
A U.S. Department of Energy
Office of Science Laboratory
Operated by The University of Chicago

Argonne National Laboratory

Office of Science
U.S. Department of Energy

Improving the Usability of
Clusters
William D. Gropp
www.mcs.anl.gov/~gropp

2

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

A Usability Journey

• Clusters are used by more people than ever
- But not everyone is enjoying the experience :)

• Single node performance
- Performance is the reason for (many) clusters

• Parallel performance
- Scalable operations

• Managing 1000 nodes as one machine
- Getting away from O(p) files, steps, connections, …

• Building components
- Commoditization of software

• Challenges
- See you in Barcellona!

3

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Clusters Dominate the Top500

4

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Clusters Face Competition on the Top500

IBM BlueGene Introduced

5

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Single Node Performance

• No one (well, almost no one) writes parallel programs or builds
clusters for the fun of it
- Getting more performance is the reason for having a cluster
- Applications may get as little as 5% of peak performance
- Often blamed on “the parallel computer”

• The fastest way to improve the performance of a parallel
application is to speed up the single-node performance
- Of course, this decreases the scalability of the code

6

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

CPU and Memory Performance

1

10

100

1000

Aug-76 Aug-80 Aug-84 Aug-88 Aug-92 Aug-96 Aug-00

Date of Introduction

C
lo

ck
 R

at
e

(n
s)

Supercomputer (Cray, NEC) RISC (HP, MIPS) CISC (Intel) Memory

DRAM
Performance

Floating
point

relevant
Floating
point
irrelevant

7

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Consequences of Memory/CPU Performance Gap

• Performance of an application may be limited by memory
bandwidth or latency rather than CPU clock

• “Peak” performance determined by the resource that is
operating at full speed for the algorithm
- Often memory system (STREAM numbers)
- Sometime instruction rate/mix

• For example, sparse matrix-vector operation performance is
best estimated by using STREAM performance
- Note that STREAM performance is delivered performance to a

Fortran or C program, not memory bus rate time width

8

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Realistic Measures of Peak Performance
Sparse Matrix Vector Product
one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0
100
200
300
400
500
600
700
800
900

SP Origin T3E Pentium Ultra II

Theoretical Peak
Oper. Issue Peak
Mem BW Peak
Observed

9

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

What About CPU-Bound Operations?

• Dense Matrix-Matrix Product
- Most studied numerical program by compiler writers
- Core of some important applications
- More importantly, the core operation in High Performance

Linpack (HPL)
- Should give optimal performance…

10

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

How Successful are Compilers with CPU Intensive Code?

From Atlas

Compiler

Hand-tuned

Enormous effort required to get good performance

Large gap between
natural code and
specialized code

11

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

One Approach to Improving Performance Productivity:
Source Annotations

• On BG/L, use of the second
FPU requires that data be
aligned on 16-byte boundaries

• Source code requires non-
portable pseudo-functions
(__alignx(16,var))

• By using simple, comment-
based annotations, speeds up
triad by 2x while maintaining
portability and correctness

void triad(double *a, double *b,
double *c, int n)

{
int i;
double ss = 1.2;
/* --Align;;var:a,b,c;; */
for (i=0; i<n; i++)
a[i] = b[i] + ss*c[i];

/* --end Align */
}

Size
Tr

ia
d

Ba
nd

w
id

th
(M

B/
s)

101 102 103 104 105 1061000

2000

3000

4000

5000

6000

7000
8000
9000

10000
No Explicit A lignm ent
Align Annotation

12

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Percent of Peak for HPL in Clusters

Frequency

0
2
4
6
8

10
12
14
16

0.1 0.1
5 0.2 0.2
5 0.3 0.3
5 0.4 0.4
5 0.5 0.5
5 0.6 0.6
5 0.7 More

Frequency

0
10
20
30
40
50
60
70

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

M
or

e

Percent of Peak

• Percent of peak 2002 — 2005,
for Intel Processors

• In 2002
- Many systems using Ethernet

(not even “Fast” Ethernet)
• In 2005

- Most systems clustered
around the same “typical”
percent of peak (65%)

- Infiniband, Myrinet, Quadrics
dominate at 80%+ of peak

- Even for HPL, the network
does matter…

13

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Trends in Scale

0

1000

2000

3000

4000

5000

6000

Smallest Largest Smallest Largest

Myrinet
GigE
Infiniband
Ethernet

2002 2005

0
50

100
150
200

50 10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0
25

60
0

51
20

0
10

24
00

More

Processor count for Top500 by Interconnect

0
50

100
150
200

50 10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0
25

60
0

51
20

0
10

24
00

More

Processor Count for Top500

14

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Parallel Performance

• Scale of systems continues to increase
- Solutions that are adequate for 10-100 inadequate for 1000-10000

nodes
• Consequences

- Physics sets a lower bound on latency
- Maintaining consistency between different storage objects

- E.g., files, memory within a parallel application
- Non-scalable operations become an issue
- View cluster as single computer (system) not a gathering of individuals
- Cluster versus collection

- Collection – used individually by users but managed collectively by
admins

- Cluster – used collectively by users (e.g., MPI programs)

15

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

The Dimensions of a Typical Cluster

• 6.1 m x 2.1 m x 1m
• 1-norm size (airline baggage

norm) = 9.2m
• At 2.4Ghz, =

74 cycles
(49 x 17 x 8)

• Real distance is greater
- Routes longer
- Signals travel slower than

light in a vacuum
• A “remote put” must cost >

74 cycles
- No clever trick will fix this

16

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Why Intrinsically Scalable Semantics?

• Large systems cannot be handled process by process
- What is easy for 10, works for 100, and works awkwardly for 1000 will

fail for 10000
- Race conditions
- Resource limits
- Serialization

• Large systems are being built
- Cray Red Storm has

over 10000 nodes
- Several QCDOC systems

at this scale
- IBM Blue Gene/L has 64K

nodes

17

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

How Do We Achieve Intrinsic Scalability?

• Operations must be collective
• Must not enumerate members of set of cooperating

processes/threads
• Semantics of operations must prevent race conditions
• Semantics of operations must be achievable with reasonable

implementation effort
- If effort is large, the implementation is likely to be slow

- Remember the rule for project goals:
fast, correct, or on-time – pick at most two

• An example of a troublesome model: POSIX I/O
- Motivated by the best of intentions (as in “the road to hell is

paved with”)

18

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

POSIX I/O Semantics

• All writes visible to all processes immediately
- Write by one process can be read immediately by another

process
- Essentially sequential consistency for I/O operations

• Severe performance problems
- NFS is not POSIX

- Precisely because of the performance problems
- Essentially a cache-consistency problem, with no hardware

support
- NFS chose incoherent caches (!)

19

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

The Problem with NFS

• Writes to disjoint parts of the same file may be lost
- File operations on are a block basis
- Programmer has no control over blocking

12345678 abcdefgh

AB345678 LMNOefgh

1234WXYZ LMNOefgh
Two possible outcomes

Neither sequence!

WXYZLMNOAB

Original data

Two Disjoint Writes

12345678 abcdefghWXYZLMNOAB Intended Effect

WXYZLMNOAB

20

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

MPI I/O Semantics

• I/O operations visible only within the MPI “job” until special actions
taken (e.g., MPI_File_sync or MPI_File_close)

• Matches common use of files by scientific applications
• Matches Fortran requirements
• Are a form of relaxed consistency

- Data stored is well-defined
- Avoids the NFS problem

- Just not instantaneously visible to everyone
• A further advantage

- A parallel application, using MPI-IO, can easily create one file, rather
than one per process
- Easier to manage for the user
- Immediately suitable to post processing analysis tools

• However, it can be tripped up by the file system…

21

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Scalability of Common Operations: Creating Files

• Even creating files can take significant time on very large
machines!

• Why?
- It’s complicated ☺
- …but it mostly has to do with the interface we have to work with

and implications on synchronization
• What happens if we change this interface?

22

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Creating Files Efficiently

• If we improve the file system interface,
we get better performance
- Better building block for MPI-IO

...

...

POSIX file model forces all processes to
open a file, causing a storm of system
calls.

...

...

A handle-based model uses a single FS
lookup followed by a broadcast of the
handle (implemented in PVFS2).

0
100

200
300
400
500

600
700

1 8 25 75 12
8

Number of Processes

Av
g.

 C
re

at
e

Ti
m

e
(m

s)

GPFS
Lustre
PVFS2

MPI File Create Performance (small is good)

Thanks to Rob Ross and the PVFS2 team

23

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Emulating a Single System

• GLUnix (1994)
- Early parallel Unix tools developed at UCBerkeley
- Central master, provides simplest, most reliable fault tolerance;

adequate for the largest clusters of the day (64-100 nodes)
• Scalable Unix Tools (1994)

- Developed in response to need for faster (e.g., more scalable) tools for
the IBM SP1 (ANL’s 128 node system)

- Many similar tools, extending Unix commands to clusters, have been
developed since

• Bproc (~1999)
- Linux extension for providing a distributed process space

• openMosix (2002)
- Linux extension for single system image

• MPISH (2005)
- Parallel shell language based on MPI

• System/Shell Programming with data-parallel models

24

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

A Concurrent Benchmarking Script

• #!/usr/bin/env mpish2

rank=`rank.mpi`

slot="AA"
size="2"
base="0"
count="0"

while ["$slot" == "AA"] ; do
index=`expr $rank - $base`
if ["$index" -lt "$size"] ; then

slot="$count"
else

count=`expr $count + 1`
base=`expr $base + $size`
size=`expr $size "*" 2`

fi
done

• time.mpi -t "size=full" progname

case $slot
1)

time.mpi -t "size=2" progname
;;

2)
time.mpi -t "size=4" progname
;;

3)
time.mpi -t "size=8" progname
;;

4)
time.mpi -t "size=16" progname
;;

esac

Parallel programs have “.mpi”
extension

These execute
concurrently

Narayan Desai, Rick Bradshaw, and
Rusty Lusk – For more info, see
http://www.mcs.anl.gov/cobalt/

25

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Features of MPISH

• Data-parallel model
- Actions on collections of processes
- Arbitrary collections of processes

- Not just all (MPI_COMM_WORLD)
• Ultimate Vision

- From high-level, scalable system software components to a high-level, scalable
language for controlling clusters

- boot_up_cluster(configfile);
- if (cluster_broken);

• fix_it;
- else

• main_loop();
• …

• Leverages MPI implementation
- For example, can use optimized MPI collective communication, such as

MPI_Bcast, for file and executable staging
- MPI-based version much faster and more robust than special purpose file-

staging code developed for a large cluster
- Leads us to the last step on our journey…

26

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Building on the Work of Others

• Real progress often comes from adding to and extending existing tools
- MPI is an example

- Successfully raised the level of abstraction beyond proprietary message-
passing systems

- Support for libraries (e.g., PETSc, ScaLAPACK, many others) allowed “MPI-
less programming” (including several Gordon Bell Prize winners)

- Leverages (and depends upon) advances in compiler technology, threads,
development tools

- Exchanges some potential advantages from “mudball” integration with clean,
component interfaces

- Only a first, small step in parallel programming environments
• It is time for clusters to embrace this

- Example: system management components
- Goal: Build an ecosystem of tools

- Let competition accelerate tool development
- Be wary of software that takes control

- How many different kernel patches can you use to build a workable system?

27

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Scalable Systems Software SciDAC Components

Access Control
Security Manager

Meta
Scheduler

Meta
Monitor

Meta
Manager

Interacts with
all components

Accounting Scheduler System
Monitor

Node
Configuration

& Build
Manager

User DB

Resource
Allocation

Management
Queue

Manager
Process
Manager

Data
Migration

Usage
Reports

User
Utilities

High
Performance

Communication
& I/O

Checkpoint /
Restart

File
System

Application Environment

Meta Services

Process Mgmt

Testing &
Validation

Infrastructure

Resource
Management

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Cobalt Architecture

• Component architecture based on the SciDAC Scalable System
Software project
- Provides easy portability to new platforms, currently supports

clusters running Linux and MacOSX, and BG/L systems
- Highly customizable – only 5K lines of component code
- Well-definied interfaces provide mechanism for ad-hoc usage of

component data
• Think collectively:

- Collective operations on nodes
- Allreduce on the return codes
- Split nodes into “communicators”
- Collectively handle those that succeeded
- Collectively handle those that failed

29

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Is Performance Everything?

“In August 1991, the Sleipner A, an oil and gas
platform built in Norway for operation in the North
Sea, sank during construction. The total economic
loss amounted to about $700 million. After
investigation, it was found that the failure of the
walls of the support structure resulted from a
serious error in the finite element analysis of the
linear elastic model.”
(http://www.ima.umn.edu/~arnold/disasters/sleipne
r.html)

30

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Cluster Challenges

• Enlarge the User Community
- Address performance needs
- Simplify use and operations of cluster
- Are new languages such as Chapel, Fortress, or X10 appropriate for clusters?
- Quantify progress with appropriate measures (not students writing Jacobi

sweeps — find out what real users need)
• Build “Cluster-Centric” Solutions

- Exploit collective and data parallel models
- Apply to I/O, system operations, and applications

• Create Component Software
- “Play well with others”

- Components that interoperate with others
- Cluster-oriented semantics

- Race-free, scalable
- Prove it!

- Build increasingly powerful tools by composing lower-level building blocks

