
Expressing Fault Tolerant
Algorithms with MPI-2

William D. Gropp

Ewing Lusk
www.mcs.anl.gov/~gropp

University of Chicago Department of Energy

Overview

• Myths about MPI and Fault Tolerance

Error handling and reporting

• Goal of Fault Tolerance

Run applications

• Science simulations are different from real-time
controls and from databases

• Checkpointing

The best solution?

• Generalizing transactional semantics

Well-studied for databases

Built around two-party transactions

University of Chicago Department of Energy

Myths and Facts

Myth: MPI behavior is defined by its implementations.

Fact: MPI behavior is defined by the Standard Document at
http://www.mpi-forum.org

Myth: MPI is not fault tolerant.

Fact: This statement is not well formed. Its truth depends on
what it means, and one can’t tell from the statement itself.
More later.

Myth: All processes of MPI programs exit if any one process
crashes.

Fact: Sometimes they do; sometimes they don’t; sometimes
they should; sometimes they shouldn’t. More later.

Myth: Fault tolerance means reliability.

Fact: These are completely different. Again, definitions are
required.

University of Chicago Department of Energy

More Myths and Facts

Myth: Fault tolerance is independent of performance.

Fact: In general, no. Perhaps for some (weak) aspects,
yes. Support for fault tolerance will negatively impact
performance.

Myth: Fault tolerance is a property of the MPI standard
(which it doesn’t have).

Fact: Fault tolerance is not a property of the specification,
so it can’t not have it.

Myth: Fault tolerance is a property of an MPI
implementation (which most don’t have).

Fact: Fault tolerance is a property of a program. Some
implementations make it easier to write fault-tolerant
programs than others do.

University of Chicago Department of Energy

Even More Myths and Facts

Myth: Computers with tens or hundreds of
thousands of processors will be failing
constantly

Fact: The frequency of faults does not scale
(simply) with the number of processors. More
important are the number of mechanical
connections (e.g., pins and cables), non-
redundant systems with moving parts (e.g.,
fans and disks), and high-stress, low margin
components (e.g., cheap PC power supplies).
And software.

University of Chicago Department of Energy

What Does the MPI Standard Say
That is Relevant to Fault Tolerance?

• MPI requires reliable* communication. An
implementation that permits messages to be corrupted
in transit and still delivered to the user is a non-
conforming MPI implementation. (Regrettably, not a
hypothetical case.)

• MPI allows users to attach error handlers to
communicators.

MPI_ERRORS_ABORT, the “all-fall-down” error handler, is
required to be the default.

• How often do you check the return code from a routine?

MPI_ERRORS_RETURN can be used to allow applications
(and especially libraries) to handle errors.

Users can write and attach their own error handlers on a
communicator-by-communicator basis.

• Modularity!

*guaranteed delivery, for network types

University of Chicago Department of Energy

Goals of Fault Tolerance in
(many) Scientific Simulations

• The goal of the simulation is to
answer a question with the
minimum total resource.

• A failed simulation is “only” lost
resource (compared to a lost bank
transaction)

University of Chicago Department of Energy

Checkpointing

• Is Checkpointing so bad?
Pros:
• Does not change user’s algorithm

• Modular; does not impact other
components of the application

Cons:
• Depends on high-performance I/O

• Requires either user-directed or
compiler-assisted checkpointing for
efficiency

• How expensive is checkpointing?

University of Chicago Department of Energy

Checkpointing

• K0 – Cost to create and write

• K1 – Cost to read and restore

• A – Probability of failure

• T0 – Time between checkpoints

• T – Total time to run, without
checkpoints

University of Chicago Department of Energy

The Cost of Checkpointing

• If the probability of failure is
independent of time and has an
exponential PDF, and is small, then an
estimate of the total time with failures
is
ET=(T/t0)(K0+t0+a(K1t0+(1/2)t0

2))
Tradeoff – frequent checkpoints reduce the
about of “lost” compute time but incure
greater overhead

• We can optimize for the number of
checkpoints by finding the value of t0

that minimizes this, leading to

University of Chicago Department of Energy

Optimized Checkpointing

• ET = T (1 + aK1 + (2aK0)
1/2)

• To minimize this cost, we can

Reduce the probability of failure “a”

• Various robust communication strategies for
internode communication failures

• Use better hardware and software

Reduce the cost of reading and writing a
checkpoint

• Use parallel I/O and checkpoint only the data
needed to restart the computation

• Use “lazy redundancy” to provide fully
overlapped, cost effective fault-tolerance in the
I/O system

University of Chicago Department of Energy

Generalizing Two-Party
Operations

• Fault tolerance is well studied and
understood in other areas of CS

• One major approach relies on carefully
defined operations between two agents.

• In many fault-tolerant scientific
applications today, the agents are
processes and the communication is
handled by a socket or a remote
procedure call

• MPI provides a natural way to
generalize this: the intercommunicator

University of Chicago Department of Energy

Intercommunicators

• Contain a local group and a remote
group

• Point-to-point communication is
between a process in one group and a
process in the other.

• Can be merged into a normal (intra)
communicator.

• Created by MPI_Intercomm_create in
 MPI-1.

• Play a more important role in MPI-2,
created in multiple ways.

University of Chicago Department of Energy

Intercommunicators

Local group Remote group

Send(1)

Send(2)

University of Chicago Department of Energy

Spawning New Processes

MPI_Comm_Spawn MPI_Init

In parents In children

MPI_Comm_world

New intercommunicator Parent

intercom-

municator

Any

communicator

University of Chicago Department of Energy

Two Party Operations in MPI

• Generalize the process to be an MPI
communicator

Well defined behavior and semantics, just like a
process.

Provides more resources (parallelism) without
changing application details

• Generalize the communication to operations
on an intercommunicator

MPI provides both point-to-point and collective

Semantics of intercommunicator collectives often
appropriate for fault-tolerant apps

• Implementations can enhance (not change) the
semantics to provide additional guarantees

University of Chicago Department of Energy

Master/Slave Programs with
Intercommunicators

• One type of program easy to make
fault-tolerant is the master/slave
paradigm (seti@home).

• This is because slaves hold very small
amount of state at a time.

• Such an algorithm can be expressed in
MPI, using intercommunicators to
provide a level of fault-tolerance, if the
MPI implementation provides a robust
implementation of
MPI_ERRRORS_RETURN for
intercommmunicators.

University of Chicago Department of Energy

A Fault-Tolerant MPI
Master/Slave Program

• Master process comes up alone first.

Size of MPI_COMM_WORLD = 1

• It creates slaves with MPI_Comm_spawn

Gets back an intercommunicator for each one

Sets MPI_ERRORS_RETURN on each

• Master communicates with each slave using its
particular communicator

MPI_Send/Recv to/from rank 0 in remote group

Master maintains state information to restart each
subproblem in case of failure

• Master may start replacement slave with
MPI_Comm_spawn

• Slaves may themselves be parallel

Size of MPI_COMM_WORLD > 1 on slaves

Allows programmer to control tradeoff between fault
tolerance and performance

University of Chicago Department of Energy

Extending MPI

• New objects and methods with new syntax and
semantics to support the expression of fault-tolerant
algorithms in MPI

• Example – The MPI_Process_array object, somewhat
like an MPI Communicator (retains idea of context), but

Has dynamic instead of constant size

Rank of process replaced by constant array index

No collective operations for process arrays
• Full semantics too application specific – this should be left to

libraries built on MPI that applications use

New send/receive operations would be defined for
processes identified by an index into a process array.

Can have attached error handler

• Might be more convenient than an intercommunicator-
based approach for master/slave computations where
slaves communicate among themselves.

University of Chicago Department of Energy

Conclusion

• Fault tolerance is a property of an algorithm, not a
library

Management of state is the key

• It is important to be able to express a fault-tolerant
parallel algorithm as an MPI program

• Some solutions are already in use

• Implementations can provide more support than they
currently do for fault tolerance, without changing the
MPI specification

• Additions to the MPI Standard may be needed to extend
the class of fault tolerant algorithms that can be
expressed conveniently in MPI

• Further research is needed, first in improvements to
MPI-2 implementations, and eventually into MPI
extensions

University of Chicago Department of Energy

Backup

University of Chicago Department of Energy

Fault Tolerance in MPI

• Can MPI be fault tolerant?
What does that mean?

• Implementation vs. Specification
Work to be done on the implementations

Work to be done on the algorithms
• Semantically meaningful and efficient collective

operations

Use MPI at the correct level
• Build libraries to encapsulate important

programming paradigms

• (Following slides are joint work with
Rusty Lusk)

University of Chicago Department of Energy

Outline

• Myths about MPI and fault tolerance

• Definitions of fault tolerance

• Relevant parts of the MPI standard

• MPI can support a class of fault-tolerant
programs

If implementation provides certain features

Example of fault-tolerant master-slave
program in MPI

• Extending the MPI Standard to allow
more fault-tolerant programs

Adding new MPI objects and methods

• Disclaimer – These are preliminary
thoughts

University of Chicago Department of Energy

What is Fault Tolerance
Anyway?

• A fault-tolerant program can “survive” (in some sense
we need to discuss) a failure of the infrastructure
(machine crash, network failure, etc.)

• This is not in general completely attainable. (What if all

processes crash?)

• How much is recoverable depends on how much state

the failed component holds at the time of the crash.

In many master-slave algorithms a slave holds a small
amount of easily recoverable state (the most recent
subproblem it received).

In most mesh algorithms a process may hold a large
amount of difficult-to-recover state (data values for some
portion of the grid/matrix).

Communication networks hold varying amount of state in
communication buffers.

University of Chicago Department of Energy

Types of “Survival”

• The MPI library automatically recovers.

• Program is notified of problem and

takes corrective action.

• Certain operations, but not all, become

invalid.

• Program can be restarted from

checkpoint.

• Perhaps combinations of these.

University of Chicago Department of Energy

What Does the Standard Say
About Errors?

• A set of errors is defined, to be returned by MPI

functions if MPI_ERRORS_RETURN is set.

• Implementations are allowed to extend this set.

• It is not required that subsequent operations work after

an error is returned. (Or that they fail, either.)

• It may not be possible for an implementation to recover

from some kinds of errors even enough to return an

error code (and such implementations are conforming).

• Much is left to the implementation; some conforming

implementations may return errors in situations where

other conforming implementations abort. (See “quality

of implementation” issue in the Standard.)

Implementations are allowed to trade performance against fault

tolerance to meet the needs of their users

University of Chicago Department of Energy

Some Approaches to Fault
Tolerance in MPI Programs

• Master-slave algorithms using intercommunicators

No change to existing MPI semantics

MPI intercommunicators generalize the well-understood
two party model to groups of processes, allowing either
the master or slave to be a parallel program optimized for
performance.

• Checkpointing

In wide use now

Plain vs. fancy

MPI-IO can help make it efficient

• Extending MPI with some new objects in order to allow
a wider class of fault-tolerant programs.

The “pseudo-communicator”

• Another approach: Change semantics of existing MPI
functions

No longer MPI (semantics, not syntax, defines MPI)

University of Chicago Department of Energy

Checkpointing

• Application-driven vs. externally-driven

Application knows when message-passing subsystem is quiescent

Checkpointing every n timesteps allows very long (months) ASCI
computations to proceed routinely in face of outages.

Externally driven checkpointing requires much more cooperation
from MPI implementation, which may impact performance.

• MPI-IO can help with large, application-driven checkpoints

• “Extreme” checkpointing – MPICH-V (Paris group)

All messages logged

States periodically checkpointed asynchronously

Can restore local state from checkpoint + message log since last
checkpoint

Not high-performance

Scalability challenges

