
PETSc
http://www.mcs.anl.gov/petsc

Satish Balay,
Kris Buschelman, Bill Gropp,
Dinesh Kaushik, Lois McInnes,

Barry Smith

University of Chicago Department of Energy

Computation and Communication Kernels!
MPI, MPI-IO, BLAS, LAPACK!

Profiling Interface!

PETSc PDE Application Codes!

Object-Oriented!
Matrices, Vectors, Indices!

Grid!
Management!

Linear Solvers!
Preconditioners + Krylov Methods!

Nonlinear Solvers,!
Unconstrained Minimization!

ODE Integrators! Visualization!

Interface

PDE Application Codes

University of Chicago Department of Energy

Compressed
Sparse Row

(AIJ)

Blocked Compressed
Sparse Row

(BAIJ)

Block
Diagonal
(BDIAG)

Dense Other

Indices Block Indices Stride Other
Index Sets

Vectors

Line Search Trust Region

Newton-based Methods
Other

Nonlinear Solvers

Additive
Schwartz

Block
Jacobi Jacobi ILU ICC LU

(Sequential only) Others
Preconditioners

Euler Backward
Euler

Pseudo Time
Stepping Other

Time Steppers

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Other
Krylov Subspace Methods

Matrices

PETSc Numerical
Components

Distributed Arrays

Matrix-free Structured Meshes
Unstructured Meshes

University of Chicago Department of Energy PETSc code User code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Flow of Control for PDE Solution

KSP

PETSc
Linear Solvers (SLES)

PETSc code User code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

Flow of Control for PDE Solution

Other Tools

SAMRAI Overture

Nonlinear Solvers (SNES)

Main Routine

SPAI ILUDTP

PC

PVODE

Timestepping Solvers (TS)

University of Chicago Department of Energy

Ease of Integration With Existing
Programs in Fortran, C, C++

• Library with conventional
procedural interface

• Can use user-structures,
preconditioners, matrix-vector
multiplication routines

• Used as solver in Whitfield, Fun3D
code (legacy Fortran apps)

University of Chicago Department of Energy

PETSc Philosophy
•  Writing hand-parallelized application codes

from scratch is extremely difficult and time
consuming.

•  Scalable parallelizing compilers for real
application codes are very far in the future.

•  We can ease the development of parallel
application codes by developing general-
purpose, parallel numerical PDE libraries.

•  Caveats
♦  Developing parallel, non-trivial PDE solvers that

deliver high performance is still difficult, and requires
months of concentrated effort.

♦  PETSc is a toolkit that can reduce the development
time, but it is not a black-box PDE solver nor a silver
bullet.

University of Chicago Department of Energy

Performance

• Optimized for multicomponent, not
scalar problems

• Provides tools for measuring and
improving performance

• A PETSc application won a Gordon
Bell prize in 1999, achieving >220
GF on an unstructured mesh
application

University of Chicago Department of Energy

Fixed-size Parallel Scaling Results for
Unstructured Mesh CFD Application

University of Chicago Department of Energy

Scalability and Parallelism

• Scalable to 1000’s of processors
• Typical use on dozens to hundreds
• Single processor support

♦ MPI not required
♦ Develop on your workstation (even

Windows Laptop!)
♦ Run on a local cluster
♦ Run on an MPP at a national lab

University of Chicago Department of Energy

Documentation and
Example Programs

• Extensive man pages
• Petsc examples by concept

University of Chicago Department of Energy

Sample Linear Application:
Exterior Helmholtz Problem

Imaginary
Real

Solution Components

Collaborators: H. M. Atassi, D. E. Keyes,
 L. C. McInnes, R. Susan-Resiga

0lim

0

2/1

22

=⎟
⎠

⎞
⎜
⎝

⎛ +
∂

∂

=−∇−

∞→
iku

r
ur

uku

r

University of Chicago Department of Energy

Sample Nonlinear Application:
Driven Cavity Problem

Solution Components

velocity: u velocity: v

temperature: T vorticity: z

Application code author: D. E. Keyes

•  Velocity-vorticity
formulation

•  Flow driven by lid
and/or bouyancy

•  Logically regular
grid, parallelized
with DAs

•  Finite difference
discretization

•  source code:
petsc/src/snes/examples/tutorials/ex8.c!

University of Chicago Department of Energy

Caveats
•  Developing parallel, non-trivial PDE

solvers that deliver high performance is
still difficult, and requires months (or
even years) of concentrated effort.

•  PETSc is a toolkit that can ease these
difficulties and reduce the development
time, but it is not a black-box PDE
solver nor a silver bullet.

•  Users are invited to interact directly
with us regarding correctness or
performance issues by writing to
petsc-maint@mcs.anl.gov.

University of Chicago Department of Energy

Using Petsc With Other Packages

•  PVODE – ODE integrator
♦  A. Hindmarsh et al. - http://www.llnl.gov/CASC/PVODE!

•  ILUDTP – drop tolerance ILU
♦  Y. Saad - http://www.cs.umn.edu/~saad!

•  ParMETIS – parallel partitioner
♦  G. Karypis - http://www.cs.umn.edu/~karypis!

•  Overture – composite mesh PDE package
♦  D. Brown, W. Henshaw, and D. Quinlan - http://www.llnl.gov/CASC/Overture!

•  SAMRAI – AMR package
♦  S. Kohn, X. Garaiza, R. Hornung, and S. Smith - http://www.llnl.gov/CASC/SAMRAI!

•  SPAI – sparse approximate inverse preconditioner
♦  S. Bernhard and M. Grote - http://www.sam.math.ethz.ch/~grote/spai!

•  Matlab
♦  http://www.mathworks.com!

•  TAO – optimization software
♦  S. Benson, L.C. McInnes, and J. Moré - http://www.mcs.anl.gov/tao!

University of Chicago Department of Energy

• Backup slides

University of Chicago Department of Energy

A Freely Available and
Supported Research Code

•  Available via http://www.mcs.anl.gov/petsc
•  Usable in C, C++, and Fortran77/90

(with minor limitations in Fortran 77/90
due to their syntax)

•  Users manual
•  Hyperlinked manual pages for all

routines
•  Many tutorial-style examples
•  Support via email: petsc-maint@mcs.anl.gov

University of Chicago Department of Energy

True Portability

•  Tightly coupled systems
♦  Cray T3D/T3E
♦  SGI/Origin
♦  IBM SP
♦  Convex Exemplar

•  Loosely coupled systems, e.g., networks of
workstations
♦  Sun OS, Solaris
♦  IBM AIX
♦  DEC Alpha
♦  HP
♦  Linux

♦  Freebsd
♦  Windows 98/2000
♦  Mac OS X
♦  BeOS

University of Chicago Department of Energy

Using PETSc

•  2 Lifecycle example:
•  First: new code

♦  Express problem
•  Get discretization from elsewhere
•  Use PETSc TS/SNES/SLES to solve as appropriate
•  Use DA, VecScatter tools for parallelism (Distributed Memory

parallelism)
•  Use PETSc profiling/logging to improve efficiency
•  Use PETSc algorithm-independent formulation to explore

alternatives
•  Second: Updating Legacy Code

♦  Find TS/SNES/SLES step
•  (look for outer, not inner)
•  Replace with appropriate PETSc call
•  Use PETSc tools to match legacy data structures with PETSc

8 May need changes for performance

University of Chicago Department of Energy PETSc code User code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Solve
F(u) = 0

Nonlinear PDE Solution

University of Chicago Department of Energy PETSc code User code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP

PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Time-Dependent PDE
Solution

Solve
 U t = F(U,Ux,Uxx)

University of Chicago Department of Energy

Driven Cavity Model

•  Velocity-vorticity
formulation, with flow
driven by lid and/or
bouyancy

•  Finite difference
discretization with 4
DoF per mesh point

Example code: petsc/src/snes/examples/tutorials/ex8.c
Solution Components

velocity: u velocity: v

temperature: T vorticity: z

[u,v,z,T]

University of Chicago Department of Energy PETSc code User code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Solve
F(u) = 0

Driven Cavity Solution
Approach

University of Chicago Department of Energy

Communication and Physical
Discretization

Communication
Data Structure

Creation
Ghost Point

Data Structures
Ghost Point

Updates

Local
Numerical

Computation
Geometric

Data

DA
AO DACreate() DAGlobalToLocal()

Loops over
I,J,K
indices

stencil
[implicit]

VecScatter
AO VecScatterCreate() VecScatter() Loops over

entities

elements
edges

vertices
unstructured meshes

structured meshes 1

2

University of Chicago Department of Energy

Component Interactions
for Numerical PDEs

Grids

Steering

Optimization

PDE
Discretization

Algebraic
Solvers

Visualization

Derivative
Computation

PETSc
emphasis

University of Chicago Department of Energy

The PETSc Programming
Model

•  Goals
♦  Portable, runs everywhere
♦  Performance
♦  Scalable parallelism

•  Approach
♦  Distributed memory, “shared-nothing”

•  Requires only a compiler (single node or processor)
•  Access to data on remote machines through MPI

♦  Can still exploit “compiler discovered” parallelism on
each node (e.g., OpenMP)

♦  Hide within parallel objects the details of the
communication

♦  User orchestrates communication at a higher
abstract level than message passing

University of Chicago Department of Energy

Extensibility Issues

•  Most PETSc objects are designed to
allow one to “drop in” a new
implementation with a new set of data
structures (similar to implementing a
new class in C++).

•  Heavily commented example codes
include
♦ Krylov methods: petsc/src/sles/ksp/impls/cg!
♦ preconditioners: petsc/src/sles/pc/impls/jacobi!

University of Chicago Department of Energy

Performance Issues

•  Flexible design to allow experimentation.
•  Do certain optimizations after analyzing

performance.
•  Use –log_summary as a tool, but always use

API, tuned for high performance.
•  Modular design enables multiple

implementations of the same component
(AIJ,BAIJ etc..)

•  Machine specific optimizations possible (using
fortran kernels, for loops etc..)

•  Create once and reuse – Scatters,
factorizations etc..

•  Pay attention to data layout/cache issues.

University of Chicago Department of Energy

Other Issues

•  Object header, creation, composition, dynamic
methods etc.

•  Extensive and consistent error handling.
•  Profiling interface – application information,

performance.
•  Fortran interface/Fortran 90 support.
•  Viewers – to debug/visualize PETSc objects.
•  Interoperability with BlockSolve, PVode,

Overture.
•  Alice memory snooper(AMS), Toolkit for

Advanced Optimization(TAO).

