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Algorithms

• What is an algorithm?

A set of instructions to perform a task

• How do we evaluate an algorithm?

Correctness

Accuracy

• Not an absolute

Efficiency

• Relative to current and future machines

• How do we measure efficiency?

Often by counting floating point operations

Compare to “peak performance”
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Real and Idealized
Computer Architectures

• Any algorithm assumes an idealized
architecture

Common choice:

• Floating point work costs time

• Data movement is free

Real systems:

• Floating point is free (fully overlapped with other
operations)

• Data movement costs time…a lot of time

• Classical complexity analysis for numerical
algorithms is no longer correct (more
precisely, no longer relevant)

Known since at least BLAS2 and BLAS3
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CPU and Memory Performance
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Trends in Computer
Architecture I

• Latency to memory will continue to
grow relative to CPU speed

Latency hiding techniques require
finding increasing amounts of
independent work: Little’s law implies

• Number of concurrent memory
references = Latency * rate

• For 1 reference per cycle, this is already
100–1000 concurrent references
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Trends in Computer
Architecture II

• Clock speeds will continue to
increase

The rate of clock rate increase has
increased recently 

Light travels 3 cm (in a vacuum) in
one cycle of a 10 GHz clock

• CPU chips won’t be causally connected
within a single clock cycle, i.e., a signal
will not cross the chip in a single clock
cycle

• Processors will be parallel!



University of Chicago Department of Energy

Trends in Computer
Architecture III

• Power dissipation problems will force more
changes

Current trends imply chips with energy densities
greater than a nuclear reactor

Already a problem: In 2003, an issue of consumer
reports looks at the likelihood of getting a serious
burn from
your laptop!

Will force
new ways
to get
performance,
such as
extensive
parallelism
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Itanium Power Dissipation

• Power is not
uniformly
distributed
across chip

• Peak power
densities
growing even
faster
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Consequences

• Gap between memory and
processor performance will
continue to grow

• Data motion will dominate the cost
of many (most) calculations

• The key is to find a computational
cost abstraction that is as simple
as possible but no simpler
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Architecture Invariants

• Performance is determined by memory
performance

• Memory system design for performance
makes system performance less
predictable

• Fast memories possible, but
Expensive ($)

Large (meters3)

Power hungry (Watts)

• Algorithms that don’t take these
realities into account may be irrelevant
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Node Performance

• Current laptops now have a peak speed
(based on clock rate) of over 2 Gflops
(20 Cray1s!)

• Observed (sustained) performance is
often a small fraction of peak

• Why is the gap between “peak” and
“sustained” performance so large?

• Lets look at a simple numerical kernel-
sparse matrix-vector multiply
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Realistic Measures of  Peak Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120
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What About CPU-Bound
Operations?

• Dense Matrix-Matrix Product

Most studied numerical program by
compiler writers

Core of some important applications

More importantly, the core operation
in High Performance Linpack

• Benchmark used to “rate” the top 500
fastest systems

Should give optimal performance…



University of Chicago Department of Energy

From Atlas

Compiler

Hand-tuned

The Compiler Will Handle It (?)

Enormous effort required to get good performance

Large gap between
natural code and
specialized code
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Performance for Real
Applications

• Dense matrix-matrix example shows that even
for well-studied, compute-bound kernels,
compiler-generated code achieves only a small
fraction of available performance

“Fortran” code uses “natural” loops, i.e., what a user
would write for most code

Others use multi-level blocking, careful instruction
scheduling etc.

• Algorithms design also needs to take into
account the capabilities of the system, not just
the processor

Example: Cache-Oblivious Algorithms
(http://supertech.lcs.mit.edu/cilk/papers/abstracts/a
bstract4.html)
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The Computer As Labor-
Saving Device

• Most current approaches to developing high-
performance software are based on either

Compiler performs miracle

“Heroic” (and burned out) programmer

• Many of these techniques use transformations
that can be mechanically applied, but require
some programmer guidance.

Use the computer to apply these!
• (Why is this so surprising?)

Examples include ATLAS (dense linear algebra),
FFTW, PhiPac

New projects include SALSA (Self-Adaptive Linear
Solver Architecture)

• Joint work with Eijkhout, Dongarra, Keyes

• Includes guides for choosing preconditioners,
orderings, decomposition
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Conclusions

• Performance models should count data
motion, not flops

• Computers will continue to have
multiple levels of memory hierarchy

Algorithms should exploit them

• Computers will be parallel

Algorithms can make effective use of
greater adaptivity to give better time-to-
solution and accuracy

• Denial is not a solution


