MPI and High Productivity
Programming

William Gropp

Argonne National Laboratory
www.mcs.anl.gov/~gropp

MPI /s a Success

e Applications

¢+ Most recent Gordon Bell prize winners use MPI
e Libraries

¢+ Growing collection of powerful software components
e Tools

¢ Performance tracing (Vampir, Jumpshot, etc.)

¢+ Debugging (Totalview, etc.)
e Results

+ This conference

¢ Papers: http://www.mcs.anl.gov/mpi/papers
e Implementations

+ Multiple, high-quality implementations
e Beowulf

¢ Ubiquitous parallel computing

University of Chicago Department of Energy

http://www.mcs.anl.gov/mpi/papers

But "MPI is the Problem”

e Many people feel that
programming with MPI is too hard

¢ And they can prove it

e Others believe that MPI is fine
¢+ And they can prove it

University of Chicago Department of Energy

Consider These Five
Examples

e Three Mesh Problems
¢+ Regular mesh
¢ Irregular mesh
¢ C-mesh

e Indirect access
e Broadcast of to all processes

University of Chicago Department of Energy

Regular Mesh Codes

e Classic example FTAAROO0O0
of whatiswrong MJ® 888880
with MPI E=Re*E N N N N B N
¢+ Some examples j:j g : : : : : : g
follow, taken from —
CRPC Parallel B
Computing MOS8 e0
Handbook and zPL oG QL O OOODO
web site, of mesh T I TI19T% %

sweeps

University of Chicago Department of Energy

Uniprocessor Sweep

do k=1, maxiter
do j=1, n-1
do i=1, n-1
unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &
u(i,j+1) + u(i,j-1) - &
h*h*f(i,j))
enddo
enddo
U = unew
enddo

University of Chicago Department of Energy

LANS

MPI Sweep

do k=1, maxiter
I Send down, recv up
call MPI_Sendrecv(u(1,js), n-1, MPI_REAL, nbr_down, k &
u(l,je+1), n-1, MPI_REAL, nbr_up, k, &
MPI_COMM_WORLD, status, ierr)
I Send up, recv down
call MPI_Sendrecv(u(1,je), n-1, MPI_REAL, nbr_up, k+1, &
u(l,js-1), n-1, MPI_REAL, nbr_down, k+1,&
MPI_COMM_WORLD, status, ierr)
do j=js, je
doi=1, n-1
unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + u(i,j+1) + u(i,j-1) - &
h*h*f(ij))
enddo
enddo
u = unew
enddo

And the more scalable 2-d decomposition is even messier

University of Chicago Department of Energy

HPF Sweep

IHPF$ DISTRIBUTE u(:,BLOCK)
IHPF$ ALIGN unew WITH u
IHPF$ ALIGN f WITH u
do k=1, maxiter
unew(1l:n-1,1:n-1) = 0.25 * &
(u(2:n,1:n-1) + u(0:n-2,1:n-1) + &
u(l:n-1,2:n) + u(1:n-1,0:n-2) - &
h*h*f(l:n-1,1:n-1))
u = unew
enddo

University of Chicago Department of Energy

OpenMP Sweep

I$omp parallel

I$omp do
do j=1, n-1
do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &
u(i,j+1) + u(i,j-1) - &
h*h*f(ij))
enddo
enddo
l1$omp enddo

University of Chicago Department of Energy

ZPL Sweep

region
R=10..n+1,0..n+1];
direction
N=[_1IO]; S = [110]1 W=[OI_1]I E=[OI1]I
Var
u : [BigR] real;
[R] repeat

u:=0.25*%(u@n + u@e + u@s + u@w)-h*h*f;
Until (...convergence...);

(Roughly, since I'm not a ZPL programmer)

University of Chicago Department of Energy

Lessons

e Strengths of non-MPI solutions

¢ Data decomposition done for the
programmer

+ No “action at a distance”
e SO0 why does anyone use MPI?
¢ Performance
¢+ Completeness
¢ Ubiquity
e Does your laptop have MPI on it? Why not?
e But more than that...

University of Chicago Department of Energy

Why Not Always Use HPF?

e Performance!

¢+ From “A Comparison of -
PETSC Library and HPF
Implementations of an . . A A
Archetypal PDE o o Y

Computation” (M.
Ehtesham Hayder, David
E. Keyes, and Piyush
Mehrotra)

¢+ PETSc (Library using ¥ * *
MPI) Iperformance a0k
double HPF &

e Maybe there’s something
to explicit management 20 : 3 s
Of the data Cbservation numoar
decomposition...

A FFF st pass
O HFF -2 pass
* PETSC - 151 0a6s
O PETSC - 2no pass

S i s 1y s e
i =
o

o o o

University of Chicago Department of Energy

LANS

Not All Codes Are Completely
Regular

e Examples:

¢ Adaptive Mesh refinement

e How does one process know what data to access on
another process?

» Particularly as mesh points are dynamically allocated

e (You could argue for fine-grain shared/distributed
memory, but performance cost is an unsolved problem
in general)

e Libraries exist (in MPI), e.g., Chombo, KelLP (and
SUCCEeSSOors)

¢ Unstructured mesh codes
e More challenging to write in any language

e Support for abstractions like index sets can help, but
only a little

e MPI codes are successful here ...

University of Chicago Department of Energy

FUN3d Characteristics

e Tetrahedral vertex-centered unstructured grid
code developed by W. K. Anderson (NASA
LaRC) for steady compressible and
incompressible Euler and Navier-Stokes
equations (with one-equation turbulence
modeling)

e Won Gordon Bell Prize in 1999
e Uses MPI for parallelism

e Application contains ZERO explicit lines of MPI
¢ All MPI within the PETSc library

University of Chicago Department of Energy

Fun3d Performance

300 . . T
Aggregate Gflop/s
250 - vS. # hodes 2
Asci Red
200 - -
Performance
120 close to

“achievable peak”

100 - based on memory
bandwidth
50 - -
Asci Blue
OO 5(I)O 10|00 1 5IOO 20|00 25|00 SOIOO 35IOO 4000

University of Chicago Department of Energy

Another Example: Reqgular
Grids—But With a Twist

e "C Grids” common for
certain geometries

e Communication pattern is 7

AT II TSI I L

AhN

s
regular but not part of Tz
A\ ” I\ N/ : ” ’I,II[/I//I s

mesh” or “matrix” oriented g
W7
el 7
anaiagss S
¢ |i-n/2|>L, use one rule, \s‘\\\‘k\\‘*‘\l&'ﬁf{,’;’rﬁ%
otherwise, use a different S
rule
+ No longer transparent in e
HPF or ZPL N
: ————
+ Convenience features are S
brittle T

e Great when they match
what you want

e But frustrating when they
don't

University of Chicago Department of Energy

Irregular Access

For j=1, zillion

table[f(j)] ~= intable[f(j)]
Table, intable are “global” arrays (distributed
across all processes)

Seems simple enough

¢ N is XOR, which is associative and commutative, so
order of evaluation is irrelevant

Core of the GUPS (also called TableToy)
example

¢ Two version: MPI and shared memory

¢+ MPI code is much more complicated

University of Chicago Department of Energy

But...

e MPI version produces the same answer every time
e Shared/Distributed memory version does not

¢+ Race conditions are present

¢+ Benchmark is from a problem domain where getting the
same answer every time is not required

+ Scientific simulation often does not have this luxury

e You can make the shared memory version produce the
same answer every time, but
¢ You either need fine-grain locking
e In software, costly in time, may reduce effective parallelism

e In hardware, with sophisticated remote atomic operations
(such as a remote compare and swap), but costly in

€/E/Y/$/F/...
¢+ Or you can aggregate operations
e Code starts looking like MPI version ...

University of Chicago Department of Energy

Broadcast And Allreduce

Simple in MPI:
¢ MPI_Bcast, MPI_Allreduce
Simple in shared memory (?)

¢ doi=1,n
aéic? = b(i) ! B (shared) broadcast to A
enddo

¢ doi=1,n
sum = sum + A(i) ! A (shared) reduced to sum
enddo
But wait — how well would those perform?

¢ Poorly. Very Poorly (much published work in shared-memory
literature)

¢+ Optimizing these operations is not easy (e.g., Monday morning’s
session)

¢ Unrealistic to expect a compiler to come up with these algorithms

¢+ E.g., OpenMP admits this and contains a special operation for
scalar reductions (OpenMP v2 adds vector reductions)

What can we say about the success of MPI?

University of Chicago Department of Energy

Why Was MPI Successful?

o It address all of the following
ISsues:

¢ Portability

¢ Performance

¢ Simplicity and Symmetry
+ Modularity

¢+ Composability

¢ Completeness

University of Chicago Department of Energy

Portability

e Hardware changes (and improves)
frequently

¢+ Moving from system to system is often the
fastest route to higher performance

¢ Lifetime of an application (typically 5-20
years) greatly exceeds any hardware (3
years)

e Non-portable solutions trap the
application

¢ Short-term gain is not worth the long term
cost

University of Chicago Department of Energy

Portability and
Performance

e Portability does not require a “lowest
common denominator” approach

¢ Good design allows the use of special,
performance enhancing features without
requiring hardware support

¢+ MPI's nonblocking message-passing
semantics allows but does not reguire
“zero-copy” data transfers

o (Its actually greatest common
denominator)

University of Chicago Department of Energy

Performance Portability

e Goal: A programming model that ensures that
any program achieves best (or near best)
performance on all hardware.

¢+ MPI is sometimes criticized because there are many
ways to express the same operation.

e Reality: This is an unsolved problem, even for
Fortran on uniprocessors. Expecting a
solution for parallel systems is unrealistic.

¢ Consider dense matrix-matrix multiplications.

¢+ 6 ways to order the natural loops, discussed in a
famous paper

¢ None of these is optimal (various cache blocking
strategies are necessary)

¢+ Automated search techniques can out-perform hand-
code (ATLAS)

University of Chicago Department of Energy

Performance

e Performance must be competitive
¢ Pay attention to memory motion

+ Leave freedom for implementers to exploit
any special features
e Standard document requires careful reading

e Not all implementations are perfect

» (When you see MPI pingpong
asymptotic bandwidths that are

much below the expected Method | Bandwidth

performance, it is the MPI / 793

implementation that is broken,

not MPI) Shmem \2230
_

These should
be the same

University of Chicago Department of Energy

MPI's Memory Model

e Match to OS model

¢+ OS: Each process has memory whose
locality is important

¢ Locality for threads may not be appropriate,
depending on how the thread is used.

e Not a new approach

¢ register in C 180
¢ Local and shared 140 I
data | n H PF, U PC, :(Z)g B Interlacing NOER
B Blocking NOER
CoArray Fortran o mBase
| O Interlacing
40| B Blocking

SP Origin Pentium
University of Chicago Department of Energy

Parallel Computing and
Uniprocessor Performance

e Deeper memory = =
hierarchy 'Cache] 'Cache]
e Synchronization/ | Main Memory | Main Memory |
coordination | RemoteMemory |
e Load balancing
Memory Layer Access Time (cycles) | Relative
This is the | Register 1 1
hardest ga Cache 1-10 10
DRAM Memory 1000 100
Not thind Remote Memory (with MPI) | 10000 10

University of Chicago Department of Energy

Simplicity and Symmetry

e MPI is organized around a small number
of concepts

¢+ The number of routines is not a good
measure of complexity

¢ Fortran
e Large number of intrinsic functions

+ C and Java runtimes are large

¢+ Development Frameworks
e Hundreds to thousands of methods

¢ This doesn’t bother millions of programmers

University of Chicago Department of Energy

Measuring Complexity

e Complexity should be measured in the
number of concepts, not functions or
size of the manual

e MPI is organized around a few powerful
concepts
¢ Point-to-point message passing
+ Datatypes
¢ Blocking and nonblocking buffer handling

+ Communication contexts and process
groups

University of Chicago Department of Energy

Elegance of Design

e MPI often uses one concept to solve
multiple problems

e Example: Datatypes

¢ Describe noncontiguous data transfers,
necessary for performance

¢ Describe data formats, necessary for
heterogeneous systems

e "Proof” of elegance:

¢ Datatypes exactly what is needed for high-
performance I/0O, added in MPI-2.

University of Chicago Department of Energy

Symmetry

e EXxceptions are hard on users

¢ But easy on implementers — less to implement and
test

e Example: MPI_Issend

¢+ MPI provides several send modes:
e Regular
e Synchronous
e Receiver Ready
e Buffered
¢+ Each send can be blocking or non-blocking
¢+ MPI provides all combinations (symmetry), including
the “"Nonblocking Synchronous Send”
e Removing this would slightly simplify implementations

e Now users need to remember which routines are
provided, rather than only the concepts

University of Chicago Department of Energy

Modularity

e Modern algorithms are hierarchical

¢ Do not assume that all operations
involve all or only one process

¢ Provide tools that don’t limit the user

e Modern software is built from
components

¢+ MPI designed to support libraries
¢ Example: communication contexts

University of Chicago Department of Energy

Composability

e Environments are built from
components
¢+ Compilers, libraries, runtime systems
¢+ MPI designed to “play well with others”

e MPI exploits newest advancements in
compilers
¢ ... Without ever talking to compiler writers
¢+ OpenMP is an example

University of Chicago Department of Energy

Completeness

e MPI provides a complete parallel
programming model and avoids
simplifications that limit the model

¢ Contrast: Models that require that
synchronization only occurs collectively for
all processes or tasks
e Make sure that the functionality is there
when the user needs it

¢ Don’t force the user to start over with a
new programming model when a new
feature is needed

University of Chicago Department of Energy

Is Ease of Use the
Overriding Goal?

e MPI often described as “the assembly
language of parallel programming”

e C and Fortran have been described as
“portable assembly languages”
¢ (That's company MPI is proud to keep)

e Fase of use is important. But
completeness is more important.

¢ Don’t force users to switch to a different
approach as their application evolves
e Remember the mesh examples

University of Chicago Department of Energy

Lessons From MPI

e A general programming model for high-
performance technical computing must
address many issues to succeed

e Even that is not enough. Also need:
¢ Good design
¢ Buy-in by the community
¢ Effective implementations

e MPI achieved these through an Open
Standards Process

University of Chicago Department of Energy

Improving Parallel
Programming

e How can we make the programming of
real applications easier?

e Problems with the Message-Passing
Model
¢ User’s responsibility for data decomposition

¢ "Action at a distance”
e Matching sends and receives
e Remote memory access

¢ Performance costs of a library (no compile-
time optimizations)

University of Chicago Department of Energy

Challenges

e Must avoid the trap:
¢+ The challenge is not to make easy programs easier.
The challenge is to make hard programs possible.
e An even harder challenge: make it hard to
write incorrect programs.
+ OpenMP is not a step in the (entirely) right direction

¢ In general, current shared memory programming
models are very dangerous.
e Also performs action at a distance

e Requires a kind of user-managed data decomposition
to preserve performance without the cost of
locks/memory atomic operations

University of Chicago Department of Energy

HPC Software Issues

e Many are the same as for non-HPC software
¢ Performance is an additional complication

e Solutions must address the software
engineering issues
¢ Better coding practices

+ Better design (make it harder for the programmer to
make mistakes)

¢+ Encourage well-designed composition of solutions

¢ Balance the needs and wishes of users and
implementers

¢ Support programming for performance

University of Chicago Department of Energy

Manual Decomposition of

Data Structures

10

12

14

13

15

17
19

23

24
26

25
27

28
30

29
3

16
18

17

19,

20
22

21
23

33
35

37
g

40
42

43

44
46

45
47

10

12
14

13
15

24
26

2%

2

28
30

29
3

32
34

36
38

3
39

48

49

8],

82

53
85

49
51

53
55

56
53

57
59

60
62

61
63

40

42

44
46

45

47

5f

'80
62

61

63

0 1 2 3| 4 5 B T
8 9 (1011|1213 |14 | 15
16 117 118 11912012122 | 23
24 (25 (26|27 |28 (2930 | A
32 (33|34 |35(36| 37|38 |39
40 (41 |42 | 43 | 44 | 45 | 46 | 47
43 149 |50 |51 |52 |53 |54 |55
K6 |57 |58 | 59| 60| 61|62 |63
e Trick!

¢ This is from a paper on dense matrix tiling for uniprocessors!
ng data decompositions is a

e This suggests that mana
common problem for rea

or not
¢ Not just an artifact of MPI-style programming

¢ Aiding programmers in data structure decomposition is an
important part of solving the productivity puzzle

University of Chicago

c];i

Department of Energy

machines, whether they are parallel

Conclusions:
Lessons From MPI

e A successful parallel programming
model must enable more than the
simple problems

¢ It is nice that those are easy, but those
weren’t that hard to begin with

e Scalability is essential
¢+ Why bother with limited parallelism?

¢ Just wait a few months for the next
generation of hardware

e Performance is equally important
¢ But not at the cost of the other items

University of Chicago Department of Energy

More Lessons

e Completeness

¢ Support the evolution of applications
o Simplicity

¢ Focus on users not implementors

¢ Symmetry reduces users burden

e Portability rides the hardware wave

¢ Sacrifice only if the advantage is huge and
persistent

¢+ Competitive performance and elegant
design is not enough

University of Chicago Department of Energy

LANS

What is Needed To Achieve Real
High Productivity Programming

e Managing Decompositions
¢+ Necessary for both parallel and uniprocessor applications
e Possible approaches

¢+ Language-based

e Limited by predefined decompositions

» Some are more powerful than others; divacon provided a built-in divided and
conquer

¢ Library-based

e Overhead of library (incl. lack of compile-time optimizations), tradeoffs
between number of routines, performance, and generality
¢+ Domain-specific languages
e A possible solution, particularly when mixed with adaptable runtimes
e Exploit composition of software (e.g., work with existing compilers,
don’t try to duplicate/replace them?
e Example: mesh handling
Standard rules can define mesh
Alternate mappings easily applied (e.g., Morton orderings)
Careful source-to-source methods can preserve human-readable code

In the longer term, debuggers could learn to handle programs built with

language composition (they already handle 2 languages - assembly and
C/Fortran/...

v v Vv Vv

University of Chicago Department of Energy

