Expressing Fault Tolerant
Algorithms with MPI-2

William D. Gropp

Ewing Lusk
www.mcs.anl.gov/—gropp



Overview

e Myths about MPI and Fault Tolerance
¢ Error handling and reporting

e Goal of Fault Tolerance

¢ Run applications

e Science simulations are different from real-time
controls and from databases

e Checkpointing
¢ The best solution?
e Generalizing transactional semantics

¢ Well-studied for databases
¢ Built around two-party transactions

University of Chicago Department of Energy



Myths and Facts

Myth: MPI behavior is defined by its implementations.

Fact: MPI behavior is defined by the Standard Document at
http://www.mpi-forum.org

Myth: MPI is not fault tolerant.

Fact: This statement is not well formed. Its truth depends on
what it means, and one can’t tell from the statement itself.
More later.

Myth: All processes of MPI programs exit if any one process
crashes.

Fact: Sometimes they do; sometimes they don’t; sometimes
they should; sometimes they shouldn’t. More later.

Myth: Fault tolerance means reliability.

Fact: These are completely different. Again, definitions are
required.

University of Chicago Department of Energy



More Myths and Facts

Myth: Fault tolerance is independent of performance.

Fact: In general, no. Perhaps for some (weak) aspects,
yes. Support for fault tolerance will negatively impact
performance.

Myth: Fault tolerance is a property of the MPI standard
(which it doesn’t have).

Fact: Fault tolerance is not a property of the specification,
so it can’t not have it. ©

Myth: Fault tolerance is a property of an MPI
Implementation (which most don’t have).

Fact: Fault tolerance is a property of a program. Some
Implementations make it easier to write fault-tolerant
programs than others do.

University of Chicago Department of Energy



Even More Myths and Facts

Myth: Computers with tens or hundreds of
thousands of processors will be failing
constantly

Fact: The frequency of faults does not scale
(simply) with the number of processors. More
Important are the number of mechanical
connections (e.g., pins and cables), non-
redundant systems with moving parts (e.g.,
fans and disks), and high-stress, low margin
components (e.g., cheap PC power supplies).
And software.

University of Chicago Department of Energy



What Does the MPI| Standard Say
That I1s Relevant to Fault Tolerance?

e MPI requires reliable* communication. An
Implementation that permits messages to be corrupted
In transit and still delivered to the user is a non-
conforming MPI implementation. (Regrettably, not a
hypothetical case.)

e MPI allows users to attach error handlers to
communicators.
¢ MPI_ERRORS_ABORT, the *“all-fall-down” error handler, is
required to be the default.
e How often do you check the return code from a routine?
¢ MPI_ERRORS_RETURN can be used to allow applications
(and especially libraries) to handle errors.
¢ Users can write and attach their own error handlers on a
communicator-by-communicator basis.
e Modularity!

*guaranteed delivery, for network types
University of Chicago Department of Energy



Goals of Fault Tolerance In
(many) Scientific Simulations

e The goal of the simulation is to
answer a guestion with the
minimum total resource.

e A failed simulation is “only” lost
resource (compared to a lost bank
transaction)

University of Chicago Department of Energy



Checkpointing

e |s Checkpointing so bad?

¢ Pros:
e Does not change user’s algorithm

e Modular; does not impact other
components of the application

¢ Cons:
e Depends on high-performance 1/0

e Requires either user-directed or
compiler-assisted checkpointing for
efficiency

e How expensive Is checkpointing?

University of Chicago Department of Energy



Checkpointing

e K, — Cost to create and write
e K, — Cost to read and restore
e A — Probability of failure

e T, — Time between checkpoints

e T — Total time to run, without
checkpoints

University of Chicago Department of Energy



The Cost of Checkpointing

e If the probability of failure is
Independent of time and has an
exponential PDF, and is small, then an
estimate of the total time with failures
IS
Er=(T/ty) (Ko+to+a(K t,+(1/2)t,°))

¢ Tradeoff — frequent checkpoints reduce the
about of “lost” compute time but incure
greater overhead

e \We can optimize for the number of
checkpoints by finding the value of t,
that minimizes this, leading to

University of Chicago Department of Energy



Optimized Checkpointing

 E; =T (@1 + aK; + (2aK,)¥?)
e TO minimize this cost, we can

¢ Reduce the probability of failure “a”

e Various robust communication strategies for
Internode communication failures

e Use better hardware and software

¢ Reduce the cost of reading and writing a
checkpoint

e Use parallel 1/0 and checkpoint only the data
needed to restart the computation

» Use “lazy redundancy” to provide fully
overlapped, cost effective fault-tolerance in the
1/0 system

University of Chicago Department of Energy



Generalizing Two-Party
Operations

e Fault tolerance iIs well studied and
understood In other areas of CS

e One major approach relies on carefully
defined operations between two agents.

e In many fault-tolerant scientific
applications today, the agents are
orocesses and the communication Is
nandled by a socket or a remote

orocedure call

e MPI provides a natural way to
generalize this: the intercommunicator

University of Chicago Department of Energy



Intercommunicators

e Contain a local group and a remote
group
e Point-to-point communication Is

petween a process in one group and a
orocess in the other.

e Can be merged into a normal (intra)
communicator.

e Created by MP1 _Intercomm create In
MPI-1.

e Play a more important role in MPI-2,
created in multiple ways.

University of Chicago Department of Energy



Intercommunicators

University of Chicago Department of Energy



Spawning New Processes

In parents In children
_ MPI_Comm_world
Any :
communicator MPI_Comm_Spawn MPI _Init

New intercommunicator Parent

intercom-
municator

University of Chicago Department of Energy




Two Party Operations in MPI

e Generalize the process to be an MPI
communicator

¢ Well defined behavior and semantics, just like a
process.

¢ Provides more resources (parallelism) without
changing application details
e Generalize the communication to operations
on an intercommunicator
¢ MPI provides both point-to-point and collective

¢ Semantics of intercommunicator collectives often
appropriate for fault-tolerant apps

e Implementations can enhance (not change) the
semantics to provide additional guarantees

University of Chicago Department of Energy



Master/Slave Programs with
Intercommunicators

e One type of program easy to make
fault-tolerant is the master/slave
paradigm (seti@home).

e This Is because slaves hold very small
amount of state at a time.

e Such an algorithm can be expressed In
MPI, using intercommunicators to
provide a level of fault-tolerance, if the
MPI implementation provides a robust
Implementation of
MPI _ERRRORS_ RETURN for
Intercommmunicators.

University of Chicago Department of Energy



A Fault-Tolerant MPI
Master/Slave Program

e Master process comes up alone first.
¢ Size of MPI_COMM_WORLD =1
e |t creates slaves with MPI_Comm_spawn
¢ Gets back an intercommunicator for each one
¢ Sets MPI_ERRORS_ RETURN on each
e Master communicates with each slave using its
particular communicator
¢ MPI_Send/Recv to/from rank O in remote group

¢ Master maintains state information to restart each
subproblem in case of failure

e Master may start replacement slave with
MPI_Comm_spawn

e Slaves may themselves be parallel
¢ Size of MPI_COMM_WORLD > 1 on slaves

¢ Allows programmer to control tradeoff between fault
tolerance and performance

University of Chicago Department of Energy



Extending MPI

e New objects and methods with new syntax and
semantics to support the expression of fault-tolerant
algorithms in MPI

e Example — The MPIl_Process_array object, somewhat
like an MPI Communicator (retains idea of context), but

¢ Has dynamic instead of constant size
¢ Rank of process replaced by constant array index

¢ No collective operations for process arrays

» Full semantics too application specific — this should be left to
libraries built on MPI that applications use

¢ New send/receive operations would be defined for
processes identified by an index into a process array.

¢ Can have attached error handler

e Might be more convenient than an intercommunicator-
based approach for master/slave computations where
slaves communicate among themselves.

University of Chicago Department of Energy



Conclusion

e Fault tolerance is a property of an algorithm, not a
library

¢ Management of state is the key

e |t is important to be able to express a fault-tolerant
parallel algorithm as an MPI program

e Some solutions are already in use

e Implementations can provide more support than they
currently do for fault tolerance, without changing the
MPI specification

e Additions to the MPI Standard may be needed to extend
the class of fault tolerant algorithms that can be
expressed conveniently in MPI

e Further research is needed, first in improvements to
MPI-2 implementations, and eventually into MPI
extensions

University of Chicago Department of Energy



LANS

Backup

University of Chicago Department of Energy



Fault Tolerance in MPI

e Can MPI be fault tolerant?
¢ What does that mean?

e Implementation vs. Specification
¢ Work to be done on the implementations

¢ Work to be done on the algorithms

e Semantically meaningful and efficient collective
operations

¢ Use MPI at the correct level

e Build libraries to encapsulate important
programming paradigms

e (Following slides are joint work with
Rusty Lusk)

University of Chicago Department of Energy



Outline

e Myths about MPI and fault tolerance
e Definitions of fault tolerance
e Relevant parts of the MPI standard

e MPI can support a class of fault-tolerant
programs
¢ If implementation provides certain features

¢ Example of fault-tolerant master-slave
program in MPI

e Extending the MPI Standard to allow
more fault-tolerant programs

¢ Adding new MPI objects and methods
e Disclaimer — These are preliminary

University of CRu¢agn. . « ~ a4~ Department of Energy



What 1s Fault Tolerance
Anyway?

e A fault-tolerant program can “survive” (in some sense
we need to discuss) a failure of the infrastructure
(machine crash, network failure, etc.)

e This is not in general completely attainable. (What if all
processes crash?)

e How much is recoverable depends on how much state
the failed component holds at the time of the crash.
¢ In many master-slave algorithms a slave holds a small

amount of easily recoverable state (the most recent
subproblem it received).

¢ In most mesh algorithms a process may hold a large
amount of difficult-to-recover state (data values for some
portion of the grid/matrix).

¢ Communication networks hold varying amount of state in
communication buffers.

University of Chicago Department of Energy



Types of “Survival”

e The MPI library automatically recovers.

e Program is notified of problem and
takes corrective action.

e Certain operations, but not all, become
invalid.

e Program can be restarted from
checkpoint.

e Perhaps combinations of these.

University of Chicago Department of Energy



What Does the Standard Say
About Errors?

e A set of errors is defined, to be returned by MPI
functions if MPI_ERRORS_ RETURN is set.

e Implementations are allowed to extend this set.

e |t is not required that subsequent operations work after
an error is returned. (Or that they fail, either.)

e It may not be possible for an implementation to recover
from some kinds of errors even enough to return an
error code (and such implementations are conforming).

e Much is left to the implementation; some conforming
Implementations may return errors in situations where
other conforming implementations abort. (See “quality
of implementation” issue in the Standard.)

¢ Implementations are allowed to trade performance against fault
tolerance to meet the needs of their users

University of Chicago Department of Energy



Some Approaches to Fault
Tolerance in MPl Programs

e Master-slave algorithms using intercommunicators
¢ No change to existing MPI semantics

¢ MPI intercommunicators generalize the well-understood
two party model to groups of processes, allowing either
the master or slave to be a parallel program optimized for
performance.

e Checkpointing
¢ In wide use now
¢ Plain vs. fancy
¢ MPI-10 can help make it efficient
e Extending MPI with some new objects in order to allow
a wider class of fault-tolerant programs.
¢ The “pseudo-communicator”
e Another approach: Change semantics of existing MPI
functions
¢ No longer MPI (semantics, not syntax, defines MPI)

University of Chicago Department of Energy



Checkpointing

e Application-driven vs. externally-driven
¢ Application knows when message-passing subsystem is quiescent

¢ Checkpointing every n timesteps allows very long (months) ASCI
computations to proceed routinely in face of outages.

¢ Externally driven checkpointing requires much more cooperation
from MPI implementation, which may impact performance.

e MPI-10 can help with large, application-driven checkpoints
e “Extreme” checkpointing — MPICH-V (Paris group)
¢ All messages logged

¢ States periodically checkpointed asynchronously

¢ Can restore local state from checkpoint + message log since last
checkpoint

¢ Not high-performance
¢ Scalability challenges

University of Chicago Department of Energy



