Is OpenMP for Users?

Bill Gropp

Argonne National
Laboratory
www.mcs.anl.gov/~gropp

Quiz
-

e |Is the following a correct program?

e #include <stdio.h>
#include <omp.h>
void skip(int i) {/*...*/}
void work(int){/*...*/}
int main() {
omp_lock tIck:
int id,;
omp_init_lock(&lck);
#pragma omp parallel shared(Ick) private(id)

id = omp_get _thread _num();
omp_set_lock(&lck);

printf(“My thread id | %d.\n", id);
omp_unset_lock(&lck);

while(! omp_test_lock(&Ick)) { skip(id); }
work(id);

omp_unset_lock(&lck);

}
omp_destroy_lock(&Ick);
return 1,

Quiz Answer
-

e No. According to A.17, p 143-144, it must be

e #include <stdio.h>
#include <omp.h>
void skip(int i) {/*...*/}
void work(int){/*...*/}
int main() {
omp_lock tIck:
int id,;
omp_init_lock(&lck);
#pragma omp parallel shared(Ick) private(id)

id = omp_get_thread_num();
omp_set_lock(&lck);

printf(“My thread id | %d.\n", id);
omp_unset_lock(&lck);

while(! omp_test_lock(&Ick)) { skip(id); }
#pragma omp flush

work(id);

#pragma omp flush
omp_unset_lock(&lck);

}
omp_destroy_lock(&Ick);
return 1,

Problems with Support for Multilingual
Programming

Three routines that set values (such as the number of threads to use)
have the same name but different calling sequences in C and Fortran

- Set_num_threads, set_dynamic, set nested
If sizeof(omp_lock t) !=4, then all 10 omp_xxx_lock routines can fail

If Fortran .true. and .false. don’t correspond to C, then 3 more routines
with logical return values can falil

This affects libraries: E.g., a user Fortran program that calls a library
written in C that uses OpenMP and that is linked in the usual and
expected way will fail

Only affects vendors whose C and Fortran compilers generate the
same loader name for the same “user” name

— This means IBM. I'm surprised IBM has not raised this issue.
Possible fixes:

— Add new routines for C and Fortran

e Suggestion: Use mixed case names for C/C++, e.g., OMP_Set_num_threads(int
n) and omp_set_num_threads(Fint *n)

e Deprecate routines with conflicting bindings

Risks with “stub” version
1

e How does an application know whether it got the
stub version or not?

-~ One vendor made this mistake with their thread library.
Stubs in libc meant programs linked and ran but did not
have any thread capability

e Even worse, same routines provided a mutex between

processes, meaning that an application could use fork to
create a new process and expect the mutex to provide a mutex

— (yes, this vendor should be shot)

e There should be a runtime call to discover level of
support

Dangerous Language Features
o]

“The language should make it hard to write incorrect programs”

Many OpenMP defaults put the burden on the programmer rather than the
compiler
- Pragmatic reason: Make sure that OpenMP code will run fast with minimum
intervention

We already saw flush
— For this reason, most thread libraries include flush as a property of the lock/unlock
routines
— Better to treat this as an optimization — if the user has evidence that performance
requires fine-grain control, then provide a way to do that.
Another example: lastprivate
- Without lastprivate, OpenMP pragmas can change the behavior of the program
e Violates principle of least surprise

— Compilers are usually good at detecting dead variables, so making lastprivate the
default should not affect performance

- If the semantics of “last value of loop variable used by some thread” is desired, then
there should be a pragma for that

Many others

OpenMP — Assembly Language for
Thread Parallelism?

S
e Not a bad thing

- Provides a portable assembly language
e But must fix name conflicts first

e But not the final solution

— Still too easy to write incorrect code

- Analysis tools that identify potential problems are
not an adequate solution
e Not ubiquitous
e Features like atomic require whole-program analysis

