
A User’s View of OpenMP:
The Good, The Bad, and The Ugly

William D. Gropp
Mathematics and Computer

Science Division
Argonne National Laboratory
http://www.mcs.anl.gov/~gropp

Collaborators

•  Dinesh K. Kaushik
MCS Division, Argonne National Laboratory &
CS Department, Old Dominion University

•  David E. Keyes
Math. & Stat. Department, Old Dominion
University & ISCR, Lawrence Livermore
National Laboratory

•  Barry F. Smith
MCS Division, Argonne National Laboratory

But First:
MPI Fact and Fiction

•  MPI requires buffering
♦  False. MPI was specifically designed to avoid buffering
♦  A few implementations need work (sometime in the OS)

•  MPI requires n2 buffers for n processes
♦  False, but most implementations need work

•  MPI defined in the 80’s
♦  MPI Forum’s first meeting was in January 1993

•  MPI was derived from PVM
♦  MPI emerged from a broad consensus of message-passing

vendors, researchers, and users.
•  MPI thread safety

♦  MPI (the standard) was designed to allow thread-safe
implementations but not require them (performance
tradeoffs)

♦  MPI_Init_thread (MPI-2) allows an application to request and
discover the level of thread safety (4 levels defined)

Outline

•  The Good
♦  Successful use of incremental parallelism
♦  (Relatively) easy realization of better algorithms

•  The Not so Good
♦  Limitations in OpenMP impacted code
♦  OpenMP version 2 fixes some (Thanks!)

•  The Bad
♦  Lack of effective support for modularity and libraries
♦  Incorrect programs (that run) are too easy to write

•  The Ugly
♦  Implementation Issues
♦  Mixed C and Fortran applications

What We’ve Done
•  Fun3d-PETSc (1999 Gordon Bell winner)
•  Tetrahedral vertex-centered unstructured grid

code developed by W. K. Anderson (NASA LaRC)
for steady compressible and incompressible Euler
and Navier-Stokes equations (with one-equation
turbulence modeling)

•  Used in airplane, automobile, and submarine
applications for analysis and design

•  Standard discretization is 2nd-order Roe for
convection and Galerkin for diffusion

•  Original code used Newton-Krylov solver with
global point-block-ILU preconditioning

•  Parallel version uses Newton-Krylov-Schwarz, with
domain-induced point-block ILU preconditioning

Fun3d Performance

Used mixed
MPI/SMP model

Performance
close to
“achievable peak”
based on memory
bandwidth

Primary PDE Solution
Kernels

•  Vertex-based loops
♦  State vector and auxiliary vector updates

•  Edge-based “stencil op” loops
♦  Residual evaluation
♦  Approximate Jacobian evaluation
♦  Jacobian-vector product (often replaced with matrix-

free form, involving residual evaluation)
•  Sparse, narrow-band recurrences

♦  Approximate factorization and back substitution
•  Vector inner products and norms

♦  Orthogonalization/conjugation
♦  Convergence progress and stability checks

•  Preconditioned linear (and nonlinear)
solution

loop

task

Multi-level Numerical Methods

•  Domain Decomposition Preconditioner
♦  Efficient method independent of parallelism
♦  Multilevel method is a good match to

multilevel memory hierarchy without
sacrificing convergence rate

Leads to an efficient algorithm for solving nonlinear
PDEs:

Time-Implicit Newton-Krylov-
Schwarz Method

for (l = 0; l < n_time; l++) { # n_time ~ 50
 select time step
 for (k = 0; k < n_Newton; k++) { # n_Newton ~ 1
 compute nonlinear residual and Jacobian

 for (j = 0; j < n_Krylov; j++) { # n_Krylov ~ 50
 forall (i = 0; i < n_Precon ; i++) {

 solve subdomain problems concurrently
 } // End of loop over subdomains
 perform Jacobian-vector product
 enforce Krylov basis conditions
 update optimal coefficients
 check linear convergence
 } // End of linear solver
 perform DAXPY update
 check nonlinear convergence
 } // End of nonlinear loop
} // End of time-step loop Leaf

Recursion
This is implemented in a parallel library…

PETSc code User code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Separation of Concerns:
User Code/PETSc Library

Background of PETSc
•  Developed by Gropp, Smith, McInnes & Balay (ANL) to

support research, prototyping, and production parallel
solutions of operator equations in message-passing
environments

•  Distributed data structures as fundamental objects—index
sets, vectors/gridfunctions, and matrices/arrays

•  Iterative linear and nonlinear solvers, combinable modularly
and recursively, and extensibly

•  Portable, and callable from C, C++, Fortran
•  Uniform high-level API, with multi-layered entry
•  Aggressively optimized: copies minimized, communication

aggregated and overlapped, caches and registers reused,
memory chunks preallocated, inspector-executor model for
repetitive tasks (e.g., gather/scatter)

•  Supports a wide variety of sparse matrix formats, including
user-defined.

•  Extensible with user-defined preconditioners, iterative
methods, etc.

Parallel Fun3d

•  Uses PETSc for parallelism
♦  Almost no MPI in Fun3d itself
♦  MPI used only for initialization from data files

•  OpenMP
♦  Used only for flux evaluation

•  Where did programmer time go?
♦  Uniprocessor performance tuning
♦  Primarily locality management

•  (Parallel programming is easy compared to
performance programming)

•  Why was OpenMP only used for the flux
evaluation?

Competing for the Available
Memory Bandwidth

•  The processors on a node compete for
the available memory bandwidth

•  The computational phases that are
memory-bandwidth limited will not
scale
♦  They may even run slower because of the

extra synchronizations

Stream Benchmark on ASCI Red
MB/s for the Triad Operation

Vector
Size 1 Thread 2 Threads

104 666 1296

5×104 137 238

105 140 144

106 145 141

107 157 152

Redundant Storage and
Work

•  To manage memory updates efficiently,
we might need to create extra private
work arrays

•  These work arrays need to be copied
into a shared array at the end of the
parallel region
♦  A memory-bandwidth limited sequential

phase
•  The vector reduction in OpenMP v.2

may help

Flux Evaluation in PETSc-
FUN3D

Apply the “Owner Computes”
Rule for OpenMP

•  Create the disjoint working sets to
eliminate the redundant private arrays
(e.g. by coloring the edges and nodes)

•  Alternatively, use OpenMP over
subdomains
♦  each MPI process will repartition its domain
♦  each thread will work on its assigned

subdomain
•  Brings in the complexity of

programming as the user is taking care
of the memory updates

MPI/OpenMP in PETSc-
FUN3D

•  Only in the flux evaluation phase as it is not
memory-bandwidth bound

•  Gives the best execution time as the number
of nodes increases because the subdomains
are chunkier as compared to pure MPI case

Nodes

MPI/OpenMP MPI
1 Thr 2 Thr 1 Proc 2 Proc

256 483s 261s 456s 258s
2560 76s 39s 72s 45s
3072 66s 33s 62s 40s

For the Fun3d Application:

• The 1-thread/process case shows
loop overhead costs in OpenMP
implementation

• OpenMP allows the easy
implementation of a better
algorithm

• Vector reduction should improve
the OpenMP advantage

The Good

• Effective Incremental Parallelism
♦  Important contributor to ASCI Red

results (not exactly OpenMP, but
same philosophy)

• Good SMP and SMP-cluster match
♦ Larger domain decomposition blocks
♦ Encourages more dynamic code

The Not so Good

•  Performance
♦  In apples-to-apples comparison with MPI
♦  Data placement important
♦  Cache blocking etc. mismatch with OpenMP

loop scheduling
•  Restrictions on atomic update/reduce

♦  No vector reduce (p 29) (but see OpenMP
2.0)

♦  Complexity for user comes from exceptions
and limitations

The Bad

•  Program correctness
♦  It is too easy to write incorrect programs

•  Software Modularity
♦  At best 2-level modularity
♦  Many modern algorithms built out of

components; how will OpenMP support
them?

♦  E.g., each component uses limited
parallelism to fit problem into local caches;
application uses task parallelism to perform
intelligent (not exhaustive parameter-space
search) design optimization.

Program Correctness

•  It is much too easy to write incorrect programs
•  Updates to variables

♦  Should be atomic unless specifically requested (see p 21)
♦  Principle: user omission of a directive shouldn’t create

incorrect code
♦  Current model is like Fortran implicit typing—convenient if

you never make a mistake
•  Volatile?

♦  Even better, shared non-volatile (read-only shared)
•  Consistency model

♦  What is the model?
•  Not sequential consistency (see atomic, flush)

•  Example: Using flags instead of locks
♦  Requires FLUSH (maybe not so bad, but the

documentation is not sufficient for users to understand the
need for this operation)

Software Modularity

•  Libraries must either
♦  Use OpenMP at “leaves” (e.g., the loop-level), or
♦  Take complete control (user program has no OpenMP parallelism

when library is called).
♦  But some libraries call other library routines …

•  E.g., should BLAS use OpenMP? LAPACK? What if user uses OpenMP
for task parallelism for a routine that calls an LAPACK routine?

•  Using OpenMP at loop-level incurs startup costs
♦  Some vendors suggest

•  Program Main
!omp parallel
…
!omp end parallel
stop
end

•  OpenMP language bindings poorly chosen for mixed-language
programming
♦  I.e., programs that use libraries …

Language Bindings for Mixed
Language Programming

•  Libraries used by Fortran may be
written in C (and vice versa)
♦  OpenMP naming convention can make this

(nearly) impossible
•  C names should always be

distinguishable from Fortran names
♦  Unless bindings are identical
♦  Using mixed case for C (as in MPI) is an

easy way to do this
•  Consider (from SGI)

♦  f77 –noappend –c –mp s1.f
♦  cc –mp –o s2 s2.c s1.o

Simple Mixed-Language
Program

•  subroutine setnthreads(req)
integer req
call omp_set_num_threads(req)
end

•  #include <stdio.h>
#include <omp.h>
int main(int argc, char *argv[])
{
 int n_c, n_f, req=4;
 setnthreads(&req);
#pragma omp parallel
{
 n_f = omp_get_num_threads();
}
 omp_set_num_threads(req);
#pragma omp parallel
{
 n_c = omp_get_num_threads();
}
 printf(“n_c=%d n_f=%d\n”, n_c, n_f);
}

What is printed out?

n_c=4 n_f=8

8 is the default
maximum number of
threads

Performance

•  Data distribution matters for performance
♦  There are no UMA machines

•  (cache, vector registers, even if all main memory is uniformly
far away)

•  C mallocs (all shared; scalability?)
♦  Task parallel applications; data is primarily private
♦  Ok for SMP platforms, but what about DSM?

•  No way to get the compiler to compute good dynamic
blocking (default chunk = 1)
♦  OpenMP directives tell the compiler to do something

specific
♦  Does not match user model

•  E.g., -O often includes “unroll by a good amount”
•  Does not mean that user-control is not valuable, just that

some decisions are system dependent

The Ugly
 (E.g. Implementation Problems)

•  David Bailey’s rule #8 (roughly)
♦  Base the operation count on the parallel

implementation, not the best sequential
implementation

•  Early tests with Fun3D showed base
OpenMP case (1 thread/process) took
longer than reference MPI case.

•  Consider the performance of the jacobi.f
example from www.openmp.org :

Scaling of an OpenMP
Example

0
1
2
3
4
5
6
7
8

1 2 4 8

Speedup
Real Speedup

Data Placement

•  Performance often depends on
managing memory motion

•  First touch is inadequate
♦  Requires code just for OpenMP version
♦  Conflicts with incremental parallelism

•  Requires parallelization of initialization
♦  Conflicts with libraries that may share data

•  Dependent on page/cache line size
♦  Architecture-dependent information
♦  The compiler (often) has this information:

let OpenMP use it

Conclusions

•  OpenMP provides good support for incremental
parallelism; integrates well with other tools

•  Needs attention to
♦  Modularity

•  Good support for single-level and two-level codes
•  Thread groups or something else needed for libraries

♦  Software engineering
•  Incorrect programs are too easy to write
•  Mixed-language programming needs to be fixed

♦  Performance
•  Data motion expensive

•  Backward-compatible improvements can be
made

