
How Not to Measure Performance:
Lessons from Parallel Computing

or
Only Make New Mistakes

William Gropp
www.mcs.anl.gov/~gropp

University of Chicago Department of Energy

Why Measure Performance?

• Publish papers or sell product

• Engineer a solution to performance
goals

Predict performance

Tune systems

• Understand limitations of current
systems (research into the future)

• Diagnose or predict performance
problems

• Compare methods/systems (publish
good papers)

University of Chicago Department of Energy

What Kinds of Measurement?

• Means-based
Measure what you can

• Ends-based
Measure what you need to know

• One way to test:
Does improving the measured value
improve the user’s experience?

• Examples:
FLOPS are usually means-based
• Not related to solving a problem

• Often rewards poor algorithms

Wall clock times are ends-based

University of Chicago Department of Energy

Some Characteristics of Good
Benchmarks

• Repeatable

Perhaps in a statistical sense

• Easy to use

• Consistent in meaning across systems

• Consistent in result

If the benchmark says “A is better than B”
then a user would say the same

Lilja calls this “Reliable”

• Unbiased

Independent of stakeholder interests

University of Chicago Department of Energy

What Do We Know?

• Many performance-related books and
papers

The Science of Computer Benchmarking,
Roger Hockney, 1996
• Emphasizes HPC, particularly parallel/vector

Measuring Computer Performance, David
Lilja, 2000
• Really a book in basis statistics for computer

scientists

• Unfortunately, much of the work is of
limited use

Best captured by a famous short paper by
David Bailey

University of Chicago Department of Energy

Twelve Ways to Fool the Masses
(paraphrased from David Bailey)

1. Quote only 32-bit performance results

2. Present results for an inner kernel and then
represent these as the performance of the
entire application

3. Quietly employ assembly code

4. Scale problem with the number of processors
but omit any mention of this

5. Quote performance results projected to a full
system

6. Compare your results against scalar,
unoptimized code

University of Chicago Department of Energy

Twelve Ways (continued)

7. When direct run time comparisons are required,
compare with an old code on an obsolete system

8. If MFLOPS rates must be quoted, base the operation
count on the parallel implementation, not the best
sequential implementation

9. Quote performance in terms of processor utilization,
parallel speedups, or MFLOPS/$

10. Mutilate the algorithm used in the parallel
implementation to match the architecture

11. Measure parallel run times on a dedicated system but
measure conventional run times in a busy
environment

12. If all else fails, show pretty pictures and animated
videos, and don’t talk about performance

University of Chicago Department of Energy

Why is this relevant?

• There are similarities between parallel
and grid computing

Multiple processing elements connected by
a network

Data as well as compute-centric applications

• And there are differences
Where to begin?
• Relevant applications

• Potentially much higher latencies

• Security

• Administration

• Reliability

University of Chicago Department of Energy

What’s similar with the Grid

• Many parallel systems

are clusters or

constellations

• Some grid applications

are distributed

computing

• Others involve distributed I/O, similar

to parallel I/O issues

University of Chicago Department of Energy

What’s Different
About the Grid?

• Goals: Shared resource
No exact reproducibility of experimental conditions

• Classic MPPs have very good reproducibility

• Clusters less so

• No central control in operation

• Very complex paths for messaging; multiple
transport types

• Very high latency
Latency in the ms (>107 operations!)

Leads to asynchronous applications

Performance goals emphasize bulk or realtime
performance

• Often a greater software gap between the
application and the hardware

University of Chicago Department of Energy

What Can We Learn About Benchmarks
From the MPP Experience

• What has worked

Kinds of benchmarks

• What has not worked

May be more valuable

• What we should have done

How to measure

How to choose

University of Chicago Department of Energy

Some Kinds of Benchmarks

• Microbenchmarks
Small, easily understood code

Runs on (most) systems unchanged

Measures a well-defined* quantity

But
• May not address the reason for benchmarking

• Application benchmarks
Large, awkward, complex code

Often uses non-portable constructs

Measures an application-defined quantity
• May be what you want

• Synthetic benchmarks and program kernels
Attempt to capture key features of applications
benchmarks but without the problems

• But only valuable to the extent that they are in fact
representative

University of Chicago Department of Energy

Example from Parallel
Computing

• Basic measurement of communication
performance: latency and bandwidth

Defined by Tc=s + rn

• Problems:
Assumes hardware and software match this model

Absolute numbers make it difficult to draw
conclusions

• Important quantity is often the relative cost, compared
to work

• A better model may be (s/f) + (r/f)n, scale by floating
point speed
8 Increasing processor speed without increasing network

speed increases relative communication cost

• Note that for the grid, latency may be
dominated by time-of-flight

University of Chicago Department of Energy

Problems With
Microbenchmarks

• Simplification may change results
by activating special-case code

Is latency the time to send a 0-byte
message?

Or is it the coefficient s in the time
model Tc=s + rn?

• Which is more useful?

• Reduction may miss important
features

University of Chicago Department of Energy

Two Examples

• Sometimes Tc=s+rn is a good fit…

University of Chicago Department of Energy

Wrong Communication Model

• The typical model is
with a single
connection into the
network

• Simple and true for many systems,
particularly Beowulfs and I/O-
peripheral-based networks

• Procurements often based on this model

• But…
Few applications require only
communicating with a single partner

CPU

Network

University of Chicago Department of Energy

Measuring the Wrong
Quantity

University of Chicago Department of Energy

Wrong Benchmark Code

• As benchmarks move away from
microbenchmarks, the code becomes more
subject to design decisions that may not
reflect the environment

NPB avoided use of MPI topology routines even
though much evidence that proper layout is
important

“Halo exchange” tests may use less efficient code

• Blocking calls may serialize

• Misordered nonblocking calls may add overhead

• Alternatives (e.g., Alltoall) may be semantically
equivalent and faster on some platforms

• What are you measuring?

University of Chicago Department of Energy

Wrong Design or Use

• Some benchmarks are designed to
compare two or more systems. Many
are flawed (to be fair, this is a very
hard problem)

SPEC
• Uses geometric mean to produce a single number

that is meaningless (but avoids strong effect from
outliers)

TPC
• Artificial set can be gamed

Linpack, STREAM
• Provide precise measurements that are frequently

misused

University of Chicago Department of Energy

Missing Measurements

• Failure in grid applications that require
multiple co-scheduled resources is
common

Increases the cost to applications:

Assume an application requires time T, and
that the probability that resource i
completes is pi, and that the application is
charged T whether or not the computation
completes.

The expected cost is
T(1-p)(1+2p+3p2+4p3+…) =
T(1+p+p2+p3+…) = T(1/(1-p))
where p=1- pi; Ttotal as p 0

University of Chicago Department of Energy

Can We Measure On th Grid?

• Concern: The grid is different because it is
constantly changing

Thus it is impossible to conduct reproducible
experiments

• True (the grid is changing) but irrelevant

Scientists often measure in the field

• Statistical methods used to design and interpret the
experiment

The user sees the “real” grid. Measurements in an
artificial environment have limited usefulness

• MPP benchmarks are not as clean as you
might think…

University of Chicago Department of Energy

Latency and Bandwidth

• This example shows
a reasonable match
to the standard
formal Tc=s + rn

• Still a few anomalies
(512 and 1024
bytes) but not too
serious.

• Suggests that we
report only s and r

University of Chicago Department of Energy

Is Latency the 0-byte Time?

• What is the right
definition of latency?

To be used in
engineering applications,
it is the parameter s in T
= s + rn, not the time to
send a zero byte
message

How many applications
depend on rapidly
sending zero-byte
messages?

• (Note the poor fit, even
though from 128 bytes,
the performance is
nearly linear)

University of Chicago Department of Energy

Perils of Fitting
the Wrong Model

• Latency number is
not far off

• Bandwidth is
essentially infinite

• Two algorithm
method

Clearly the switch
should happen earlier,
at least for this test

The benchmark
implicitly assumes a
single algorithm
implementation

University of Chicago Department of Energy

Comments on Benchmark
Results

• Single number benchmarks are
very convenient — easy to discuss
and relatively easy to analyze

• But:

Single number benchmarks rely
heavily on a well-defined number that
fits the calculation and environment

If you don’t know for sure, you need
to confirm the model

• Almost always good to collect more data

University of Chicago Department of Energy

Even Simple Parallel Computing
Benchmarks can Give Complex Data

• Typical cluster
benchmark

Note minimum
time is
(reasonably)
well behaved

Wide variations

• For purposes of
tuning best case
performance, the
minimum times
are useful

• But the user
sees some
average
(depending on
application)

University of Chicago Department of Energy

Grid Challenges

• End-to-End Benchmarks

Strong effect from “last meter” (poor I/O to disk;
saturated memory system; misconfigured interior
network)

Must isolate effects

• Lets corrections can be made

• Proper experimental design can help

• Must include interaction effects (multifactor experiments)

• Lack of Reproducibility

Benchmarks on the grid are experiments in the field

• Impossible to control all factors

• Experiments must have a valid statistical design

• No “instant gratification” benchmarks

• Lack of Established Applications

What should we measure?

University of Chicago Department of Energy

What Can We Conclude
About Grid Benchmarks

• Determine critical application classes and how
performance impacts their success.

Derive benchmark needs from these

Measurements and predictions must include uncertainty

• Grid simulations are needed for reproducible, controlled
experiments

Understand effects and provides a way to evaluate new
methods

Counterpart to lab experiments

• “Live” Grid performance measurements based on good
experimental design

Must use good statistical design

CS curriculum needs a course in statistics; Lilja’s book is a
good place to start

• Include measures of tool usability
Anyone remember Veronica? Gopher?

University of Chicago Department of Energy

12 Ways to Fool the Masses

1. Quote UDP with now contention control against TCP
• Only a few people are using the grid at any time

2. Quote performance figures for basic operations, not
the entire application

• Its hard to run a full grid application

3. Quietly employ experts to build and run the grid
application

• It is difficult to work around the many system problems,
so use experts. Don’t alarm the audience, however

4. Adjust the problem size to achieve the best
performance

• Performance may vary with size

5. Quote performance results projected to a full size grid
• Few if any labs can afford a grid testbed, and it is very

difficult to arrange coordinated access to grid resources

University of Chicago Department of Energy

12 Ways (continued)

6. Compare against unoptimized code on a fast
machines connected with the fastest network

• It’s impressive to show that your code is faster than
results on a bigger, faster grid

7. For direct comparison, compare against an old code
on an obsolete system

• A parameter study on a grid can easily run 100 x faster
than a Beowulf cluster (if that is the original, 486-based
cluster)

8. When counting operation rates (e.g., data rates),
count all data moved anywhere instead of using the
most efficient algorithm

• There’s nothing like a few extra GB of data to improve
grid utilization

9. Quote performance in terms of utilization, speedup, or
ops/{$£¥ }

• These sound better and they’re easy to achieve by
adding extra work

10. Mutilate the application and algorithm to fit the grid
architecture

• Avoid latency issues by recomputing. Make massive
copies of data.

University of Chicago Department of Energy

12 Ways (continued)

11. Measure times on a dedicated grid testbed
with security turned off and compare against
measurements in a busy, shared
environment with security

12. If all else fails, show pretty pictures and
animated videos, and don’t talk about
performance

University of Chicago Department of Energy

4 More Ways

1. Ignore all cases that failed
• Users just want to know what succeeded

2. Quote results for an API, even if different
implementations of the API have different
semantics (and hence perform different
operations)

• Common for I/O operations elsewhere, why should
we be any different?

3. Confound intra- and inter-grid experiments
• Who needs those inter (or intra) grid systems?

4. Quote results with no estimate of
experimental error

• No one else does, why should we?

University of Chicago Department of Energy

Measurement is Essential for
Progress

