL
Gropp, Bill ANL Snir, Marc UIUC
Hall, Mary USC/ISI Sterling, Thomas LSU
Hecht-Nielsen, Robert UCSD Underwood, Keith SNL
Hemmert, Scott SNL Vetter, Jeffrey ORNL
Hendrickson, Bruce SNL von Praun, Christoph IBM
Heroux, Mike SNL Watson, Greg LANL
Hofstee, Peter IBM Wen, Zhaofang SNL
Iancu, Costin LBL Zima, Hans CalTech/JPL
Kogge, Peter U. of Notre Dame

7

Table 2. HPCWPL Topics

Topic Speaker
Architecture Chair: Thomas Sterling

Deputy: Keith Underwood
Session Keynote: Past Predictions, the Present, Peter Kogge
and Future Trends
Multithreaded Kunle Olukotun
Reconfigurable Maya Gokhale
Cell Peter Hofstee
PIM Arun Rodrigues
Summary: What is the future of architecture? Thomas Sterling
Keynote Address: Robert Hecht-Nielsen
Neurocomputing
Applications Chair: Jeffrey Vetter

Deputy: Mike Heroux
Session Keynote: Productivity Metrics Bob Lucas
Graph-Based Informatics Bruce Hendrickson
Petra Object Model Mike Heroux
Parallel Discrete Event Kalyan Perumalla
Summary: How are Applications Evolving? Jeffrey Vetter
HPCS Language Panel Chair: Marc Snir

Deputy: Arun Rodrigues
Chapel Brad Chamberlain
Fortress David Chase
X-10 Christoph von Praun
Summary: Ideas for an Ideal Language Marc Snir
Programming Models Keynote: Bill Gropp
MPI: The Last Large Scale Success
Programming Models Chair: Bill Gropp

Deputy: Ron Brightwell
UPC Costin Iancu
Programming Model Building Blocks Mary Hall
Co-Array Fortran Bob Numrich
Locality-Aware High-Productivity Languages Hans Zima
ParalleX Thomas Sterling
Programming Environments/Debugging Greg Watson
Programming and Compiling for TiNyThreads Guang Gao
Summary: What is the future of programming models? Bill Gropp
Panel: What is a realistic vision of the future? Chair: Bob Lucas

Deputy: Richard Murphy
Panelists: Peter Kogge, Bill Gropp,
Jeffrey Vetter, Thomas Sterling

8

Contents

Executive Summary 5

Participants 7

Topics 8

List of Abbreviations 12

1 Introduction 15

2 Architecture 19

Memory . 19

State . 21

Future Architectures . 22

Multicore and Multithreaded . 22

Heterogeneous . 24

Accelerators and Reconfigurable Architectures . 24

Near Memory . 24

The Shared Memory Controversy . 26

The Transactional Memory Controversy . 26

Conclusions and Impact on Programming Models . 27

3 Applications 29

Architecture and Application Lifetime . 29

Emerging Applications . 30

9

Graph-Based Informatics . 30

Petra Object Model . 32

Parallel Discrete Event Simulation . 33

Conclusions . 33

4 Programming Models 35

MPI . 35

Successful Languages . 36

Co-Array Fortran (CAF) . 36

UPC . 36

Key Lessons from PGAS Languages . 36

Emerging Models . 37

ParalleX . 37

Locality-Aware High-Productivity Languages . 38

TiNyThreads . 38

Tools . 39

Programming Environments/Debugging . 39

Building Blocks, Flexible Compilers, and Tunable Components 39

Productivity . 39

The HPCS Languages . 40

Conclusions . 41

5 Conclusions 43

10

List of Figures

2.1 The Impact of Latency and Bandwidth on Traditional Scientific Codes
(Cube3, an iterative solver) and Emerging Combinatorial Codes (DFS,
a Depth First Search from Graph Theory). Figure courtesy of Richard
Murphy, Sandia National Laboratories. 20

2.2 The growth of CPU state over time. The increase in relative memory
latency has led to an exponential growth in processor state. Figure
courtesy of Peter Kogge, University of Notre Dame. 22

2.3 Transistor density compared to packaging density. Figure courtesy of
Peter Kogge, University of Notre Dame. 23

2.4 The Instruction Mix and Percentage of Computation Time Required
for Execution. Figure courtesy of Arun Rodrigues, Sandia National
Laboratories . 25

3.1 The effects of shrinking machine lifetime and architectural diversifica-
tion. In comparison, the Sandia’s CTH application appeared on the
Cray-1 in the late 1970’s, and is still a core physics code used by the
DOE and DOD. Figure courtesy of Jeffrey Vetter, Oak Ridge National
Laboratory (see J.S. Vetter, B.R. de Supinski, J. May, L. Kissel, and
S. Vaidya, “Evaluating High Performance Computers,” Concurrency
and Computation: Practice and Experience, 17(10):1239-70, 2005.) 30

3.2 An Attributed Relational Graph Example. Figure courtesy of Tamara
Kolda, Sandia National Laboratories. 31

3.3 The typical flow of object construction in ePetra. Figure courtesy of
Mike Heroux, Sandia National Laboratories. 32

11

List of Tables

1 HPCWPL Participants . 7

2 HPCWPL Topics . 8

12

List of Abbreviations

ASC The Department of Energy’s Advanced Simulation and Computing Program

ASIC Application Specific Integrated Circuit

CAF Co-Array Fortran

CPU Central Processing Unit

CSRI Sandia’s Computer Science Research Institute

CTH A 3-d shock physics application developed at Sandia.

DARPA Defense Advanced Research Projects Agency

DFS Depth-First Search of a graph

DIMM Dual In-Line Memory Module

DOD Department of Defense

DOE Department of Energy

DRAM Dynamic Random Access Memory

HPC High Performance Computing

HPCS The DARPA High Productivity Computing Systems Program

HPF High Performance Fortran

ILP Instruction Level Parallelism

IPC Instructions Per Cycle

MPI the Message Passing Interface

MPP Massively Parallel Processor

MTA Multithreaded Architecture

NRE Non-Recurring Engineering

PDES Parallel Discrete Event Simulation

PGAS Partitioned Global Address Space

13

PIM Processing-In-Memory

PNM Processing-Near-Memory

SMP Simultaneous Multiprocessor

SPMD Single Program Multiple Data

UPC Unified Parallel C

14

Chapter 1

Introduction

Programming Language Research is vitally important to high performance computing
given current trends in architecture and applications. The MPI/MPP programming
model has proven highly successful given its tight coupling between architecture and
programming environment. Research in programming languages has the potential to
enable novel architectures, and vice versa. The Workshop on Programming Languages
for High Performance Computing explored these issues, driven by an emerging set of
applications that solve critical large-scale problems and are ill-suited to the existing
MPI/MPP model. This exploration was accomplished in three primary sessions:
emerging architectures, applications, and programming models.

The architecture session explored trends in silicon devices, power, and emerging ar-
chitectures. The general trend does not favor the MPP architecture. The commodity
processor on-node speed-up seen since the advent of Moore’s Law will come in the
form of an increase in the number of cores (requiring more parallelism) rather than an
increase in clock rate and memory bandwidth. Furthermore, given a large projected
increase in the number of cores, and a limited projected increase in the number of
pins available off chip, the memory bandwidth is unlikely to scale linearly with the
number of cores. Chapter 2 demonstrates that this will have a significant negative
impact on application performance. Furthermore, emerging heterogeneous architec-
tures (e.g., Cell, accelerators, etc.) make the partitioning of workloads particularly
challenging.

The architecture community identified three critical needs for future programming
languages (which were echoed identically by the application community):

1. Concurrency: The trend toward an increased number of (typically simpler)
cores requires additional concurrency. Although studies of SMPs imply that this
concurrency can be achieved via MPI, multicore machines differ from SMPs in
memory organization. Unlike a multicore architecture, an SMP allows a linear
scaling of memory bandwidth as the number of nodes increases. Additionally,
the available memory footprint of a multicore processor may be significantly
smaller than a traditional SMP (due to limitations on the number of DIMMs
that can be connected to a chip). As a result, parallelism below the level of
MPI may be more desirable. In the case of emerging architectures, additional

15

concurrency in the form of threads is often used as the primary mechanism for
tolerating memory latency. These threads most likely cannot be provided by
MPI.

2. Synchronization: As concurrency increases, additional synchronization is re-
quired. There are emerging models for specifying synchronization, particularly
Transactional Memory, that address the needs of commercial workloads. How-
ever, these models do not necessarily map well to high performance computing
applications. Similarly, some specialized architectures (such as the Cray MTA
and XMT) provide synchronization mechanisms but do so through a platform-
specific programming model.

3. Locality Representation: Memory hierarchies have become increasingly deep
and complex. Additionally, programmers (particularly those implementing emerg-
ing applications) have asserted the need for global address space languages to
facilitate ease of programming. Partitioned Global Address Space (PGAS) lan-
guages attempt to facilitate this style of programming, with varying support for
“remote memory requests” provided by the hardware. Proposed architectures
and accelerators that utilized radically different “local”/“remote” memory ac-
cess mechanisms make a unified mechanism to represent the locality of data
objects particularly challenging for programming language developers.

Application developers specified a similar set of challenges to those presented by the
architects. Part of this was driven by their use of novel architectures to solve problems
not well suited to commodity architectures. These applications are latency dominated
(because of the architectural problem of the memory wall), are difficult to partition,
access very sparse data structures, and typically exhibit fine-grained parallelism.

In the case of the graph-based informatics application, 4 MTA-2 processors provide
the equivalent 32k BlueGene/L nodes of performance. This indicates a significant
challenge in solving large-scale problems of this type.

The adoption of emerging programming models is also a challenge, and it is often tied
to the success of new architectures. From the Sandia perspective, three key trends
were identified:

i. Most existing DOE applications consist of very large, slowly evolving software
frameworks consisting of multiple programming languages. As a result, inter-
operability with existing programming models is required.

ii. The adoption of new programming models is application driven. Specifically,
problems that decompose well into MPI/MPP applications will most likely con-
tinue to be written using that model. Problems that cannot be easily solved
using that model, however, have the potential to rapidly adopt new program-
ming models. Using the MTA to solve graph-based informatics applications is
a good example of this phenomena.

16

iii. Application developers at Sandia are experts who are primarily focused on per-
formance and scalability. Because of the expense of machine time at the high
end, the model tends not to be focused on rapid prototyping or increasing the
productivity of relatively inexperienced programmers (which is critically impor-
tant to other development groups).

As a result, the wide-scale adoption of a new programming model at Sandia would
tend to require two competing properties: first, interoperability with old code; and
second, enabling new problems to be solved. The measure of success for the adoption
of these new models is performance (e.g., an improvement in runtime, an improvement
in scalability, or the ability to solve previously unsolvable problems). Consequently,
this report recommends an evolutionary approach to programming languages research
that, like MPI, operates well with other programming models and is capable of being
integrated into existing code bases. Additionally, this report recommends that pro-
gramming languages features be tied both to application demands and to emerging
architectural features. In particular, features addressing the memory wall problem
are critical: providing additional latency toleration, object locality descriptions, and
increasing concurrency are key examples.

Historically, language efforts that are tightly focused and address specific problems
have been the most successful approach1. For example, the C programming language
is a necessary precursor to developing the Unix operating system, and became gen-
erally useful after being developed for that specific task. This report identifies two
emerging problem classes of large-scale importance that fit this description: graph-
based informatics and parallel discrete event simulation. Despite being significantly
different, they share similar programming model requirements. The identification of
additional problems that are difficult or impossible to solve today is strongly recom-
mended.

The remainder of this report is organized as follows: Chapter 2 describes the current
state of and future trends in computer architecture. Chapter 3 addresses emerging
applications and their relationship to the MPI programming model. Chapter 4 dis-
cusses successful and emerging programming models. Finally, Chapter 5 presents the
conclusions.

1In fact, one is hard pressed to identify a single successful programming language effort that did
not begin life meeting the needs of a specific problem or class of problems.

17

18

Chapter 2

Architecture

This chapter discusses the current state of computer architecture, and is meant to
serve as the foundation for further discussions of applications and programming lan-
guages. Fundamentally, the success of a parallel architecture should be thought of in
terms of Little’s Law, which comes from economics:

Throughput =
Concurrency

Latency
(2.1)

Architecturally, the trend in both concurrency and latency is unfavorable. Instruc-
tion Level Parallelism (ILP) is the dominant form of concurrency in conventional
processors. Current systems provide very little ILP, and the problem of memory la-
tency only makes that worse. MPI has provided significant concurrency, but trends
towards multicore architectures make dramatically increasing the amount of concur-
rency provided by MPI challenging. Finally, that leaves thread level concurrency,
which would allow architectures to provide more latency toleration, but has yet to be
widely adopted.

The remainder of this chapter is organized as follows: First, the memory system is
examined, as well as the tremendous increase in internal processor state. A subset
of interesting architectures is analyzed. We then examine the shared memory and
transactional memory controversies. Finally, this chapter concludes with a discussion
of the impact on programming models.

Memory

Memory has been the biggest problem in computer architecture for over six decades,
and continues to plague high performance computing. It is typically the biggest ex-
pense in a supercomputer, and determines the performance of the applications run on
that computer. While bandwidth is the typical metric used to evaluate performance,
it is memory latency that dominates.

Figure 2.1 depicts the relative impact of memory latency and bandwidth on an
Opteron-like processor running at 2 GHz on both traditional HPC applications (in

19

Cube3

DFS

Figure 2.1. The Impact of Latency and Bandwidth on
Traditional Scientific Codes (Cube3, an iterative solver) and
Emerging Combinatorial Codes (DFS, a Depth First Search
from Graph Theory). Figure courtesy of Richard Murphy,
Sandia National Laboratories.

20

this case, a linear solver), and codes of emerging importance (in this case, a depth first
search on a large, sparse graph). The results demonstrate that halving the available
bandwidth leads to only a 5-7% degradation in performance. By contrast, reducing
the memory latency by half leads to a 50-100% increase in performance. When com-
bined with the problem of the memory wall (which dictates that memory latency is
always increasing relative to processor cycle time), the simple fact is that memory
latency is the dominant performance factor for HPC. This is particularly true given
that the primary research focus throughout the 1990’s was interconnection networks,
while memory has been largely unchanged over the past 5 decades.

State

To cope with the memory wall, all of modern processor architecture work is domi-
nated by mechanisms for avoiding or tolerating latency. As examples, caches attempt
to avoid memory latency by bringing frequently used items physically “closer” to pro-
cessing resources; out of order execution provides a small measure of latency toleration
by using instruction level parallelism to continue to make progress while high latency
operations are being performed (though we continue to see significantly less than one
instruction retired in every clock cycle, see Figure 2.1); and finally, the emerging use
of threads in architectures to allow the programmer to specify additional concurrency
to be used during high latency memory operations is a clear indication of the latency
problem. The consequence of these efforts, however, is a tremendous growth in the
state that the CPU must manage.

Figure 2.2 shows the growth in CPU state over time. This increase in state complexity
is primarily due to architectural mechanisms for coping with long memory latencies.
Those mechanisms are typically ineffective. As an example, the effectiveness of out
of order execution is measured by the number of instructions per cycle (IPC) the
processor retires. Figure 2.1 shows IPCs of less than 0.5 for two key applications,
which is typical for HPC workloads. Considering that such a processor could have an
IPC as high as 4, such results demonstrate extreme inefficiency. In fact, a processor
with an IPC of 1.0 clocked at half the clock rate would execute both programs faster
at significant power savings.

The cost of this additional state is simple: chip area (and, consequently manufacturing
yield), design complexity (which increases NRE and verification costs), and power
(which tends to outstrip the cost of the hardware for a supercomputer deployment).

21

Figure 2.2. The growth of CPU state over time. The
increase in relative memory latency has led to an exponential
growth in processor state. Figure courtesy of Peter Kogge,
University of Notre Dame.

Future Architectures

The key problems in computer architecture (as enumerated above) are fundamen-
tally unchanged. There is a disconnect between the problem of memory and the
interconnection-network focus of high performance systems architecture research that
has dominated since the early 1990’s. This section examines four areas of specific ar-
chitectural innovation: multicore and multithreaded, heterogeneous, accelerators and
reconfigurable, and near memory.

Multicore and Multithreaded

Though there is an undeniable trend towards multicore architectures, from the pro-
grammer’s standpoint these machines appear to be either an “SMP on a chip” or
a multithreaded machine. In either case, the programming model is fundamentally
threaded. Currently there exists very little capability to program a machine with
dramatically more threads of execution than existing supercomputers. Furthermore,
for traditional scientific applications, significantly increasing the number of processing

22

Figure 2.3. Transistor density compared to packaging den-
sity. Figure courtesy of Peter Kogge, University of Notre
Dame.

nodes is a challenge. For example, scaling the number of compute nodes in an MPI
program by an order of magnitude can cause difficulty in mesh generation and create
load imbalance.

Architecturally, the performance of multicore processors is limited by the following
characteristics:

• Pins off the chip (to memory) become the strangle point;

• the memory wall problem is intensified since there are fewer available memory
banks per core than unicore architectures; and,

• conventional architectures currently lack the efficient inter-processor coordina-
tion needed when the number of threads in the system is increased.

The trend towards an increased number of simpler cores exacerbates all of these
problems. Furthermore, it is currently very difficult for the programmer to extract
thread-level concurrency. The successful mechanisms that exist to do so exist in the
proprietary compilers for specialized architectures (such as the Cray XMT) rather
than in compilers or programming languages that support a wide range of architec-
tures of this class.

Figure 2.3 depicts the mismatch between the growth in logic density and the avail-
ability of off-chip communication pins. This mismatch means that while fabrication
processes will support significantly more cores on a chip the channels available to
off-chip memory will become increasingly limited.

23

Heterogeneous

Heterogeneous architectures offer the programmer multiple models of computation.
As an example, IBM’s Cell processor supports a gather-compute-scatter memory
model and both a vector and scalar compute model. The memory model looks quite
familiar to the HPC community as it is similar to the overlays used in vector ma-
chines. Despite over three decades of research the overlay programming problem has
never been automated. Additionally choosing the right model of computation in a
heterogeneous architecture is challenging. In short, these architectures have no clear
path to an efficient or portable programming model.

Accelerators and Reconfigurable Architectures

Accelerators and reconfigurable architectures offer significant opportunity to acceler-
ate portions of a computation, but often ignore Amdahl’s law. Amdahl’s law dictates
that if a fraction of a program (P) can be accelerated by a speedup (S) then the
overall speedup is given by:

1

(1− P) + P
S

(2.2)

Consequently, given an infinite speedup on 50% of the program, the overall gain
dictated by equation 2.2 is only 2×.

Accelerators suffer from an even more subtle Amdahl problem: typically they are
second-class citizens in any system architecture. If the accelerator requires trans-
fers from main memory to the accelerator’s memory between steps of the computa-
tion, then the denominator in equation 2.2 increases. Thus if an additional transfer
overhead (expressed as a fraction of execution time) of T is required to access the
accelerator, the speedup is dictated by:

1

(1− P) + T + P
S

(2.3)

Given the same problem as above with an additional 5% transfer time to access the
accelerator the speedup is 1.82. That is, the performance improvement suffers a 9%
penalty for the transfer.

Near Memory

One solution to the problem of memory latency is to move the processing resources
physically closer to the memory. There are two clear paths to doing so: Processing-

24

Figure 2.4. The Instruction Mix and Percentage of Com-
putation Time Required for Execution. Figure courtesy of
Arun Rodrigues, Sandia National Laboratories

In-Memory (PIM) combines dense DRAM and logic on the same die (or two dies
stacked in three dimensions); and Processing-Near-Memory (PNM) more tightly cou-
ples processing resources to the memory without merging fabrication processes.

Figure 2.4 shows the instruction mix and percentage of the program execution time
for each class of instructions for a mix of real-world supercomputer applications at
Sandia. Loads dominate both: they are 32% of all instructions and consume 52% of
the program’s execution time. Opportunities for PIM and PNM have increased and
become more economical:

• PIM fabrication is now offered commercially by most ASIC foundries by adding
DRAM to conventional logic fabrication processes;

• conventional processors are moving from bus-based memory interfaces to more
serial interfaces requiring high-speed signaling (and consequently fabricated sep-
arately from the DRAM), which permits adding PNM resources close to DRAM
at very low cost (since the logic ASIC is already required); and,

• the fabrication of “stacked” systems with multiple modules is becoming increas-
ingly common in the commodity space (e.g., cell phones often stack processors
and memory to improve packaging).

25

Additionally the dense local memory available to a PIM architecture can alleviate the
bandwidth constrictions conventional multicore architectures experience. It has been
demonstrated that a PIM-based multicore architecture can outperform a conventional
multicore machine when executing scientific and emerging HPC codes by 2×-40× or
more given the same chip area and a PIM clocked at half the rate of the conventional
machine because the PIM has to perform fewer accesses to external DRAM.

The Shared Memory Controversy

The strongest point of contention for future architectures was the debate over shared
memory. The argument can be summarized as follows:

• Pro: shared memory eases programming and enables solving problems that are
not easily solved on distributed memory machines. Further, the preeminence of
distributed memory architectures has affected the choice of problems to solve.

• Con: distributed memory programming forces the programmer to partition the
data appropriately and improves performance. As a result, distributed memory
architectures scale better.

Both sides agree that conventional cache coherent shared memory architectures are
not sufficiently scalable due to the overhead associated with coherency. Furthermore,
several emerging applications of critical importance are very difficult to program in the
MPI model (see Chapter 3). The Partitioned Global Address Space (PGAS) model
of computation appears promising, but lacks sufficient architecture and programming
language support at this time.

The Transactional Memory Controversy

Given that multicore architectures are inevitable, some form of parallel programming
is required in the main stream market. The dominant choice of technology today
is Transactional Memory which permits the programmer to bundle atomic opera-
tions together easily and allows the compiler and runtime system to schedule those
operations independently while still maintaining the dataflow requirement of the ap-
plication. There are three significant problems with using transactional memory for
high performance computing:

• Transactional Memory is an extension of database semantics, which are not ap-
propriate for traditional scientific computing applications (though some emerg-
ing applications may benefit from this model). HPC is focused on concurrent

26

deterministic programming whereas transactions are inherently nondeterminis-
tic.

• Transactional Memory suffers from an Amdahl’s law problem in that only inde-
pendent atomic sections can be scheduled concurrently. The HPC community
requires significantly more concurrency at all levels (thread level, MPI level,
etc.) in order to build peta-scale systems and beyond.

• Transactional Memory is typically implemented inside the cache coherency pro-
tocol of an SMP, and coherency is generally considered too expensive and dif-
ficult to scale for scientific computing. The only other alternative today is
software which is slower still. It is possible that a lighter-weight version could
be developed in the future.

Consequently, there is a need to identify programming methods to increase concur-
rency that match the requirements of HPC applications. More significantly, there
is a disconnect between the programming models pursued by industry for multicore
architectures (which target commercial applications) and those useful to HPC. This
is a particularly daunting problem because architectural support for programming
models outside of the main stream is limited at best.

Conclusions and Impact on Programming Models

Programming models require improvement in three main areas relating to architec-
ture:

1. Concurrency: Architectures require a greater specification of parallelism to
increase throughput and provide for tolerating long memory latencies. This is
particularly true for multicore architectures. Additionally, applications require
additional concurrency to scale to larger problem sizes. MPI remains the pri-
mary, manually identified mechanism for specifying concurrency, but may be
insufficient in and of itself in future machine generations.

2. Synchronization: Both architectures and applications require better mech-
anisms for synchronizing between concurrently running portions of the appli-
cation. Commercial workloads often consist of numerous independent tasks,
which is not true for high-end HPC applications.

3. Locality Representation: There currently exists no convenient way of rep-
resenting the relationship between algorithmic objects and data constructs. In
the MPI model, this is done explicitly by the programmer.

27

Each of these areas represents a fundamental architectural challenge for programmers.
Multicore architectures rely on increasing numbers of simple cores, requiring more
parallelism from the application. This increased parallelism requires synchronization
for coordination. And, finally, data partitioning will become increasingly difficult for
MPP machines, particularly if multiple levels of parallelism (MPI and threads, for
example) are required to exploit future architectures.

Architecturally, the challenges remain the same: the technology drives power, relia-
bility, and chip pin counts; application workloads are changing in nature (see Chapter
3); and these technology and application drivers make programmability increasingly
difficult.

28

Chapter 3

Applications

The focus of the applications session at HPCWPL was on those applications that
are currently not well served by the MPP computing model. Over the course of
discussion, it became clear that while software tends to be the largest and longest liv-
ing investment (the ASC program spends approximately 10% on hardware that lasts
three to five years, while applications live for decades), the choice of applications that
are developed is partially driven by how “natural” it is to map a given algorithm on
to a machine. For example, the three dimensional simulations of physics on a com-
puter required by the national labs map very well onto MPP machines programmed
with the MPI programming model. They tend to be partitionable in space, map very
well to the mesh or toroidal networks that are popular on these platforms, and de-
compose well into large messages. Many emerging applications are significantly more
irregular, sparse, and difficult to partition. Because they are so difficult to express
in existing programming models and architectures, these applications are best served
by new ones, which should be the focus of new programming languages research. By
contrast, most of the current application base is well served by existing programming
models (e.g., MPI) which map very efficiently onto the architectures that run them
(e.g., MPPs).

The remainder of this chapter is organized as follows: First, the relative lifetimes of
architectures and application code bases is examined. Next, there is a discussion of the
applications presented at the workshop focusing on the difficulties these applications
pose to existing programming models and architectures. Finally, the conclusions are
examined.

Architecture and Application Lifetime

Figure 3.1 depicts the lifetime of various HPC architectures over time. Architectures
have diversified and now exhibit shorter life spans. On the other hand, software tends
to exhibit a very long life span (decades), and often outlives the architecture for which
it was written (e.g., codes that began life on vector machines have been ported to
MPPs).

29

Figure 3.1. The effects of shrinking machine lifetime
and architectural diversification. In comparison, the San-
dia’s CTH application appeared on the Cray-1 in the late
1970’s, and is still a core physics code used by the DOE and
DOD. Figure courtesy of Jeffrey Vetter, Oak Ridge National
Laboratory (see J.S. Vetter, B.R. de Supinski, J. May, L.
Kissel, and S. Vaidya, “Evaluating High Performance Com-
puters,” Concurrency and Computation: Practice and Expe-
rience, 17(10):1239-70, 2005.)

In each generation, HPC tends to abandon the applications that are not well suited
to that generation’s architecture.

Emerging Applications

The workshop examined three applications detailed in this section: graph-based in-
formatics, the Petra object model for data movement in Trilinos, and parallel discrete
event simulation. This section details each application’s unique properties.

Graph-Based Informatics

The analysis of large graphs is a potential HPC application with little in common
with traditional scientific applications. Problems can be huge, exhibit no exploitable
global structure, and may be impossible to partition due to the lack of locality. The
body of knowledge acquired from scientific computing is of limited utility.

30

Graph-Based Informatics

Figure 3.2. An Attributed Relational Graph Example.
Figure courtesy of Tamara Kolda, Sandia National Labora-
tories.

Critically, these problems typically cannot be efficiently executed at scale on MPP
machines and benefit from alternative programming models. Because of the fine-
grained access requirements, MPI implementations tend to be very inefficient.

Figure 3.2 shows an example of such a graph with vertices that represent people and
locations, and edges that represent relationships. When traversing this graph, paral-
lelism is often very fine-grained, and the runtime is dominated by memory latency.
There are four desirable architectural features:

1. Low Latency/High Bandwidth Memory Accesses

2. Latency Toleration

3. Light weight, fine-grained synchronization mechanisms

4. Global address space

It has been demonstrated that this problem benefits significantly from unconven-
tional multithreaded architectures. Four processors of the Cray MTA-2 have been
demonstrated to equal approximately 32 thousand processors of BlueGene/L.

This has been listed as one of the “13 Dwarfs” that represent key problems for mul-
ticore architecture1.

1See The Landscape of Parallel Computing Research: A View from Berkeley, Technical Report
Number UCB/EECS-2006-183

31

Figure 3.3. The typical flow of object construction in ePe-
tra. Figure courtesy of Mike Heroux, Sandia National Labo-
ratories.

Petra Object Model

Many scientific and engineering applications (particularly those at Sandia) spend
30− 80% of their runtime in solvers, which makes solver libraries a particularly good
point of optimization. Early vector architectures were designed to perform sparse
solves efficiently. Commodity processors have significant room for improvement in
executing them. Solvers are also subject to significantly degraded performance with
increased memory latency (see Section 2).

While these problems have relatively efficient MPI implementations and represent the
computational core of many HPC applications for MPPs, there is significant room for
improvement.

Figure 3.3 provides an example of the construction of objects in the ePetra portion
of Trilinos, which represents basic linear algebra objects. The key abstraction is the
construction of a Comm object that abstracts the communication mechanism from
the programmer. This serves to abstract the behavior and attributes of the parallel
machine from the user. Currently, serial, MPI, and shared memory Comm objects
are supported, although new architectures can be added easily. Comm objects can
also be arranged hierarchically. This abstraction allows for significant portability and
extensibility of the library.

ePetra also supports Map objects that allow for the redistribution of the data under-
lying a given class. This permits the library to choose more efficient loop executions,
and allows for data redistribution.

The organization of modern high performance computing libraries (like Trilinos)
serves to enable the adoption of novel architectures, particularly when those libraries

32

represent such a significant portion of the runtime. Because of their size, however,
they may represent a challenge to the adoption of entirely new programming languages
if those languages do not support the existing code base. This tends to support the
conclusion that incremental extensions to existing programming languages may best
support today’s significant investment in software.

Parallel Discrete Event Simulation

Parallel Discrete Event Simulation (PDES) is emerging as a key mechanism for sim-
ulating organizations (command and control, processes, etc.) and social dynamics
(operations planning, foreign policy, etc.), in addition to its more traditional uses in
network, traffic, and sensor simulation. Problem sizes continue to increase, and it
represents an excellent example of a non-traditional HPC application that requires
capability computing. For example, the Red Storm machine recently enabled the sim-
ulation of a terrorism problem at significantly enhanced resolution. Results from these
simulations tend to impact emergency planning, resource consumption estimates, and
policy formulation. Consequently, high-resolution results are required quickly.

PDES shares many of the same properties of the graph-based applications discussed
in Section 3. Very little floating point is executed, the communication pattern is
irregular, and fine-grained synchronization is required.

Conclusions

These emerging irregular applications represent a shift away from traditional HPC
applications that are well suited to the MPI programming model and MPP archi-
tecture. They require fine-grained data access and synchronization that MPI simply
does not support. More significantly, MPP architectures are ill suited to support that
type of synchronization and data access. Additionally, SMP-based architectures may
support the fine-grained data access, but they do not support the required synchro-
nization. Finally, only non-commodity architectures, such as the Cray MTA, support
the fine-grained parallelism exhibited by many classes of emerging applications (e.g.,
graph based informatics and PDES).

33

34

Chapter 4

Programming Models

Enabling hard problems to be solved is the key challenge for new programming mod-
els, and was the central theme explored in the programming models session of the
workshop. Additionally, it is the defining characteristic of successful programming
languages endeavors. Examples include MPI, which enabled the large-scale simulation
of physics, C, which enabled the creation portable operating systems.

The remainder of this chapter is organized as follows: First, MPI and other successful
language projects are addressed. Then, emerging language proposals and language
related tools are examined. Given this background, the concept of productivity and
the HPCS languages are discussed. And, finally the conclusions are presented.

MPI

MPI has been by far the most successful programming model endeavor over the last
two decades. Its success can be attributed to six critical properties. MPI is:

• Portability: Aside from running on a large range of machines, MPI enables
performance enhancing features without requiring hardware support for them.
For example, nonblocking message passing permits “zero-copy” data transfers,
but does not require them.

• High Performance: MPI’s distributed memory model forces the programmer
to perform a data decomposition. In high-end physics codes, this has resulted
in higher performance than other models.

• Simplicity and Symmetry: Although MPI is feature rich, the majority of
MPI programs use a relatively small number of primitives that map well to
basic MPP architectural features.

• Modularity: MPI is both designed to support libraries and implemented as a
library, which helps to enable modern software architectures built from compo-
nents and frameworks.

35

• Composability: MPI’s structure allows it to be part of a diverse set of pro-
gramming environments. It is essentially “language neutral”.

• Completeness: MPI avoids simplifications that limit the programming model.
The user does not have to change programming models to add features.

As a highly successful parallel programming model, MPI enabled the solution to
extremely difficult problems (particularly physics problems at the DOE). There is an
emerging class of applications that require alternative programming models to solve
large scale problems (see Chapter 3).

Successful Languages

The workshop examined Co-Array Fortran and UPC as examples of successful work
in programming languages.

Co-Array Fortran (CAF)

Co-Arrays first appeared in 1991, and will be part of the Fortran 2008 standard,
which demonstrates the fundamentally long path required for the adoption of pro-
gramming language constructs. CAF deliberately restricts the compiler to optimizing
local memory latency accesses, and requires the programmer to focus on remote data
management (very much like MPI). As a Partitioned Global Address Space (PGAS)
language, CAF fundamentally provides the programmer with a single address space,
but avoids the requirement of cache coherency which limits the scalability of SMP-
based architectures. This model is currently not well supported in hardware due to
the coherency requirements of modern processors.

UPC

The UPC model provides a PGAS memory model that enables Single Program Mul-
tiple Data (SPMD) parallelism, forces the programmer to consider the implications
of local vs. global data layout, and provides the simplicity of a global address space.

Key Lessons from PGAS Languages

There are three points related to PGAS languages that were consistently brought up
at the workshop:

36

• Synchronization is very difficult to specify, often coarse grained, typically left
to the programmer, and not generally supported in hardware.

• Data decomposition has to be done manually.

• Work distribution has to be done manually.

There is significant debate as to whether or not these properties are “good” things.
One side contends that because of their manual nature, the programmer is forced to
optimize the application and choose high-performance trade-offs; the other is con-
cerned that this impacts programmer productivity.

Emerging Models

This section explores three programming language and execution model proposals
that address emerging hardware and programmer productivity requirements: Par-
alleX, Locality-Aware High-Productivity Languages, and TiNyThreads.

ParalleX

The basis for the ParalleX execution model is the fundamental observation that exist-
ing technology trends require changes in computer architecture. Those changes can
only be enabled by changes in the execution model. Because ParalleX is an execu-
tion model, it does not specify policies for implementation, technology, structure, or
mechanism (and is thus not a programming model, architecture, or virtual machine).
ParalleX provides:

• Split Phase Transactions: that provide independent actions on exchanged
values.

• Localities: representing contiguous physical domains that provide “local” and
“remote” latency information to the programmer.

• A Global Name Space: with no coherence between localities (very much like
PGAS languages). Communication between localities occurs via Parcels, with
primitives for synchronization and threads.

• Parcels: are a form of message-driven computation that specify a function to
be performed on a named data element. They provide the ability to move work
between objects in different localities.

37

• Multi-Grain Multithreading: to specify the relationship between operations
and provide latency tolerance.

• Percolation: as a latency hiding and scheduling technique that moves data and
tasks to local temporary storage for execution. This is particularly important
for accelerators, functional elements, and other precious resources.

• Fine-Grain Event Driven Synchronization: in a number of forms, in-
cluding message-driven remote thread instantiation, lightweight objects, and
in-memory synchronization.

Locality-Aware High-Productivity Languages

The High Performance Fortran (HPF) project provides critical lessons for Locality-
Aware High Productivity Languages. HPF-1 worked very well for small problems,
but presented difficulties in expressivity and performance for large-scale applications.
Many of these difficulties arose from the challenges in providing a mature compiler
infrastructure, inconsistency in the implementation, and the complexity of the rela-
tionship between the compiler and the target platform. HPF-2 addressed some of
these problems, but only after significant work.

HPF was the first attempt at a high-productivity language for HPC, and provided
the key concept of locality awareness. However, the acceptance of new languages
depends on many criteria, including:

• functionality and the performance of target code;

• a mature compiler and runtime infrastructure;

• user familiarity;

• easy integration of legacy codes;

• an integrated development environment;

• flexibility to deal with new platforms;

• and both research and major vendor support.

TiNyThreads

Given a new generation of multicore architectures that significantly reduce the compu-
tation, managing on-chip parallelism and bandwidth, to tolerate off-chip bandwidth

38

and latency limitations is a significant challenge. The Cyclops architecture provides
a unique design point to consider in the space of multithreaded machines. It pro-
vides an efficient hardware multi-threading model with explicit memory regions and
in-memory atomic operations. This type of hardware enables research into static
dataflow architectures. Revisiting dataflow architectures and runtime systems is an
increasingly prevalent research technique given the characteristics of emerging ma-
chines.

Tools

This section examines programming environments and compiler building blocks.

Programming Environments/Debugging

One of the important gaps in existing parallel research tends to be programming
environments and debugging, which offer productivity enhancements for legacy and
emerging codes. Environments such as Eclipse allow for the simplification of complex
tool chains and presentation of a more logical workflow. Additionally, these tools can
offer higher-level correctness and consistency checking than the compiler.

Building Blocks, Flexible Compilers, and Tunable Compo-
nents

The emergence of heterogeneous architectures (such as accelerators, the Cell proces-
sor, etc.) pose a significant challenge to both programmers and compiler writers (see
Chapter 2). Future compiler infrastructure needs to be built from components that
are modular and easy to understand. This would enable bringing new platforms up
quickly and facilitate compiler research. No systematic, principled approach exists
today.

There are existing examples of compiler tuning beating library frameworks, but the
existing lack of modularity limits the adoption of these techniques.

Productivity

Fundamentally, two views of productivity were explored at the workshop: first, that
productivity enables programs to be formulated more quickly, or computing resources

39

to be used more easily, often by less skilled programmers; and second, that produc-
tivity enables expert programmers to achieve higher performance on a given system
quickly. The core of the debate is the role of computer scientists on a high-performance
computing team. Because Sandia hosted the workshop and “high-performance” tends
to mean very high-end supercomputers, the focus was intentionally high-end. Because
programming teams at Sandia typically consist of highly knowledgeable application
domain experts and computer scientists, and because of the expense of the machines
involved, the Sandia contingent tended to prefer the second definition of produc-
tivity over the first. This is a critical distinction between the DOE community of
supercomputer users and others.

The HPCS Languages

Each of the HPCS language vendors was asked to address the following questions:

What is the time-frame for generating large-scale applications (10’s to 100’s of thou-
sands of lines of code) on large machines with performance comparable to MPI?

Each of the vendors felt that this would depend entirely on each language’s adoption
rate. Funding had not been allocated in DARPA HPCS Phase III proposals to under-
take this effort, especially because of the shift post-2007 to a consortium effort. It is
also felt that the HPCS languages could significantly reduce the line-count of codes.

What features of your language are most suited to current and forthcoming scien-
tific computing applications on highly parallel systems? What about emerging HPC
applications (such as those discussed in Chapter 3)?

Each language claimed:

• Control of locality and distributed data structures

• Fine-grained threading and synchronization

• Enhanced data structures (e.g., Chapel’s sparse/associative/opaque domains)

If a standardization effort was started to create a single HPCS language, what critical
features of your language would be required? Do you think such an effort makes sense?

• A Partitioned Global Address Space (PGAS) model

• Shift from SPMD programming and execution models

• Automatic data distribution

40

• Control over locality for data and computation

• Type safety

• Generators to manage parallelism

• Structured parallelism

Each of the vendors thought that this effort was sensible.

Conclusions

Programming languages research needs to address problems not addressed by existing
programming models, particularly those that result from enabling new architectural
features. As the most successful model thus far, MPI provides a unique library-based
implementation that can be combined with numerous existing architectures and run-
time environments, and can augment legacy codes. If MPI codes are to become
“legacy”, an emerging language has to maintain the same capability: specifically,
drawing in and enhancing existing code bases. It will simultaneously have to address
the challenges of emerging applications that require significantly different program-
ming models.

41

42

Chapter 5

Conclusions

This report has examined the state of HPC programming languages in the context
of applications and architectures. The maturity of the MPP/MPI architecture and
programming model combination, and its inability to address the problem of critical
emerging applications means that there is significant opportunity to develop new
programming languages that address key application problems. This report strongly
recommends focusing language effort in that area, and identifies two important classes
of problems that can benefit from the same set of language features. It is further
recommended that additional difficult or impossible to solve problems be identified
for further study.

Focusing on emerging problems allows the successful HPC language effort to develop
a significant user base that can be expanded over time.

To foster the adoption of a new programming language outside its core user base,
an evolutionary approach is recommended. In this model, the “new” programming
language is a minimal set of useful extensions to an existing language, rather than
something entirely new. Aside from increased programmer familiarity, this approach
stresses inter-operation with existing programming environments and frameworks. It
also recognizes the existence of a multi-billion dollar investment in applications that
are unlikely to be rewritten from scratch. Finally, it leverages a large and rich set of
compiler infrastructure and optimizations developed over the past four decades. MPI
is an excellent example of this design philosophy.

Architecturally, there are two critical trends that impact the design of future pro-
gramming languages:

• First, memory is an increasing problem (both latency, which has been given
very little attention over the past 20 years, and bandwidth); and

• second, both conventional and emerging architectures require significantly more
concurrency to enable supercomputers to continue scaling.

The conventional trend only emphasizes both problems: the number of cores is in-
creasing (requiring additional concurrency), without providing the same increase in
total chip bandwidth (exacerbating the memory wall).

43

A new programming language should address both problems by providing increased
concurrency, and helping the programmer to manage increasingly deep memory hier-
archies (to more efficiently utilize the available bandwidth). The same requirements
exist for emerging architectures: multithreaded and latency tolerant architectures
require a larger number of threads to achieve high throughput, and suffer from the
same memory problem as any other machine. Heterogeneous architectures (such as
the Cell) have all the same properties with the addition that the computation must
be partitioned between very different functional units to provide better performance.

Finally, because the DOE model tends to be the development of large-scale software
frameworks that last significantly longer than the underlying architectures. Given this
long view and a set of very experienced application developers, emerging programming
languages are required to facilitate the large-scale solution of problems that cannot
be solved today, or an increase in scalability for existing codes that have likely made
at least one transition in the underlying architecture.

44

DISTRIBUTION:

1 Bill Camp, Intel, PO Box 5800, MS-1410, Albuquerque, NM 87185-
1318

1 Almadena Chtchelkanova, NSF, 4201 Wilson Boulevard, Arlington,
VA 22230

1 Bill Harrod, DARPA/IPTO, 3701 Fairfax Drive, Arlington, VA
22203-1714

1 Fred Johnson, DOE Office of Science, SC-21, Germantown Building,
1000 Independence Ave SW, Washington, DC 20585

1 Jose Munoz, NSF, 4201 Wilson Boulevard, Arlington, VA 22230

1 MS 1322 John Aidun, 1435

1 MS 9159 Heidi Ammerlahn, 8962

1 MS 1319 Jim Ang, 1420

1 MS 1319 Bob Benner, 1422

1 MS 0104 Thomas Bickel, 1200

1 MS 0376 Ted Blacker, 1421

1 MS 1320 Scott Collis, 1414

1 MS 1319 Doug Doerfler, 1422

1 MS 1322 Sudip Dosanjh, 1400

1 MS 9152 Jerry Friesen, 8963

1 MS 0139 Art Hale, 1900

1 MS 9159 Mike Hardwick, 8964

1 MS 9151 Howard Hirano, 8960

1 MS 0316 Scott Hutchinson, 1437

1 MS 9158 Curtis Janssen, 8961

1 MS 0801 Rob Leland, 4300

1 MS 1318 Scott Mitchell, 1411

1 MS 9151 Len Napolitano, 8900

45

1 MS 0321 Jennifer Nelson, 1430

1 MS 0807 John Noe, 4328

1 MS 1319 Carl E. Oliver, 1000

1 MS 1319 Neil Pundit, 1423

1 MS 0384 Art Ratzel, 1500

1 MS 1316 Danny Rintoul, 1409/1412

1 MS 0822 David Rogers, 1424

1 MS 1318 Suzanne Rountree, 1415

1 MS 1318 Andrew Salinger, 1416

1 MS 0806 Len Stans, 4336

1 MS 0370 Jim Strickland, 1433

1 MS 0378 Randy Summers, 1431

1 MS 1322 Jim Tomkins, 1420

1 MS 0370 Tim Trucano, 1411

1 MS 0831 Mike Vahle, 5500

1 MS 1318 David Womble, 1410

1 MS 0823 John Zepper, 4320

2 MS 9018 Central Technical Files, 8944

2 MS 0899 Technical Library, 4536

46

v1.27

