
MPI and High Productivity
Programming

William Gropp
Argonne National Laboratory

www.mcs.anl.gov/~gropp

University of Chicago Department of Energy

MPI is a Success

• Applications
! Most recent Gordon Bell prize winners use MPI

• Libraries
! Growing collection of powerful software components

• Tools
! Performance tracing (Vampir, Jumpshot, etc.)
! Debugging (Totalview, etc.)

• Results
! This conference
! Papers: http://www.mcs.anl.gov/mpi/papers

• Implementations
! Multiple, high-quality implementations

• Beowulf
! Ubiquitous parallel computing

http://www.mcs.anl.gov/mpi/papers

University of Chicago Department of Energy

But “MPI is the Problem”

• Many people feel that
programming with MPI is too hard
!And they can prove it

• Others believe that MPI is fine
!And they can prove it

University of Chicago Department of Energy

Consider These Five
Examples

• Three Mesh Problems
!Regular mesh
! Irregular mesh
!C-mesh

• Indirect access
• Broadcast of to all processes

University of Chicago Department of Energy

Regular Mesh Codes

• Classic example
of what is wrong
with MPI
! Some examples

follow, taken from
CRPC Parallel
Computing
Handbook and ZPL
web site, of mesh
sweeps

University of Chicago Department of Energy

Uniprocessor Sweep

do k=1, maxiter
do j=1, n-1

do i=1, n-1
unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &
h * h * f(i,j))

enddo
enddo
u = unew

enddo

University of Chicago Department of Energy

MPI Sweep

do k=1, maxiter
! Send down, recv up
call MPI_Sendrecv(u(1,js), n-1, MPI_REAL, nbr_down, k &

u(1,je+1), n-1, MPI_REAL, nbr_up, k, &
MPI_COMM_WORLD, status, ierr)

! Send up, recv down
call MPI_Sendrecv(u(1,je), n-1, MPI_REAL, nbr_up, k+1, &

u(1,js-1), n-1, MPI_REAL, nbr_down, k+1,&
MPI_COMM_WORLD, status, ierr)

do j=js, je
do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + u(i,j+1) + u(i,j-1) - &
h * h * f(i,j))

enddo
enddo

u = unew
enddo

And the more scalable 2-d decomposition is even messier

University of Chicago Department of Energy

HPF Sweep

!HPF$ DISTRIBUTE u(:,BLOCK)
!HPF$ ALIGN unew WITH u
!HPF$ ALIGN f WITH u
do k=1, maxiter

unew(1:n-1,1:n-1) = 0.25 * &
(u(2:n,1:n-1) + u(0:n-2,1:n-1) + &
u(1:n-1,2:n) + u(1:n-1,0:n-2) - &
h * h * f(1:n-1,1:n-1))

u = unew
enddo

University of Chicago Department of Energy

OpenMP Sweep

!$omp parallel
!$omp do

do j=1, n-1
do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &
u(i,j+1) + u(i,j-1) - &
h * h * f(i,j))

enddo
enddo

!$omp enddo

University of Chicago Department of Energy

ZPL Sweep

region
R = [0..n+1,0..n+1];

direction
N=[-1,0]; S = [1,0]; W=[0,-1]; E=[0,1];

Var
u : [BigR] real;

[R] repeat
u:=0.25*(u@n + u@e + u@s + u@w)-h*h*f;

Until (…convergence…);

(Roughly, since I’m not a ZPL programmer)

University of Chicago Department of Energy

Lessons

• Strengths of non-MPI solutions
! Data decomposition done for the

programmer
! No “action at a distance”

• So why does anyone use MPI?
! Performance
! Completeness
! Ubiquity

• Does your laptop have MPI on it? Why not?

• But more than that…

University of Chicago Department of Energy

Why Not Always Use HPF?

• Performance!
! From “A Comparison of

PETSC Library and HPF
Implementations of an
Archetypal PDE
Computation” (M.
Ehtesham Hayder, David
E. Keyes, and Piyush
Mehrotra)

! PETSc (Library using
MPI) performance
double HPF

• Maybe there’s something
to explicit management
of the data
decomposition…

University of Chicago Department of Energy

Not All Codes Are Completely
Regular

• Examples:
! Adaptive Mesh refinement

• How does one process know what data to access on
another process?

!Particularly as mesh points are dynamically allocated
• (You could argue for fine-grain shared/distributed

memory, but performance cost is an unsolved problem
in general)

• Libraries exist (in MPI), e.g., Chombo, KeLP (and
successors)

! Unstructured mesh codes
• More challenging to write in any language
• Support for abstractions like index sets can help, but

only a little
• MPI codes are successful here …

University of Chicago Department of Energy

FUN3d Characteristics

• Tetrahedral vertex-centered unstructured grid
code developed by W. K. Anderson (NASA
LaRC) for steady compressible and
incompressible Euler and Navier-Stokes
equations (with one-equation turbulence
modeling)

• Won Gordon Bell Prize in 1999
• Uses MPI for parallelism
• Application contains ZERO explicit lines of MPI

! All MPI within the PETSc library

University of Chicago Department of Energy

Fun3d Performance

Performance
close to
“achievable peak”
based on memory
bandwidth

University of Chicago Department of Energy

Another Example: Regular
Grids—But With a Twist

• “C Grids” common for
certain geometries

• Communication pattern is
regular but not part of
“mesh” or “matrix” oriented
languages
! |i-n/2|>L, use one rule,

otherwise, use a different
rule

! No longer transparent in
HPF or ZPL

! Convenience features are
brittle

• Great when they match
what you want

• But frustrating when they
don’t

University of Chicago Department of Energy

Irregular Access

• For j=1, zillion
table[f(j)] ^= intable[f(j)]

• Table, intable are “global” arrays (distributed
across all processes)

• Seems simple enough
! ^ is XOR, which is associative and commutative, so

order of evaluation is irrelevant

• Core of the GUPS (also called TableToy)
example
! Two version: MPI and shared memory
! MPI code is much more complicated

University of Chicago Department of Energy

But…

• MPI version produces the same answer every time
• Shared/Distributed memory version does not

! Race conditions are present
! Benchmark is from a problem domain where getting the

same answer every time is not required
! Scientific simulation often does not have this luxury

• You can make the shared memory version produce the
same answer every time, but
! You either need fine-grain locking

• In software, costly in time, may reduce effective parallelism
• In hardware, with sophisticated remote atomic operations

(such as a remote compare and swap), but costly in
€/£/¥/$/Ft/…

! Or you can aggregate operations
• Code starts looking like MPI version …

University of Chicago Department of Energy

Broadcast And Allreduce

• Simple in MPI:
! MPI_Bcast, MPI_Allreduce

• Simple in shared memory (?)
! do i=1,n

a(i) = b(i) ! B (shared) broadcast to A
enddo

! do i=1,n
sum = sum + A(i) ! A (shared) reduced to sum

enddo
• But wait — how well would those perform?

! Poorly. Very Poorly (much published work in shared-memory
literature)

! Optimizing these operations is not easy (e.g., Monday morning’s
session)

! Unrealistic to expect a compiler to come up with these algorithms
! E.g., OpenMP admits this and contains a special operation for

scalar reductions (OpenMP v2 adds vector reductions)
• What can we say about the success of MPI?

University of Chicago Department of Energy

Why Was MPI Successful?

• It address all of the following
issues:
!Portability
!Performance
!Simplicity and Symmetry
!Modularity
!Composability
!Completeness

University of Chicago Department of Energy

Portability

• Hardware changes (and improves)
frequently
! Moving from system to system is often the

fastest route to higher performance
! Lifetime of an application (typically 5-20

years) greatly exceeds any hardware (3
years)

• Non-portable solutions trap the
application
! Short-term gain is not worth the long term

cost

University of Chicago Department of Energy

Portability and
Performance

• Portability does not require a “lowest
common denominator” approach
! Good design allows the use of special,

performance enhancing features without
requiring hardware support

! MPI’s nonblocking message-passing
semantics allows but does not require
“zero-copy” data transfers

• (Its actually greatest common
denominator)

University of Chicago Department of Energy

Performance Portability

• Goal: A programming model that ensures that
any program achieves best (or near best)
performance on all hardware.
! MPI is sometimes criticized because there are many

ways to express the same operation.
• Reality: This is an unsolved problem, even for

Fortran on uniprocessors. Expecting a
solution for parallel systems is unrealistic.
! Consider dense matrix-matrix multiplications.
! 6 ways to order the natural loops, discussed in a

famous paper
! None of these is optimal (various cache blocking

strategies are necessary)
! Automated search techniques can out-perform hand-

code (ATLAS)

University of Chicago Department of Energy

Performance

• Performance must be competitive
! Pay attention to memory motion
! Leave freedom for implementers to exploit

any special features
• Standard document requires careful reading
• Not all implementations are perfect

!(When you see MPI pingpong
asymptotic bandwidths that are
much below the expected
performance, it is the
implementation that is broken,
not MPI)

Method Bandwidth

MPI 793

Shmem 2230

These should
be the same

University of Chicago Department of Energy

MPI’s Memory Model

• Match to OS model
! OS: Each process has memory whose

locality is important
! Locality for threads may not be appropriate,

depending on how the thread is used.

• Not a new approach
! r eg i s t e r in C
! Local and shared

data in HPF, UPC,
CoArray Fortran

0

20

40

60

80

100

120

140

160

180

SP Origin Pentium

Base NOER
Interlacing NOER
Blocking NOER
Base
Interlacing
Blocking

University of Chicago Department of Energy

Parallel Computing and
Uniprocessor Performance

Remote Memory

CPUs

Cache
Main Memory

CPUs

Cache
Main Memory

• Deeper memory
hierarchy

• Synchronization/
coordination

• Load balancing

Memory Layer Access Time (cycles)

Register 1

Cache 1–10

DRAM Memory 1000

Remote Memory (with MPI) 10000

Relative

1

10

100

10

This is the
hardest gap

Not this

University of Chicago Department of Energy

Simplicity and Symmetry

• MPI is organized around a small number
of concepts
! The number of routines is not a good

measure of complexity
! Fortran

• Large number of intrinsic functions

! C and Java runtimes are large
! Development Frameworks

• Hundreds to thousands of methods

! This doesn’t bother millions of programmers

University of Chicago Department of Energy

Measuring Complexity

• Complexity should be measured in the
number of concepts, not functions or
size of the manual

• MPI is organized around a few powerful
concepts
! Point-to-point message passing
! Datatypes
! Blocking and nonblocking buffer handling
! Communication contexts and process

groups

University of Chicago Department of Energy

Elegance of Design

• MPI often uses one concept to solve
multiple problems

• Example: Datatypes
! Describe noncontiguous data transfers,

necessary for performance
! Describe data formats, necessary for

heterogeneous systems

• “Proof” of elegance:
! Datatypes exactly what is needed for high-

performance I/O, added in MPI-2.

University of Chicago Department of Energy

Symmetry

• Exceptions are hard on users
! But easy on implementers — less to implement and

test
• Example: MPI_Issend

! MPI provides several send modes:
• Regular
• Synchronous
• Receiver Ready
• Buffered

! Each send can be blocking or non-blocking
! MPI provides all combinations (symmetry), including

the “Nonblocking Synchronous Send”
• Removing this would slightly simplify implementations
• Now users need to remember which routines are

provided, rather than only the concepts

University of Chicago Department of Energy

Modularity

• Modern algorithms are hierarchical
!Do not assume that all operations

involve all or only one process
!Provide tools that don’t limit the user

• Modern software is built from
components
!MPI designed to support libraries
!Example: communication contexts

University of Chicago Department of Energy

Composability

• Environments are built from
components
! Compilers, libraries, runtime systems
! MPI designed to “play well with others”

• MPI exploits newest advancements in
compilers
! … without ever talking to compiler writers
! OpenMP is an example

University of Chicago Department of Energy

Completeness

• MPI provides a complete parallel
programming model and avoids
simplifications that limit the model
! Contrast: Models that require that

synchronization only occurs collectively for
all processes or tasks

• Make sure that the functionality is there
when the user needs it
! Don’t force the user to start over with a

new programming model when a new
feature is needed

University of Chicago Department of Energy

Is Ease of Use the
Overriding Goal?

• MPI often described as “the assembly
language of parallel programming”

• C and Fortran have been described as
“portable assembly languages”
! (That’s company MPI is proud to keep)

• Ease of use is important. But
completeness is more important.
! Don’t force users to switch to a different

approach as their application evolves
• Remember the mesh examples

University of Chicago Department of Energy

Lessons From MPI

• A general programming model for high-
performance technical computing must
address many issues to succeed

• Even that is not enough. Also need:
! Good design
! Buy-in by the community
! Effective implementations

• MPI achieved these through an Open
Standards Process

University of Chicago Department of Energy

Improving Parallel
Programming

• How can we make the programming of
real applications easier?

• Problems with the Message-Passing
Model
! User’s responsibility for data decomposition
! “Action at a distance”

• Matching sends and receives
• Remote memory access

! Performance costs of a library (no compile-
time optimizations)

University of Chicago Department of Energy

Challenges

• Must avoid the trap:
! The challenge is not to make easy programs easier.

The challenge is to make hard programs possible.

• An even harder challenge: make it hard to
write incorrect programs.
! OpenMP is not a step in the (entirely) right direction
! In general, current shared memory programming

models are very dangerous.
• Also performs action at a distance
• Requires a kind of user-managed data decomposition

to preserve performance without the cost of
locks/memory atomic operations

University of Chicago Department of Energy

HPC Software Issues

• Many are the same as for non-HPC software
! Performance is an additional complication

• Solutions must address the software
engineering issues
! Better coding practices
! Better design (make it harder for the programmer to

make mistakes)
! Encourage well-designed composition of solutions
! Balance the needs and wishes of users and

implementers
! Support programming for performance

University of Chicago Department of Energy

Manual Decomposition of
Data Structures

• Trick!
! This is from a paper on dense matrix tiling for uniprocessors!

• This suggests that managing data decompositions is a
common problem for real machines, whether they are parallel
or not
! Not just an artifact of MPI-style programming
! Aiding programmers in data structure decomposition is an

important part of solving the productivity puzzle

University of Chicago Department of Energy

Conclusions:
Lessons From MPI

• A successful parallel programming
model must enable more than the
simple problems
! It is nice that those are easy, but those

weren’t that hard to begin with

• Scalability is essential
! Why bother with limited parallelism?
! Just wait a few months for the next

generation of hardware

• Performance is equally important
! But not at the cost of the other items

University of Chicago Department of Energy

More Lessons

• Completeness
! Support the evolution of applications

• Simplicity
! Focus on users not implementors
! Symmetry reduces users burden

• Portability rides the hardware wave
! Sacrifice only if the advantage is huge and

persistent
! Competitive performance and elegant

design is not enough

University of Chicago Department of Energy

What is Needed To Achieve Real
High Productivity Programming

• Managing Decompositions
! Necessary for both parallel and uniprocessor applications

• Possible approaches
! Language-based

• Limited by predefined decompositions
! Some are more powerful than others; divacon provided a built-in divided and

conquer

! Library-based
• Overhead of library (incl. lack of compile-time optimizations), tradeoffs

between number of routines, performance, and generality
! Domain-specific languages

• A possible solution, particularly when mixed with adaptable runtimes
• Exploit composition of software (e.g., work with existing compilers,

don’t try to duplicate/replace them)
• Example: mesh handling

! Standard rules can define mesh
! Alternate mappings easily applied (e.g., Morton orderings)
! Careful source-to-source methods can preserve human-readable code
! In the longer term, debuggers could learn to handle programs built with

language composition (they already handle 2 languages – assembly and
C/Fortran/…

