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MPI is a Success

• Applications
! Most recent Gordon Bell prize winners use MPI

• Libraries
! Growing collection of powerful software components

• Tools
! Performance tracing (Vampir, Jumpshot, etc.)
! Debugging (Totalview, etc.)

• Results
! This conference
! Papers: http://www.mcs.anl.gov/mpi/papers

• Implementations
! Multiple, high-quality implementations

• Beowulf
! Ubiquitous parallel computing

http://www.mcs.anl.gov/mpi/papers
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But “MPI is the Problem”

• Many people feel that 
programming with MPI is too hard
!And they can prove it

• Others believe that MPI is fine 
!And they can prove it
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Consider These Five 
Examples

• Three Mesh Problems
!Regular mesh 
! Irregular mesh
!C-mesh

• Indirect access
• Broadcast of to all processes
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Regular Mesh Codes

• Classic example 
of what is wrong 
with MPI
! Some examples 

follow, taken from 
CRPC Parallel 
Computing 
Handbook and ZPL 
web site, of mesh 
sweeps
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Uniprocessor Sweep

do k=1, maxiter
do j=1, n-1

do i=1, n-1
unew(i,j) = 0.25 * ( u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &
h * h * f(i,j) )

enddo
enddo
u = unew

enddo
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MPI Sweep

do k=1, maxiter
! Send down, recv up
call MPI_Sendrecv( u(1,js), n-1, MPI_REAL, nbr_down, k &

u(1,je+1), n-1, MPI_REAL, nbr_up, k, &
MPI_COMM_WORLD, status, ierr )

! Send up, recv down
call MPI_Sendrecv( u(1,je), n-1, MPI_REAL, nbr_up, k+1, &

u(1,js-1), n-1, MPI_REAL, nbr_down, k+1,&
MPI_COMM_WORLD, status, ierr )

do j=js, je
do i=1, n-1

unew(i,j) = 0.25 * ( u(i+1,j) + u(i-1,j) + u(i,j+1) + u(i,j-1) - &
h * h * f(i,j) )

enddo
enddo

u = unew
enddo

And the more scalable 2-d decomposition is even messier
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HPF Sweep

!HPF$ DISTRIBUTE u(:,BLOCK)
!HPF$ ALIGN unew WITH u
!HPF$ ALIGN f WITH u
do k=1, maxiter

unew(1:n-1,1:n-1) = 0.25 * &
( u(2:n,1:n-1) + u(0:n-2,1:n-1) + &
u(1:n-1,2:n) + u(1:n-1,0:n-2) - &
h * h * f(1:n-1,1:n-1) )

u = unew
enddo
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OpenMP Sweep

!$omp parallel
!$omp do

do j=1, n-1
do i=1, n-1

unew(i,j) = 0.25 * ( u(i+1,j) + u(i-1,j) + &
u(i,j+1) + u(i,j-1) - &
h * h * f(i,j) )

enddo
enddo

!$omp enddo
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ZPL Sweep

region 
R = [ 0..n+1,0..n+1];

direction
N=[-1,0]; S = [1,0]; W=[0,-1];  E=[0,1];

Var
u : [BigR] real;

[R] repeat
u:=0.25*(u@n + u@e + u@s + u@w)-h*h*f;

Until (…convergence…);

(Roughly, since I’m not a ZPL programmer)
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Lessons

• Strengths of non-MPI solutions
! Data decomposition done for the 

programmer
! No “action at a distance” 

• So why does anyone use MPI?
! Performance
! Completeness
! Ubiquity

• Does your laptop have MPI on it?  Why not?

• But more than that…
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Why Not Always Use HPF?

• Performance!
! From “A Comparison of 

PETSC Library and HPF 
Implementations of an 
Archetypal PDE 
Computation” (M. 
Ehtesham Hayder, David 
E. Keyes, and Piyush
Mehrotra)

! PETSc (Library using 
MPI) performance 
double HPF

• Maybe there’s something 
to explicit management 
of the data 
decomposition…
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Not All Codes Are Completely 
Regular

• Examples: 
! Adaptive Mesh refinement

• How does one process know what data to access on 
another process?

!Particularly as mesh points are dynamically allocated
• (You could argue for fine-grain shared/distributed 

memory, but performance cost is an unsolved problem 
in general)

• Libraries exist (in MPI), e.g., Chombo, KeLP (and 
successors)

! Unstructured mesh codes
• More challenging to write in any language
• Support for abstractions like index sets can help, but 

only a little
• MPI codes are successful here …
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FUN3d Characteristics

• Tetrahedral vertex-centered unstructured grid 
code developed by W. K. Anderson (NASA 
LaRC) for steady compressible and 
incompressible Euler and Navier-Stokes 
equations (with one-equation turbulence 
modeling)

• Won Gordon Bell Prize in 1999
• Uses MPI for parallelism
• Application contains ZERO explicit lines of MPI

! All MPI within the PETSc library
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Fun3d Performance

Performance
close to 
“achievable peak”
based on memory
bandwidth
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Another Example: Regular 
Grids—But With a Twist

• “C Grids” common for 
certain geometries

• Communication pattern is 
regular but not part of 
“mesh” or “matrix” oriented 
languages
! |i-n/2|>L, use one rule, 

otherwise, use a different 
rule

! No longer transparent in 
HPF or ZPL

! Convenience features are 
brittle

• Great when they match 
what you want

• But frustrating when they 
don’t
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Irregular Access

• For j=1, zillion
table[f(j)] ^= intable[f(j)]

• Table, intable are “global” arrays (distributed 
across all processes)

• Seems simple enough
! ^ is XOR, which is associative and commutative, so 

order of evaluation is irrelevant

• Core of the GUPS (also called TableToy) 
example
! Two version: MPI and shared memory
! MPI code is much more complicated
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But…

• MPI version produces the same answer every time
• Shared/Distributed memory version does not

! Race conditions are present
! Benchmark is from a problem domain where getting the 

same answer every time is not required
! Scientific simulation often does not have this luxury

• You can make the shared memory version produce the 
same answer every time, but
! You either need fine-grain locking

• In software, costly in time, may reduce effective parallelism
• In hardware, with sophisticated remote atomic operations 

(such as a remote compare and swap), but costly in 
€/£/¥/$/Ft/…

! Or you can aggregate operations
• Code starts looking like MPI version …
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Broadcast And Allreduce

• Simple in MPI:
! MPI_Bcast, MPI_Allreduce

• Simple in shared memory (?)
! do i=1,n

a(i) = b(i)   ! B (shared) broadcast to A
enddo

! do i=1,n
sum = sum + A(i)   ! A (shared) reduced to sum

enddo
• But wait — how well would those perform?

! Poorly.  Very Poorly (much published work in shared-memory 
literature)

! Optimizing these operations is not easy (e.g., Monday morning’s 
session)

! Unrealistic to expect a compiler to come up with these algorithms
! E.g., OpenMP admits this and contains a special operation for 

scalar reductions (OpenMP v2 adds vector reductions)
• What can we say about the success of MPI?
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Why Was MPI Successful?

• It address all of the following 
issues:
!Portability
!Performance
!Simplicity and Symmetry
!Modularity
!Composability
!Completeness
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Portability

• Hardware changes (and improves) 
frequently
! Moving from system to system is often the 

fastest route to higher performance
! Lifetime of an application (typically 5-20 

years) greatly exceeds any hardware (3 
years)

• Non-portable solutions trap the 
application
! Short-term gain is not worth the long term 

cost
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Portability and 
Performance

• Portability does not require a “lowest 
common denominator” approach
! Good design allows the use of special, 

performance enhancing features without 
requiring hardware support

! MPI’s nonblocking message-passing 
semantics allows but does not require
“zero-copy” data transfers

• (Its actually greatest common 
denominator)
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Performance Portability

• Goal: A programming model that ensures that 
any program achieves best (or near best) 
performance on all hardware.
! MPI is sometimes criticized because there are many 

ways to express the same operation.
• Reality: This is an unsolved problem, even for 

Fortran on uniprocessors.  Expecting a 
solution for parallel systems is unrealistic.
! Consider dense matrix-matrix multiplications.
! 6 ways to order the natural loops, discussed in a 

famous paper
! None of these is optimal (various cache blocking 

strategies are necessary)
! Automated search techniques can out-perform hand-

code (ATLAS)
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Performance

• Performance must be competitive
! Pay attention to memory motion
! Leave freedom for implementers to exploit 

any special features
• Standard document requires careful reading
• Not all implementations are perfect

!(When you see MPI pingpong
asymptotic bandwidths that are 
much below the expected 
performance, it is the 
implementation that is broken, 
not MPI)

Method Bandwidth

MPI 793

Shmem 2230

These should 
be the same
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MPI’s Memory Model

• Match to OS model
! OS: Each process has memory whose 

locality is important
! Locality for threads may not be appropriate, 

depending on how the thread is used.

• Not a new approach
! r eg i s t e r in C
! Local and shared 

data in HPF, UPC, 
CoArray Fortran
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Parallel Computing and 
Uniprocessor Performance

Remote Memory

CPUs

Cache
Main Memory

CPUs

Cache
Main Memory

• Deeper memory 
hierarchy

• Synchronization/
coordination

• Load balancing

Memory Layer Access Time (cycles)

Register 1

Cache 1–10

DRAM Memory 1000

Remote Memory (with MPI) 10000

Relative

1

10

100

10

This is the 
hardest gap

Not this
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Simplicity and Symmetry

• MPI is organized around a small number 
of concepts
! The number of routines is not a good 

measure of complexity
! Fortran

• Large number of intrinsic functions

! C and Java runtimes are large
! Development Frameworks

• Hundreds to thousands of methods

! This doesn’t bother millions of programmers
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Measuring Complexity

• Complexity should be measured in the 
number of concepts, not functions or 
size of the manual

• MPI is organized around a few powerful 
concepts
! Point-to-point message passing
! Datatypes
! Blocking and nonblocking buffer handling
! Communication contexts and process 

groups
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Elegance of Design

• MPI often uses one concept to solve 
multiple problems

• Example: Datatypes
! Describe noncontiguous data transfers, 

necessary for performance
! Describe data formats, necessary for 

heterogeneous systems

• “Proof” of elegance:
! Datatypes exactly what is needed for high-

performance I/O, added in MPI-2.
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Symmetry

• Exceptions are hard on users
! But easy on implementers — less to implement and 

test
• Example: MPI_Issend

! MPI provides several send modes:
• Regular
• Synchronous
• Receiver Ready
• Buffered

! Each send can be blocking or non-blocking
! MPI provides all combinations (symmetry), including 

the “Nonblocking Synchronous Send”
• Removing this would slightly simplify implementations
• Now users need to remember which routines are 

provided, rather than only the concepts
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Modularity

• Modern algorithms are hierarchical
!Do not assume that all operations 

involve all or only one process
!Provide tools that don’t limit the user

• Modern software is built from 
components
!MPI designed to support libraries
!Example: communication contexts



University of Chicago Department of Energy

Composability

• Environments are built from 
components
! Compilers, libraries, runtime systems
! MPI designed to “play well with others”

• MPI exploits newest advancements in 
compilers
! … without ever talking to compiler writers
! OpenMP is an example
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Completeness

• MPI provides a complete parallel 
programming model and avoids 
simplifications that limit the model
! Contrast: Models that require that 

synchronization only occurs collectively for 
all processes or tasks

• Make sure that the functionality is there 
when the user needs it
! Don’t force the user to start over with a 

new programming model when a new 
feature is needed
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Is Ease of Use the 
Overriding Goal?

• MPI often described as “the assembly 
language of parallel programming”

• C and Fortran have been described as 
“portable assembly languages”
! (That’s company MPI is proud to keep)

• Ease of use is important.  But 
completeness is more important.
! Don’t force users to switch to a different 

approach as their application evolves
• Remember the mesh examples
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Lessons From MPI

• A general programming model for high-
performance technical computing must 
address many issues to succeed

• Even that is not enough.  Also need:
! Good design
! Buy-in by the community
! Effective implementations

• MPI achieved these through an Open 
Standards Process
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Improving Parallel 
Programming

• How can we make the programming of 
real applications easier?

• Problems with the Message-Passing 
Model
! User’s responsibility for data decomposition
! “Action at a distance”

• Matching sends and receives
• Remote memory access

! Performance costs of a library (no compile-
time optimizations)
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Challenges

• Must avoid the trap: 
! The challenge is not to make easy programs easier.  

The challenge is to make hard programs possible.

• An even harder challenge: make it hard to 
write incorrect programs.
! OpenMP is not a step in the (entirely) right direction
! In general, current shared memory programming 

models are very dangerous.
• Also performs action at a distance
• Requires a kind of user-managed data decomposition 

to preserve performance without the cost of 
locks/memory atomic operations
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HPC Software Issues

• Many are the same as for non-HPC software
! Performance is an additional complication

• Solutions must address the software 
engineering issues
! Better coding practices
! Better design (make it harder for the programmer to 

make mistakes)
! Encourage well-designed composition of solutions
! Balance the needs and wishes of users and 

implementers
! Support programming for performance
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Manual Decomposition of 
Data Structures

• Trick!
! This is from a paper on dense matrix tiling for uniprocessors!

• This suggests that managing data decompositions is a 
common problem for real machines, whether they are parallel 
or not
! Not just an artifact of MPI-style programming
! Aiding programmers in data structure decomposition is an 

important part of solving the productivity puzzle
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Conclusions:
Lessons From MPI

• A successful parallel programming 
model must enable more than the 
simple problems
! It is nice that those are easy, but those 

weren’t that hard to begin with

• Scalability is essential
! Why bother with limited parallelism?
! Just wait a few months for the next 

generation of hardware

• Performance is equally important
! But not at the cost of the other items 
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More Lessons

• Completeness
! Support the evolution of applications 

• Simplicity
! Focus on users not implementors
! Symmetry reduces users burden

• Portability rides the hardware wave
! Sacrifice only if the advantage is huge and 

persistent
! Competitive performance and elegant 

design is not enough
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What is Needed To Achieve Real 
High Productivity Programming

• Managing Decompositions
! Necessary for both parallel and uniprocessor applications

• Possible approaches
! Language-based

• Limited by predefined decompositions
! Some are more powerful than others; divacon provided a built-in divided and 

conquer

! Library-based
• Overhead of library (incl. lack of compile-time optimizations), tradeoffs 

between number of routines, performance, and generality
! Domain-specific languages

• A possible solution, particularly when mixed with adaptable runtimes
• Exploit composition of software (e.g., work with existing compilers, 

don’t try to duplicate/replace them)
• Example: mesh handling

! Standard rules can define mesh 
! Alternate mappings easily applied (e.g., Morton orderings)
! Careful source-to-source methods can preserve human-readable code
! In the longer term, debuggers could learn to handle programs built with 

language composition (they already handle 2 languages – assembly and 
C/Fortran/…


