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Why New Programming 
Approaches? 

• Massive Parallelism 
• Different Hardware 
• Frequent Faults 
• Higher Productivity 

♦ Whorfian hypothesis 
• Strong form: Language controls both 

thought and behavior 
8 Rejected by linguistics community 
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We Haven’t Always Been Digital 
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Historical Context 

• Pasadena workshop (1992) 
• PetaFlops workshops (1994—) 
• Gloom and doom 
• Success! 

♦ But we won’t admit it 
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Quotes from “System Software and Tools for 
High Performance Computing Environments” 

•  “The strongest desire expressed by these users was simply to satisfy 
the urgent need to get applications codes running on parallel 
machines as quickly as possible” 

•  In a list of enabling technologies for mathematical software, “Parallel 
prefix for arbitrary user-defined associative operations should be 
supported.  Conflicts between system and library (e.g., in message 
types) should be automatically avoided.” 
♦  Note that MPI-1 provided both 

•  “For many reasons recoverability mechanisms are important for both 
batch and interactive systems.” 
♦  Followed by a discussion of checkpointing 

•  Immediate Goals for Computing Environments: 
♦  Parallel computer support environment 
♦  Standards for same 
♦  Standard for parallel I/O 
♦  Standard for message passing on distributed memory machines 

•  “The single greatest hindrance to significant penetration of MPP 
technology in scientific computing is the absence of common 
programming interfaces across various parallel computing systems” 
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Quotes from “Enabling Technologies 
for Petaflops Computing”: 

•  “The software for the current generation of 100 GF machines 
is not adequate to be scaled to a TF…” 

•  “The Petaflops computer is achievable at reasonable cost with 
technology available in about 20 years [2014].” 
♦  (estimated clock speed in 2004 — 700MHz 

•  “Software technology for MPP’s must evolve new ways to 
design software that is portable across a wide variety of 
computer architectures.  Only then can the small but 
important MPP sector of the computer hardware market 
leverage the massive investment that is being applied to 
commercial software for the business and commodity 
computer market.” 

•  “To address the inadequate state of software productivity, 
there is a need to develop language systems able to integrate 
software components that use different paradigms and 
language dialects.” 

•  (9 overlapping programming models, including shared 
memory, message passing, data parallel, distributed shared 
memory, functional programming, O-O programming, and 
evolution of existing languages) 



University of Chicago Department of Energy 7 

Is There A Problem? 

•  Many feel that programming for 
performance is too hard; there is a 
productivity crisis 

•  And supporting new algorithms is too 
difficult 
♦ Either use new algorithm on slow hardware 

(general CISC/RISC µprocessor) 
♦ Or old algorithm on fast hardware (vector/

stream processor) 
•  But despite the gloom and doom, and 

despite little organized effort to solve all 
of these problems, we have applications 
running at over 10 TF today. 
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Contrarian View 

•  Algorithms are an expression of the 
mathematics 
♦  Need new algorithms 
♦  Need better ways to express those algorithms that 

match hardware realities 
•  Parallelism is only one of the easier problems 
•  Algorithms must match what the hardware can do well 

— this is where languages may need to change (Whorf) 

•  Are new languages really necessary? 
♦  If so, how should they be evaluated? 

•  The must address the hard problems, not just the easy 
ones 

♦  If not, how do we solve the problems we face? 
•  To see the pros and cons of new languages, 

lets look at some examples… 
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Consider These Five Examples 

• Three Mesh Problems 
♦ Regular mesh  
♦ Irregular mesh 
♦ C-mesh 

•  Indirect access 
• Broadcast to all processes and 

allreduce among all processes 
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Regular Mesh Codes 

•  Classic example 
of what is wrong 
with MPI 
♦ Some examples 

follow, taken from 
CRPC Parallel 
Computing 
Handbook and ZPL 
web site, of mesh 
sweeps 
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Uniprocessor Sweep 

do k=1, maxiter 
 do j=1, n-1 
  do i=1, n-1 
      unew(i,j) = 0.25 * ( u(i+1,j) + u(i-1,j) + & 
                 u(i,j+1) + u(i,j-1) - & 
     h * h * f(i,j) ) 
  enddo 
 enddo 
 u = unew 

enddo 
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MPI Sweep 

do k=1, maxiter 
 ! Send down, recv up 
 call MPI_Sendrecv( u(1,js), n-1, MPI_REAL, nbr_down, k & 
  u(1,je+1), n-1, MPI_REAL, nbr_up, k, & 
  MPI_COMM_WORLD, status, ierr ) 
 ! Send up, recv down 
 call MPI_Sendrecv( u(1,je), n-1, MPI_REAL, nbr_up, k+1, & 
  u(1,js-1), n-1, MPI_REAL, nbr_down, k+1,& 
  MPI_COMM_WORLD, status, ierr ) 
 do j=js, je 
     do i=1, n-1 
         unew(i,j) = 0.25 * ( u(i+1,j) + u(i-1,j) + u(i,j+1) + u(i,j-1) - & 
   h * h * f(i,j) ) 
     enddo 

      enddo 
 u = unew 

enddo 

And the more scalable 2-d decomposition is even messier 
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HPF Sweep 

!HPF$ DISTRIBUTE u(:,BLOCK) 
!HPF$ ALIGN unew WITH u 
!HPF$ ALIGN f WITH u 
do k=1, maxiter 

 unew(1:n-1,1:n-1) = 0.25 * & 
  ( u(2:n,1:n-1) + u(0:n-2,1:n-1) + & 
  u(1:n-1,2:n) + u(1:n-1,0:n-2) - & 
  h * h * f(1:n-1,1:n-1) ) 
 u = unew 

enddo 
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OpenMP Sweep 

!$omp parallel 
!$omp do 

 do j=1, n-1 
  do i=1, n-1 
      unew(i,j) = 0.25 * ( u(i+1,j) + u(i-1,j) + & 
     u(i,j+1) + u(i,j-1) - & 
    h * h * f(i,j) ) 
  enddo 
 enddo 

!$omp enddo 
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ZPL Sweep 

region  
    R = [ 0..n+1,0..n+1]; 
direction 
    N=[-1,0]; S = [1,0]; W=[0,-1];  E=[0,1]; 
Var 
    u : [BigR] real; 
[R] repeat 
    u:=0.25*(u@n + u@e + u@s + u@w)-h*h*f; 
Until (…convergence…); 

(Roughly, since I’m not a ZPL programmer) 
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Other Solutions 

• Similarly nice code for this 
example can be prepared in other 
“global name space” languages, 
such as UPC and CAF (CoArray 
Fortran) 
♦ User is responsible for more details 

than in the examples shown, but code 
is still simpler than MPI code 
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Lessons 

•  Strengths of non-MPI solutions 
♦ Data decomposition done for the 

programmer 
♦ No “action at a distance”  

•  So why does anyone use MPI? 
♦ Performance 
♦ Completeness 
♦ Ubiquity 

• Does your laptop have MPI on it?  Why not? 

•  But more than that… 
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Why Not Always Use HPF? 

•  Performance! 
♦  From “A Comparison of 

PETSC Library and HPF 
Implementations of an 
Archetypal PDE 
Computation” (M. 
Ehtesham Hayder, David 
E. Keyes, and Piyush 
Mehrotra) 

♦  PETSc (Library using 
MPI) performance 
double HPF 

•  Maybe there’s something 
to explicit management 
of the data 
decomposition… 
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Not All Codes Are 
Completely Regular 

•  Examples:  
♦  Adaptive Mesh refinement 

•  How does one process know what data to access on 
another process? 

8 Particularly as mesh points are dynamically allocated 
•  (You could argue for fine-grain shared/distributed 

memory, but performance cost is an unsolved problem 
in general) 

•  Libraries exist (in MPI), e.g., Chombo, KeLP (and 
successors) 

♦  Unstructured mesh codes 
•  More challenging to write in any language 
•  Support for abstractions like index sets can help, but 

only a little 
•  MPI codes are successful here … 
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FUN3d Characteristics 

•  Tetrahedral vertex-centered unstructured grid 
code developed by W. K. Anderson (NASA 
LaRC) for steady compressible and 
incompressible Euler and Navier-Stokes 
equations (with one-equation turbulence 
modeling) 

•  Won Gordon Bell Prize in 1999 
•  Uses MPI for parallelism 
•  Application contains ZERO explicit lines of MPI 

♦  All MPI within the PETSc library 
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Fun3d Performance 

Performance 
close to  
“achievable peak” 
based on memory 
bandwidth 
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Another Example: Regular Grids
—But With a Twist 

•  “C Grids” common for 
certain geometries 

•  Communication pattern is 
regular but not part of 
“mesh” or “matrix” oriented 
languages 
♦  |i-n/2|>L, use one rule, 

otherwise, use a different 
rule 

♦  No longer transparent in 
HPF or ZPL 

♦  Convenience features are 
brittle 

•  Great when they match 
what you want 

•  But frustrating when they 
don’t 

♦  (I haven’t even started on 
staggered meshes or 
mortar element methods or 
1-irregular grids or LUMR 
…) 
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Irregular Access 

•  For j=1, zillion 
    table[f(j)] ^= intable[f(j)]  

•  Table, intable are “global” arrays (distributed 
across all processes) 

•  Seems simple enough 
♦  ^ is XOR, which is associative and commutative, so 

order of evaluation is irrelevant 
•  Core of the GUPS (also called TableToy) 

example 
♦  Two versions: MPI and shared memory 
♦  MPI code is much more complicated 
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But… 

•  MPI version produces the same answer every 
time 

•  Shared/Distributed memory version does not  
♦  Race conditions are present 
♦  Benchmark is from a problem domain where getting 

the same answer every time is not required 
♦  Scientific simulation often does not have this luxury 

•  You can make the shared memory version 
produce the same answer every time, but 
♦  You either need fine-grain locking 

•  In software, costly in time, may reduce effective 
parallelism 

•  In hardware, with sophisticated remote atomic 
operations (such as a remote compare and swap), but 
costly in $ 

♦  Or you can aggregate operations 
•  Code starts looking like MPI version … 
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Broadcast And Allreduce 

•  Simple in MPI: 
♦  MPI_Bcast, MPI_Allreduce 

•  Simple in shared memory (?) 
♦  do i=1,n 

 a(i) = b(i)   ! B (shared) broadcast to A 
enddo 

♦  do i=1,n 
 sum = sum + A(i)   ! A (shared) reduced to sum 

enddo 
•  But wait — how well would those perform? 

♦  Poorly.  Very Poorly (much published work in shared-
memory literature) 

♦  Optimizing these operations is not easy (e.g., see papers 
at EuroPVMMPI03-04) 

•  Unrealistic to expect a compiler to come up with these 
algorithms 
♦  E.g., OpenMP admits this and contains a special operation 

for scalar reductions (OpenMP v2 adds vector reductions) 
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Is Ease of Use the Overriding 
Goal? 

•  MPI often described as “the assembly 
language of parallel programming” 

•  C and Fortran have been described as 
“portable assembly languages” 
♦  (That’s company MPI is proud to keep) 

•  Ease of use is important.  But 
completeness is more important. 
♦ Don’t force users to switch to a different 

approach as their application evolves 
•  Remember the mesh examples 
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Conclusions: 
Lessons From MPI 

•  A successful parallel programming 
model must enable more than the 
simple problems 
♦  It is nice that those are easy, but those 

weren’t that hard to begin with 
•  Scalability is essential 

♦ Why bother with limited parallelism? 
♦  Just wait a few months for the next 

generation of hardware 
•  Performance is equally important 

♦ But not at the cost of the other items  
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More Lessons 

•  A general programming model for high-performance 
technical computing must address many issues to 
succeed, including: 

•  Completeness 
♦  Support the evolution of applications  

•  Simplicity 
♦  Focus on users not implementors 
♦  Symmetry reduces users burden 

•  Portability rides the hardware wave 
♦  Sacrifice only if the advantage is huge and persistent 
♦  Competitive performance and elegant design is not enough 

•  Composability rides the software wave 
♦  Leverage improvements in compilers, runtimes, algorithms 
♦  Matches hierarchical nature of systems 
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Directions For Future 
Programming Models 

•  Enabling Evolution 
♦  Transformations to legacy code 

•  We already need this for memory locality, atomicity 
•  Adding better support for detecting and recovering 

from faults (e.g., independent confirmation of invarient 
combined with parallel-I/O-enabled, user-directed 
checkpoints) 

•  New ways of thinking 
♦  Different operators (e.g., chemotaxis-like 

programming for high-fault situations) 
♦  Probabilistic programming (and results) 

•  “Small scale” ultracomputing 
♦  Same technology that gives us exaflops may 

(should!) give us deskside petaflops 
♦  Interactive ultracomputing 
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Improving Parallel Programming 

•  How can we make the programming of real 
applications easier? 

•  Problems with the Message-Passing Model 
♦  User’s responsibility for data decomposition 
♦  “Action at a distance” 

•  Matching sends and receives 
•  Remote memory access 

♦  Performance costs of a library (no compile-time 
optimizations) 

♦  Need to choose a particular set of calls to match the 
hardware 

•  In summary, the lack of abstractions that 
match the applications 



University of Chicago Department of Energy 31 

Challenges 

•  Must avoid the traps:  
♦  The challenge is not to make easy programs easier.  The 

challenge is to make hard programs possible. 
♦  We need a “well-posedness” concept for programming tasks 

•  Small changes in the requirements should only require small changes 
in the code 

•  Rarely a property of “high productivity” languages 
8  Abstractions that make easy programs easier don’t solve the problem 

♦  Latency hiding is not the same as low latency 
•  Need “Support for aggregate operations on large collections” 

•  An even harder challenge: make it hard to write incorrect 
programs. 
♦  OpenMP is not a step in the (entirely) right direction 
♦  In general, current shared memory programming models are very 

dangerous. 
•  They also perform action at a distance 
•  They require a kind of user-managed data decomposition to preserve 

performance without the cost of locks/memory atomic operations 
♦  Deterministic algorithms should have provably deterministic 

implementations 



University of Chicago Department of Energy 32 

Manual Decomposition of Data 
Structures 

•  Trick! 
♦  This is from a paper on dense matrix tiling for uniprocessors! 

•  This suggests that managing data decompositions is a 
common problem for real machines, whether they are parallel 
or not 
♦  Not just an artifact of MPI-style programming 
♦  Aiding programmers in data structure decomposition is an 

important part of solving the productivity puzzle 
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Some Questions for a Vendor 

1.  Do you have a optimized DGEMM?  
♦  Did you do it by hand? 
♦  Did you use ATLAS? 
♦  Should users choose it over the reference 

implementation from netlib? 
2.  Do you have an optimizing Fortran 

compiler 
♦  Is it effective? 

•  Aren’t the answers to 1 and 2 
incompatible? 
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From Atlas 

Compiler 

Hand-tuned 

Parallelizing Compilers Are  
Not the Answer 

Enormous effort required to get good performance 

Large gap between 
natural code and 
specialized code  
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What is Needed To Achieve Real 
High Productivity Programming 

•  Managing Decompositions 
♦  Necessary for both parallel and uniprocessor applications 
♦  Many levels must be managed 
♦  Strong dependence on problem domain (e.g., halos, load-

balanced decompositions, dynamic vs. static) 
•  Possible approaches 

♦  Language-based 
•  Limited by predefined decompositions 

8 Some are more powerful than others; Divacon provided a built-in 
divided and conquer 

♦  Library-based 
•  Overhead of library (incl. lack of compile-time optimizations), 

tradeoffs between number of routines, performance, and 
generality 

♦  Domain-specific languages … 
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Domain-specific languages 

•  A possible solution, particularly when mixed with adaptable 
runtimes 

•  Exploit composition of software (e.g., work with existing 
compilers, don’t try to duplicate/replace them) 

•  Example: mesh handling 
♦  Standard rules can define mesh 

•  Including “new” meshes, such as C-grids  
♦  Alternate mappings easily applied (e.g., Morton orderings) 
♦  Careful source-to-source methods can preserve human-readable 

code 
♦  In the longer term, debuggers could learn to handle programs 

built with language composition (they already handle 2 languages 
– assembly and C/Fortran/…) 

•  Provides a single “user abstraction” whose implementation 
may use the composition of hierarchical models 
♦  Also provides a good way to integrate performance engineering 

into the application 
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Further Reading 

•  For a historical perspective (and a 
reality check), 
♦  “Enabling Technologies for Petaflops 

Computing”, Thomas Sterling, Paul Messina, 
and Paul H. Smith, MIT Press, 1995 

♦  “System Software and Tools for High 
Performance Computing Environments”, 
edited by Paul Messina and Thomas 
Sterling, SIAM, 1993 

•  For current thinking on possible 
directions, 
♦  “Report of the Workshop on High-

Productivity Programming Languages and 
Models”, edited by Hans Zima, May 2004. 


