
Computer Algorithms and
Architectures

William D. Gropp
Mathematics and Computer Science

www.mcs.anl.gov/~gropp

University of Chicago Department of Energy

Algorithms

• What is an algorithm?

A set of instructions to perform a task

• How do we evaluate an algorithm?

Correctness

Accuracy

• Not an absolute

Efficiency

• Relative to current and future machines

• How do we measure efficiency?

Often by counting floating point operations

Compare to “peak performance”

University of Chicago Department of Energy

Real and Idealized
Computer Architectures

• Any algorithm assumes an idealized
architecture

Common choice:

• Floating point work costs time

• Data movement is free

Real systems:

• Floating point is free (fully overlapped with other
operations)

• Data movement costs time…a lot of time

• Classical complexity analysis for numerical
algorithms is no longer correct (more
precisely, no longer relevant)

Known since at least BLAS2 and BLAS3

University of Chicago Department of Energy

CPU and Memory Performance

1

10

100

1000

Aug-76 Aug-80 Aug-84 Aug-88 Aug-92 Aug-96 Aug-00

Date of Introduction

C
lo

c
k
 R

a
te

 (
n

s
)

Supercomputer (Cray, NEC) RISC (HP, MIPS) CISC (Intel) Memory

DRAM

Performance

Floating

point

relevant

Floating

point

irrelevant

University of Chicago Department of Energy

Trends in Computer
Architecture I

• Latency to memory will continue to
grow relative to CPU speed

Latency hiding techniques require
finding increasing amounts of
independent work: Little’s law implies

• Number of concurrent memory
references = Latency * rate

• For 1 reference per cycle, this is already
100–1000 concurrent references

University of Chicago Department of Energy

Trends in Computer
Architecture II

• Clock speeds will continue to
increase

The rate of clock rate increase has
increased recently

Light travels 3 cm (in a vacuum) in
one cycle of a 10 GHz clock

• CPU chips won’t be causally connected
within a single clock cycle, i.e., a signal
will not cross the chip in a single clock
cycle

• Processors will be parallel!

University of Chicago Department of Energy

Trends in Computer
Architecture III

• Power dissipation problems will force more
changes

Current trends imply chips with energy densities
greater than a nuclear reactor

Already a problem: In 2003, an issue of consumer
reports looks at the likelihood of getting a serious
burn from
your laptop!

Will force
new ways
to get
performance,
such as
extensive
parallelism

University of Chicago Department of Energy

Itanium Power Dissipation

• Power is not
uniformly
distributed
across chip

• Peak power
densities
growing even
faster

University of Chicago Department of Energy

Consequences

• Gap between memory and
processor performance will
continue to grow

• Data motion will dominate the cost
of many (most) calculations

• The key is to find a computational
cost abstraction that is as simple
as possible but no simpler

University of Chicago Department of Energy

Architecture Invariants

• Performance is determined by memory
performance

• Memory system design for performance
makes system performance less
predictable

• Fast memories possible, but
Expensive ($)

Large (meters3)

Power hungry (Watts)

• Algorithms that don’t take these
realities into account may be irrelevant

University of Chicago Department of Energy

Node Performance

• Current laptops now have a peak speed
(based on clock rate) of over 2 Gflops
(20 Cray1s!)

• Observed (sustained) performance is
often a small fraction of peak

• Why is the gap between “peak” and
“sustained” performance so large?

• Lets look at a simple numerical kernel-
sparse matrix-vector multiply

University of Chicago Department of Energy

Realistic Measures of Peak Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0

1000

2000

3000

4000

5000

6000

SP Origin T3E Pentium Ultra II Power4 Xeon

Theoretical Peak Oper. Issue Peak
Mem BW Peak Observed

University of Chicago Department of Energy

What About CPU-Bound
Operations?

• Dense Matrix-Matrix Product

Most studied numerical program by
compiler writers

Core of some important applications

More importantly, the core operation
in High Performance Linpack

• Benchmark used to “rate” the top 500
fastest systems

Should give optimal performance…

University of Chicago Department of Energy

From Atlas

Compiler

Hand-tuned

The Compiler Will Handle It (?)

Enormous effort required to get good performance

Large gap between
natural code and
specialized code

University of Chicago Department of Energy

Performance for Real
Applications

• Dense matrix-matrix example shows that even
for well-studied, compute-bound kernels,
compiler-generated code achieves only a small
fraction of available performance

“Fortran” code uses “natural” loops, i.e., what a user
would write for most code

Others use multi-level blocking, careful instruction
scheduling etc.

• Algorithms design also needs to take into
account the capabilities of the system, not just
the processor

Example: Cache-Oblivious Algorithms
(http://supertech.lcs.mit.edu/cilk/papers/abstracts/a
bstract4.html)

University of Chicago Department of Energy

The Computer As Labor-
Saving Device

• Most current approaches to developing high-
performance software are based on either

Compiler performs miracle

“Heroic” (and burned out) programmer

• Many of these techniques use transformations
that can be mechanically applied, but require
some programmer guidance.

Use the computer to apply these!
• (Why is this so surprising?)

Examples include ATLAS (dense linear algebra),
FFTW, PhiPac

New projects include SALSA (Self-Adaptive Linear
Solver Architecture)

• Joint work with Eijkhout, Dongarra, Keyes

• Includes guides for choosing preconditioners,
orderings, decomposition

University of Chicago Department of Energy

Conclusions

• Performance models should count data
motion, not flops

• Computers will continue to have
multiple levels of memory hierarchy

Algorithms should exploit them

• Computers will be parallel

Algorithms can make effective use of
greater adaptivity to give better time-to-
solution and accuracy

• Denial is not a solution

