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Some Popular Myths 

•  Parallel Programming is Hard 
– Harder than what?   
– Have you tried to keep your laptop up? 

•  Shared-Memory will save the day 
– Correctness of programs? 
– Why have SMP OSes been so troublesome? 

•  New Programming Languages are Needed 
– Where will the applications come from? 
– Why is this true? (Is Java a new language or a 

dialect of C/C++?) 



Why are These Myths Popular? 

•  Myths are fun to repeat 
– That’s how they become myths 

•  Myths fill a need 
– To explain the unknown 
– Particularly capricious and painful events 

•  Myths reflect a view of reality 
 



Myth: Parallel Programming is 
Hard 

•  Reality: 
– Programming for performance is hard 
– Programming for correctness is hard 

•  Many parallel computers achieve a low 
fraction of peak performance 
–  Inference: Parallel programming is hard 

•  Why is programming for performance hard, 
and how does it relate to parallel 
computing? 
 



Choosing the Correct Metric 

•  Classically, numerical analysts have 
counted floating point operations 
– Flops used to be expensive 
– Goal for algorithms is O(n) work (defined as  

floating point operations) on O(n) data 
•  But this does not reflect actual computational effort 

•  True costs are now more often related to 
memory loads/stores 
– BLAS3 advantage over BLAS1,2 is n3 

operations with n2 load/stores 



Myth #1 

•  Parallel computers achieve a low fraction of 
peak performance 
 
 

•  Reality: True but not because of parallelism 



Sparse Matrix-Vector Product 

•  Common operation for optimal (in floating-
point operations) solution of linear systems 

•  Sample code: 
for row=0,n-1 
    m   = i[row+1] - i[row]; 
    sum = 0; 
    for k=0,m-1 
        sum += *a++ * x[*j++]; 
    y[i] = sum; 

•  Data structures are a[nnz], j[nnz], i[n], x[n], 
y[n] 



Simple Performance Analysis 

•  Memory motion: 
–  nnz (sizeof(double) + sizeof(int)) +  

n (2*sizeof(double) + sizeof(int))  
– Perfect cache (never load same data twice) 

•  Computation 
–  nnz multiply-add (MA) 

•  Roughly 12 bytes per MA 
•  Typical WS node can move 1-4 bytes/MA 

– Maximum performance is 8-33% of peak 



More Performance Analysis 

•  Instruction Counts: 
–  nnz (2*load-double + load-int + mult-add) + 

n (load-int + store-double)  
•  Roughly 4 instructions per MA 
•  Maximum performance is 25% of peak (33% if 

MA overlaps one load/store) 
•  Changing matrix data structure (e.g., exploit small 

block structure) allows reuse of data in register, 
eliminating some loads (x and j) 

•  Implementation improvements (tricks) cannot 
improve on these limits 



Realistic Measures of  Peak Performance 
Sparse Matrix Vector Product 

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120 
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Experimental Performance 
Sparse Matrix Vector Product 

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120 
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Parallel Scaling Results on ASCI Red 
ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices (about 11 million 

unknowns) on up to 3072 ASCI Red Nodes (each with dual Pentium Pro 333 MHz 
processors) 



FLASH Scaling Runs 

Bad Ethernet 
switch? 

Network topology? 

2nd SMP 



Myth #2 

•  Parallel computers are hard to program 
 

•  Reality: Relative to uni-processors, the 
difficulty is comparable 
– Even easier 



Sequential Performance—Time/iteration 
SP: IBM P2SC (“thin”), 120 MHz, cache: 128 KB data and 32 KB instr 
Origin: MIPS R10000, 250 MHz, cache 32 KB data/32KB instr/4MB L2 

Pentium: Intel Pentium II, 400 MHz, cache: 16KBdata/16KB instr/512 KB L2 
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Myth #3 

•  Shared memory architectures (hardware) 
will save the day (for software) 
 

•  Reality: A system with uniform memory 
access time might save the day, but the laws 
of physics make that unlikely 



Hardware Realities 

•  Performance is determined by memory 
performance  

•  Memory system design for performance 
makes system performance less predictable 

•  Fast memories possible, but 
– Expensive (€) 
– Large 
– Power hungry 

•  Programming models and algorithms we 
develop that don’t take these realities into 
account may be irrelevant 

(Well, it is a major contributor) 



Uniprocessor Memory 
Performance 

•  AlphaServer 8200 read latencies (3.33ns 
clock)  

LatencyMemory
Level ns cycles

Bandwidth
GB/sec

Cache 6.7 2 4.8
L2 Cache 20 6 4.8
L3 Cache 26 8 0.96
Main 253 76 1.2
DRAM 60 18 .03-.1

Note that a[i] = b[i] * c[i] requires  7.2 GB/
sec 



Parallel Processor Memory 
Performance 

•  Average read latency 
CPUs AlphaServer Origin2000
MHz 300 195

ns cycles ns cycles
1 176 53
2 190 57 313 61
4 220 66 405 79
8 299 117 528 103
16 641 125
32 710 138
64 796 155
128 903 176

… and worse (cluster and cluster-like scalable 
systems) 

More recent 
measurements: 
21264 (500MHz): 82 
cycles just to L2 
 
SGI O2000 
(300MHz) 101 
cycles to L2 



Massively Parallel Computing 
and Performance 

•  Poor per processor performance (relative to 
peak) is a common argument against 
massively parallel computing 
–  Just get better performance and massively 

parallel computing isn’t necessary 
•  The source of poor per processor 

performance is the difficulty of making 
effective use of the memory system.  This 
problem only gets worse in parallel systems 
– But complexity of problem argues that a 

common solution must be found 



Other Myths 

•  Compilers will solve the parallel programming 
problem 
–  Pro: no new algorithms needed 
–  Con: compilers still can’t handle dense matrix-matrix 

multiply 
•  SMPs and shared memory will make performance 

programming easier 
–  1998 Gordon Bell Prize winners were uniprocessors; 3 

of 4 winners in 1999 were uniprocessors 
–  MPI remains the most effective programming model for 

managing data placement, locality, and access (Eeek!) 
•  Multithreaded architectures will save the day 

–  Large latencies require enormous numbers of threads 
•  Denial is not a solution 



Hope for the Future 

•  New Algorithmic Directions 
– Match directions in memory heirarchies 

•  New Computing Systems 
– Bring back (affordable) memory bandwidth 

•  Then we can complain about latency 
– Exotic solutions 

•  Exotic + small benefit = dead 

•  Mixed Memory-Model Systems 
– Augment commodity nodes with smart memory 



Conclusions 

•  Parallel Programming is easy  
–  compared to uni-processor programming 

•  Algorithms need to be developed to reflect 
hardware trends 
– These are not new trends 

•  Programming models need to support 
performance-oriented applications 
– Particularly memory locality and access 

•  More radical (willing to fail) approaches are 
needed 


