
Myths in Parallel Programming
for Scientific Applications

William D. Gropp
www.mcs.anl.gov/~gropp

Mathematics and Computer Science
Argonne National Laboratory

Some Popular Myths

•  Parallel Programming is Hard
– Harder than what?
– Have you tried to keep your laptop up?

•  Shared-Memory will save the day
– Correctness of programs?
– Why have SMP OSes been so troublesome?

•  New Programming Languages are Needed
– Where will the applications come from?
– Why is this true? (Is Java a new language or a

dialect of C/C++?)

Why are These Myths Popular?

•  Myths are fun to repeat
– That’s how they become myths

•  Myths fill a need
– To explain the unknown
– Particularly capricious and painful events

•  Myths reflect a view of reality

Myth: Parallel Programming is
Hard

•  Reality:
– Programming for performance is hard
– Programming for correctness is hard

•  Many parallel computers achieve a low
fraction of peak performance
–  Inference: Parallel programming is hard

•  Why is programming for performance hard,
and how does it relate to parallel
computing?

Choosing the Correct Metric

•  Classically, numerical analysts have
counted floating point operations
– Flops used to be expensive
– Goal for algorithms is O(n) work (defined as

floating point operations) on O(n) data
•  But this does not reflect actual computational effort

•  True costs are now more often related to
memory loads/stores
– BLAS3 advantage over BLAS1,2 is n3

operations with n2 load/stores

Myth #1

•  Parallel computers achieve a low fraction of
peak performance

•  Reality: True but not because of parallelism

Sparse Matrix-Vector Product

•  Common operation for optimal (in floating-
point operations) solution of linear systems

•  Sample code:
for row=0,n-1
 m = i[row+1] - i[row];
 sum = 0;
 for k=0,m-1
 sum += *a++ * x[*j++];
 y[i] = sum;

•  Data structures are a[nnz], j[nnz], i[n], x[n],
y[n]

Simple Performance Analysis

•  Memory motion:
–  nnz (sizeof(double) + sizeof(int)) +

n (2*sizeof(double) + sizeof(int))
– Perfect cache (never load same data twice)

•  Computation
–  nnz multiply-add (MA)

•  Roughly 12 bytes per MA
•  Typical WS node can move 1-4 bytes/MA

– Maximum performance is 8-33% of peak

More Performance Analysis

•  Instruction Counts:
–  nnz (2*load-double + load-int + mult-add) +

n (load-int + store-double)
•  Roughly 4 instructions per MA
•  Maximum performance is 25% of peak (33% if

MA overlaps one load/store)
•  Changing matrix data structure (e.g., exploit small

block structure) allows reuse of data in register,
eliminating some loads (x and j)

•  Implementation improvements (tricks) cannot
improve on these limits

Realistic Measures of Peak Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0
100
200
300
400
500
600
700
800
900

SP Origin T3E Pentium Ultra II

Theoretical Peak
Oper. Issue Peak
Mem BW Peak
Observed

Experimental Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0

50

100

150

200

250

300

SP Origin T3E Pentium Ultra II

Oper. Issue Peak
Mem BW Peak
Observed

Parallel Scaling Results on ASCI Red
ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices (about 11 million

unknowns) on up to 3072 ASCI Red Nodes (each with dual Pentium Pro 333 MHz
processors)

FLASH Scaling Runs

Bad Ethernet
switch?

Network topology?

2nd SMP

Myth #2

•  Parallel computers are hard to program

•  Reality: Relative to uni-processors, the
difficulty is comparable
– Even easier

Sequential Performance—Time/iteration
SP: IBM P2SC (“thin”), 120 MHz, cache: 128 KB data and 32 KB instr
Origin: MIPS R10000, 250 MHz, cache 32 KB data/32KB instr/4MB L2

Pentium: Intel Pentium II, 400 MHz, cache: 16KBdata/16KB instr/512 KB L2

0
20
40
60
80

100
120
140
160
180

SP Origin Pentium

Base NOER
Interlacing NOER
Blocking NOER
Base
Interlacing
Blocking

Myth #3

•  Shared memory architectures (hardware)
will save the day (for software)

•  Reality: A system with uniform memory
access time might save the day, but the laws
of physics make that unlikely

Hardware Realities

•  Performance is determined by memory
performance

•  Memory system design for performance
makes system performance less predictable

•  Fast memories possible, but
– Expensive (€)
– Large
– Power hungry

•  Programming models and algorithms we
develop that don’t take these realities into
account may be irrelevant

(Well, it is a major contributor)

Uniprocessor Memory
Performance

•  AlphaServer 8200 read latencies (3.33ns
clock)

LatencyMemory
Level ns cycles

Bandwidth
GB/sec

Cache 6.7 2 4.8
L2 Cache 20 6 4.8
L3 Cache 26 8 0.96
Main 253 76 1.2
DRAM 60 18 .03-.1

Note that a[i] = b[i] * c[i] requires 7.2 GB/
sec

Parallel Processor Memory
Performance

•  Average read latency
CPUs AlphaServer Origin2000
MHz 300 195

ns cycles ns cycles
1 176 53
2 190 57 313 61
4 220 66 405 79
8 299 117 528 103
16 641 125
32 710 138
64 796 155
128 903 176

… and worse (cluster and cluster-like scalable
systems)

More recent
measurements:
21264 (500MHz): 82
cycles just to L2

SGI O2000
(300MHz) 101
cycles to L2

Massively Parallel Computing
and Performance

•  Poor per processor performance (relative to
peak) is a common argument against
massively parallel computing
–  Just get better performance and massively

parallel computing isn’t necessary
•  The source of poor per processor

performance is the difficulty of making
effective use of the memory system. This
problem only gets worse in parallel systems
– But complexity of problem argues that a

common solution must be found

Other Myths

•  Compilers will solve the parallel programming
problem
–  Pro: no new algorithms needed
–  Con: compilers still can’t handle dense matrix-matrix

multiply
•  SMPs and shared memory will make performance

programming easier
–  1998 Gordon Bell Prize winners were uniprocessors; 3

of 4 winners in 1999 were uniprocessors
–  MPI remains the most effective programming model for

managing data placement, locality, and access (Eeek!)
•  Multithreaded architectures will save the day

–  Large latencies require enormous numbers of threads
•  Denial is not a solution

Hope for the Future

•  New Algorithmic Directions
– Match directions in memory heirarchies

•  New Computing Systems
– Bring back (affordable) memory bandwidth

•  Then we can complain about latency
– Exotic solutions

•  Exotic + small benefit = dead

•  Mixed Memory-Model Systems
– Augment commodity nodes with smart memory

Conclusions

•  Parallel Programming is easy
–  compared to uni-processor programming

•  Algorithms need to be developed to reflect
hardware trends
– These are not new trends

•  Programming models need to support
performance-oriented applications
– Particularly memory locality and access

•  More radical (willing to fail) approaches are
needed

