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But First: 
MPI Fact and Fiction 

•  MPI requires buffering 
♦  False.  MPI was specifically designed to avoid buffering 
♦  A few implementations need work (sometime in the OS) 

•  MPI requires n2 buffers for n processes 
♦  False, but most implementations need work 

•  MPI defined in the 80’s 
♦  MPI Forum’s first meeting was in January 1993 

•  MPI was derived from PVM 
♦  MPI emerged from a broad consensus of message-passing 

vendors, researchers, and users. 
•  MPI thread safety 

♦  MPI (the standard) was designed to allow thread-safe 
implementations but not require them (performance 
tradeoffs) 

♦  MPI_Init_thread (MPI-2) allows an application to request and 
discover the level of thread safety (4 levels defined) 



Outline 

•  The Good 
♦  Successful use of incremental parallelism 
♦  (Relatively) easy realization of better algorithms 

•  The Not so Good 
♦  Limitations in OpenMP impacted code 
♦  OpenMP version 2 fixes some (Thanks!) 

•  The Bad 
♦  Lack of effective support for modularity and libraries 
♦  Incorrect programs (that run) are too easy to write 

•  The Ugly 
♦  Implementation Issues 
♦  Mixed C and Fortran applications 



What We’ve Done 
•  Fun3d-PETSc (1999 Gordon Bell winner) 
•  Tetrahedral vertex-centered unstructured grid 

code developed by W. K. Anderson (NASA LaRC) 
for steady compressible and incompressible Euler 
and Navier-Stokes equations (with one-equation 
turbulence modeling) 

•  Used in airplane, automobile, and submarine 
applications for analysis and design 

•  Standard discretization is 2nd-order Roe for 
convection and Galerkin for diffusion 

•  Original code used Newton-Krylov solver with 
global point-block-ILU preconditioning  

•  Parallel version uses Newton-Krylov-Schwarz, with 
domain-induced point-block ILU preconditioning 



Fun3d Performance 

Used mixed 
MPI/SMP model 

Performance 
close to  
“achievable peak” 
based on memory 
bandwidth 



Primary PDE Solution 
Kernels 

•  Vertex-based loops 
♦  State vector and auxiliary vector updates 

•  Edge-based “stencil op” loops  
♦  Residual evaluation 
♦  Approximate Jacobian evaluation 
♦  Jacobian-vector product (often replaced with matrix-

free form, involving residual evaluation) 
•  Sparse, narrow-band recurrences 

♦  Approximate factorization and back substitution 
•  Vector inner products and norms 

♦  Orthogonalization/conjugation 
♦  Convergence progress and stability checks 

•  Preconditioned linear (and nonlinear) 
solution 

loop 

task 



Multi-level Numerical Methods 

•  Domain Decomposition Preconditioner 
♦  Efficient method independent of parallelism 
♦  Multilevel method is a good match to 

multilevel memory hierarchy without 
sacrificing convergence rate 

Leads to an efficient algorithm for solving nonlinear 
PDEs: 



Time-Implicit Newton-Krylov-
Schwarz Method 

for (l = 0; l < n_time; l++) {    # n_time ~ 50 
 select time step 
 for (k = 0; k < n_Newton; k++) {   # n_Newton ~ 1 
    compute nonlinear residual and Jacobian    

          for (j = 0; j < n_Krylov; j++) {   # n_Krylov ~ 50 
  forall (i = 0; i < n_Precon ; i++) { 

                   solve subdomain problems concurrently 
               } // End of loop over subdomains  
               perform Jacobian-vector product 
               enforce Krylov basis conditions 
               update optimal coefficients  
               check linear convergence 
         } // End of linear solver 
        perform DAXPY update  
        check nonlinear convergence 
    } // End of nonlinear loop 
} // End of time-step loop Leaf 

Recursion 
This is implemented in a parallel library… 



PETSc code User code 

Application 
Initialization 

Function 
Evaluation 

Jacobian 
Evaluation 

Post- 
Processing 

PC KSP 
PETSc 

Main Routine 

Linear Solvers (SLES) 

Nonlinear Solvers (SNES) 

Timestepping Solvers (TS) 

Separation of Concerns:  
User Code/PETSc Library 



Background of PETSc 
•  Developed by Gropp, Smith, McInnes & Balay (ANL) to 

support research, prototyping, and production parallel 
solutions of operator equations in message-passing 
environments 

•  Distributed data structures as fundamental objects—index 
sets, vectors/gridfunctions, and matrices/arrays 

•  Iterative linear and nonlinear solvers, combinable modularly 
and recursively, and extensibly 

•  Portable, and callable from C, C++, Fortran 
•  Uniform high-level API, with multi-layered entry 
•  Aggressively optimized: copies minimized, communication 

aggregated and overlapped, caches and registers reused, 
memory chunks preallocated, inspector-executor model for 
repetitive tasks (e.g., gather/scatter) 

•  Supports a wide variety of sparse matrix formats, including 
user-defined.   

•  Extensible with user-defined preconditioners, iterative 
methods, etc. 



Parallel Fun3d 

•  Uses PETSc for parallelism 
♦  Almost no MPI in Fun3d itself 
♦  MPI used only for initialization from data files 

•  OpenMP 
♦  Used only for flux evaluation 

•  Where did programmer time go? 
♦  Uniprocessor performance tuning 
♦  Primarily locality management 

•  (Parallel programming is easy compared to 
performance programming) 

•  Why was OpenMP only used for the flux 
evaluation? 



Competing for the Available 
Memory Bandwidth 

•  The processors on a node compete for 
the available memory bandwidth 

•  The computational phases that are 
memory-bandwidth limited will not 
scale 
♦  They may even run slower because of the 

extra synchronizations  
    



Stream Benchmark on ASCI Red 
MB/s for the Triad Operation 

Vector 
Size 1 Thread 2 Threads 

104 666 1296 

5×104 137 238 

105 140 144 

106 145 141 

107 157 152 



Redundant Storage and 
Work 

•  To manage memory updates efficiently, 
we might need to create extra private 
work arrays 

•  These work arrays need to be copied 
into a shared array at the end of the 
parallel region 
♦  A memory-bandwidth limited sequential 

phase 
•  The vector reduction in OpenMP v.2 

may help 



Flux Evaluation in PETSc-
FUN3D 



Apply the “Owner Computes” 
Rule for OpenMP 

•  Create the disjoint working sets to 
eliminate the redundant private arrays 
(e.g. by coloring the edges and nodes) 

•  Alternatively, use OpenMP over 
subdomains 
♦  each MPI process will repartition its domain 
♦  each thread will work on its assigned 

subdomain 
•  Brings in the complexity of 

programming as the user is taking care 
of the memory updates 



MPI/OpenMP in PETSc-
FUN3D 

•  Only in the flux evaluation phase as it is not 
memory-bandwidth bound 

•  Gives the best execution time as the number 
of nodes  increases because the subdomains 
are chunkier as compared to pure MPI case  

 
Nodes 

MPI/OpenMP MPI 
1 Thr 2 Thr 1 Proc 2 Proc 

256 483s 261s 456s 258s 
2560 76s 39s 72s 45s 
3072 66s 33s 62s 40s 



For the Fun3d Application: 

• The 1-thread/process case shows 
loop overhead costs in OpenMP 
implementation 

• OpenMP allows the easy 
implementation of a better 
algorithm 

• Vector reduction should improve 
the OpenMP advantage 



The Good 

• Effective Incremental Parallelism 
♦  Important contributor to ASCI Red 

results (not exactly OpenMP, but 
same philosophy) 

• Good SMP and SMP-cluster match 
♦ Larger domain decomposition blocks 
♦ Encourages more dynamic code 



The Not so Good 

•  Performance 
♦  In apples-to-apples comparison with MPI  
♦  Data placement important 
♦  Cache blocking etc. mismatch with OpenMP 

loop scheduling 
•  Restrictions on atomic update/reduce 

♦  No vector reduce (p 29) (but see OpenMP 
2.0) 

♦  Complexity for user comes from exceptions 
and limitations 



The Bad 

•  Program correctness 
♦  It is too easy to write incorrect programs 

•  Software Modularity 
♦  At best 2-level modularity 
♦  Many modern algorithms built out of 

components; how will OpenMP support 
them? 

♦  E.g., each component uses limited 
parallelism to fit problem into local caches; 
application uses task parallelism to perform 
intelligent (not exhaustive parameter-space 
search) design optimization. 



Program Correctness 

•  It is much too easy to write incorrect programs 
•  Updates to variables 

♦  Should be atomic unless specifically requested (see p 21) 
♦  Principle: user omission of a directive shouldn’t create 

incorrect code 
♦  Current model is like Fortran implicit typing—convenient if 

you never make a mistake 
•  Volatile? 

♦  Even better, shared non-volatile (read-only shared) 
•  Consistency model 

♦  What is the model?   
•  Not sequential consistency (see atomic, flush) 

•  Example: Using flags instead of locks 
♦  Requires FLUSH (maybe not so bad, but the 

documentation is not sufficient for users to understand the 
need for this operation) 



Software Modularity 

•  Libraries must either 
♦  Use OpenMP at “leaves” (e.g., the loop-level), or 
♦  Take complete control (user program has no OpenMP parallelism 

when library is called). 
♦  But some libraries call other library routines … 

•  E.g., should BLAS use OpenMP?  LAPACK? What if user uses OpenMP 
for task parallelism for a routine that calls an LAPACK routine? 

•  Using OpenMP at loop-level incurs startup costs 
♦  Some vendors suggest 

•  Program Main 
!omp parallel 
… 
!omp end parallel 
stop 
end 

•  OpenMP language bindings poorly chosen for mixed-language 
programming 
♦  I.e., programs that use libraries … 



Language Bindings for Mixed 
Language Programming 

•  Libraries used by Fortran may be 
written in C (and vice versa) 
♦  OpenMP naming convention can make this 

(nearly) impossible 
•  C names should always be 

distinguishable from Fortran names 
♦  Unless bindings are identical 
♦  Using mixed case for C (as in MPI) is an 

easy way to do this 
•  Consider (from SGI) 

♦  f77 –noappend –c –mp s1.f 
♦  cc –mp –o s2 s2.c s1.o 



Simple Mixed-Language 
Program 

•  subroutine setnthreads(req) 
integer req 
call omp_set_num_threads(req) 
end 

•  #include <stdio.h> 
#include <omp.h> 
int main(int argc, char *argv[] ) 
{ 
    int n_c, n_f, req=4; 
    setnthreads(&req); 
#pragma omp parallel 
{ 
    n_f = omp_get_num_threads(); 
} 
    omp_set_num_threads( req ); 
#pragma omp parallel 
{ 
    n_c = omp_get_num_threads(); 
} 
    printf( “n_c=%d n_f=%d\n”, n_c, n_f ); 
} 

What is printed out? 

n_c=4 n_f=8 

8 is the default 
maximum number of 
threads 



Performance 

•  Data distribution matters for performance 
♦  There are no UMA machines 

•  (cache, vector registers, even if all main memory is uniformly 
far away) 

•  C mallocs (all shared; scalability?) 
♦  Task parallel applications; data is primarily private 
♦  Ok for SMP platforms, but what about DSM? 

•  No way to get the compiler to compute good dynamic 
blocking (default chunk = 1) 
♦  OpenMP directives tell the compiler to do something 

specific 
♦  Does not match user model 

•  E.g., -O often includes “unroll by a good amount” 
•  Does not mean that user-control is not valuable, just that 

some decisions are system dependent 



The Ugly 
 (E.g. Implementation Problems) 

•  David Bailey’s rule #8 (roughly) 
♦  Base the operation count on the parallel 

implementation, not the best sequential 
implementation 

•  Early tests with Fun3D showed base 
OpenMP case (1 thread/process) took 
longer than reference MPI case. 

•  Consider the performance of the  jacobi.f 
example from www.openmp.org : 



Scaling of an OpenMP 
Example 
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Speedup
Real Speedup



Data Placement 

•  Performance often depends on 
managing memory motion 

•  First touch is inadequate 
♦  Requires code just for OpenMP version 
♦  Conflicts with incremental parallelism  

•  Requires parallelization of initialization  
♦  Conflicts with libraries that may share data 

•  Dependent on page/cache line size 
♦  Architecture-dependent information 
♦  The compiler (often) has this information: 

let OpenMP use it 



Conclusions 

•  OpenMP provides good support for incremental 
parallelism; integrates well with other tools 

•  Needs attention to 
♦  Modularity 

•  Good support for single-level and two-level codes 
•  Thread groups or something else needed for libraries 

♦  Software engineering 
•  Incorrect programs are too easy to write 
•  Mixed-language programming needs to be fixed 

♦  Performance 
•  Data motion expensive 

•  Backward-compatible improvements can be 
made   


