
Some Myths in High
Performance Computing

William D. Gropp
www.mcs.anl.gov/~gropp

Mathematics and Computer Science
Argonne National Laboratory

Argonne National Laboratory + University of Chicago 2

Some Popular Myths

• Parallel Programming is Hard
• Harder than what?

• Have you tried to keep your laptop up?

• Shared-Memory will save the day
• Correctness of programs?

• Why have SMP OSes been so troublesome?

• New Programming Languages are Needed
• Where will the applications come from?

• Why is this true? (Is Java a new language or a dialect of
C/C++?)

• The Grid
• What is it?

• Does it work?

Argonne National Laboratory + University of Chicago 3

Why are These Myths Popular?

• Myths are fun to repeat
• That’s how they become myths

• Myths fill a need
• To explain the unknown

• Particularly capricious and painful events

• Myths reflect a view of reality

• Understanding Myths gives us an advantage

Argonne National Laboratory + University of Chicago 4

Myth: Parallel Programming is Hard

• Reality:
• Programming for performance is hard

• Programming for correctness is hard

• Many parallel computers achieve a low fraction of
peak performance
• Inference: Parallel programming is hard

• Why is programming for performance hard, and how
does it relate to parallel computing?

Argonne National Laboratory + University of Chicago 5

Choosing the Correct Metric

• Classically, numerical analysts have counted floating
point operations
• Flops used to be expensive

• Goal for algorithms is O(n) work (defined as floating point
operations) on O(n) data

• But this does not reflect actual computational effort

• True costs are now more often related to memory
loads/stores
• BLAS3 advantage over BLAS1,2 is n3 operations with n2

load/stores

Argonne National Laboratory + University of Chicago 6

Myth #1

• Parallel computers achieve a low fraction of peak
performance

• Reality: True but not because of parallelism

Argonne National Laboratory + University of Chicago 7

Sparse Matrix-Vector Product

• Common operation for optimal (in floating-point
operations) solution of linear systems

• Sample code:
for row=0,n-1

 m = i[row+1] - i[row];

 sum = 0;

 for k=0,m-1

 sum += *a++ * x[*j++];

 y[i] = sum;

• Data structures are a[nnz], j[nnz], i[n], x[n], y[n]

Argonne National Laboratory + University of Chicago 8

Simple Performance Analysis

• Memory motion:
• nnz (sizeof(double) + sizeof(int)) +

n (2*sizeof(double) + sizeof(int))

• Perfect cache (never load same data twice)

• Computation
• nnz multiply-add (MA)

• Roughly 12 bytes per MA

• Typical WS node can move 1-4 bytes/MA
• Maximum performance is 8-33% of peak

Argonne National Laboratory + University of Chicago 9

More Performance Analysis

• Instruction Counts:
• nnz (2*load-double + load-int + mult-add) +

n (load-int + store-double)

• Roughly 4 instructions per MA

• Maximum performance is 25% of peak (33% if MA overlaps one
load/store)

• Changing matrix data structure (e.g., exploit small block
structure) allows reuse of data in register, eliminating some
loads (x and j)

• Implementation improvements (tricks) cannot improve on these
limits

Argonne National Laboratory + University of Chicago 10

Realistic Measures of Peak Performance
Sparse Matrix Vector Product
one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0

1000

2000

3000

4000

5000

6000

SP Origin T3E Pentium Ultra II Power4 Xeon

Theoretical Peak Oper. Issue Peak
Mem BW Peak Observed

Argonne National Laboratory + University of Chicago 11

Myth #2

• Parallel computers are hard to program

• Reality: Relative to uni-processors, the difficulty is
comparable
• Even easier

• More time is (often) spent on per-processor tuning than on
parallelism

• Fun3d — 1999 Gordan Bell winner (special)

• QMC — Nuclear structure code on BG/L

Argonne National Laboratory + University of Chicago 12

Sequential Performance—Time/iteration
SP: IBM P2SC (“thin”), 120 MHz, cache: 128 KB data and 32 KB instr
Origin: MIPS R10000, 250 MHz, cache 32 KB data/32KB instr/4MB L2
Pentium: Intel Pentium II, 400 MHz, cache: 16KBdata/16KB instr/512 KB L2

0

20

40

60

80

100

120

140

160

180

SP Origin Pentium

Base NOER

Interlacing NOER

Blocking NOER

Base

Interlacing

Blocking

Argonne National Laboratory + University of Chicago 13

Myth #3

• Shared memory architectures (hardware) will save the
day (for software)

• Reality: A system with uniform memory access time
might save the day, but the laws of physics make that
unlikely

Argonne National Laboratory + University of Chicago 14

Hardware Realities

• Performance is determined by memory performance

• Memory system design for performance makes
system performance less predictable

• Fast memories possible, but
• Expensive ($,£,¥,)

• Large

• Power hungry

• Programming models and algorithms we develop that
don’t take these realities into account may be
irrelevant

(Well, it is a major contributor)

Argonne National Laboratory + University of Chicago 15

Uniprocessor Memory Performance

• AlphaServer 8200 read latencies (3.33ns clock)

LatencyMemory

Level ns cycles

Bandwidth

GB/sec

Cache 6.7 2 4.8

L2 Cache 20 6 4.8

L3 Cache 26 8 0.96

Main 253 76 1.2

DRAM 60 18 .03-.1

Note that a[i] = b[i] * c[i] requires 7.2

GB/sec

Argonne National Laboratory + University of Chicago 16

Parallel Processor Memory
Performance
• Average read latency

CPUs AlphaServer Origin2000

MHz 300 195

ns cycles ns cycles

1 176 53

2 190 57 313 61

4 220 66 405 79

8 299 117 528 103

16 641 125

32 710 138

64 796 155

128 903 176

… and worse (cluster and cluster-like scalable systems)

More recent

measurements:

21264 (500MHz): 82

cycles just to L2

SGI O2000 (300MHz)

101 cycles to L2

SunFire 6800

(900 MHz)

198—252 cycles on L2

miss)

Argonne National Laboratory + University of Chicago 17

Massively Parallel Computing and
Performance
• Poor per processor performance (relative to peak) is a

common argument against massively parallel
computing
• Just get better performance and massively parallel computing

isn’t necessary

• The source of poor per processor performance is the
difficulty of making effective use of the memory
system. This problem only gets worse in parallel
systems
• But complexity of problem argues that a common solution must

be found

Argonne National Laboratory + University of Chicago 18

Other Myths

• Compilers will solve the parallel programming problem
• Pro: no new algorithms needed
• Con: compilers still can’t handle dense matrix-matrix multiply

• SMPs and shared memory will make performance programming
easier
• 1998 Gordon Bell Prize winners were uniprocessors; 3 of 4 winners in

1999 were uniprocessors
• MPI remains the most effective programming model for managing data

placement, locality, and access (Eeek!)

• Multithreaded architectures will save the day
• Large latencies require enormous numbers of threads

• Denial is not a solution

Argonne National Laboratory + University of Chicago 19

From Atlas

Compiler

Hand-tuned

The Compiler Will Handle It (?)

Enormous effort required to get good performance

Large gap between
natural code and
specialized code

Argonne National Laboratory + University of Chicago 20

Myth #4: The Grid

• What is the Grid for?
• Metacomputing?

• Virtual organizations?

• Data sharing?

• Collaboration?

• What is the real problem?
• My view: Collaboration and information sharing

• What have been the transitions in collaboration?

Argonne National Laboratory + University of Chicago 21

Rate of Travel from NY — 10000BC to
1830AD

Argonne National Laboratory + University of Chicago 22

Rate of Travel from NY — 1857

Argonne National Laboratory + University of Chicago 23

Travel Times Today

• Chicago – NY
• 2 hours to ORD, 2 hours flight, 1 hour from LGA to hotel
• 5 hours

• Doesn’t could 1 day weather delay

• Chicago – Beijing
• 2 hours to ORD, 13 hour flight, 1 hour to hotel
• 16 hours

• And in the future
• “Allow 6 hours for takeoff and 6 for landing, and assuming no traffic

snarls near the world of destination, and we have a ship which can go
anywhere in 13 and nowhere in less than 12…”

• Regional president of General Products, to Beowulf Shaeffer, “At
the core”

• The point is
• The next qualitative change in how we “meet” (baring teleportation)

must be virtual

Argonne National Laboratory + University of Chicago 24

Is the Grid like the Power Grid?

• Similarities
• Commodity resources
• Resource can’t be stored (cycles are lost if not used)

• But
• Wrong direction

• Power comes into my home, to use as I wish and control
• Computing tasks (including my data) go out of my home, to where

someone else controls them
• Not standardized

• Executables won’t run as is on other platforms
• Its not just cycles

• It’s the data
• No single parameter measure of resource (no counterpart to the Watt)

• Makes resources less fungible
• Emphasizes consumption of resources

Argonne National Laboratory + University of Chicago 25

Is the Grid more like the air travel
network?
• Airway analogy (railways are so 20th century)

• A better fit to real grid use?

• A different level of personal and organizational interactions

• Reduce time to interact and to move commodity (data)

• Multi-dimensional service metrics

• seats, schedules, aircraft, cost vs. priority

• Even lost luggage

• Data sizes and transfers can exceed TCP checksum

• And threat if someone falsifies identity

• We continue to need better security models; even rental cars require a
drivers license (id) and a credit card (guarantee of payment; basically a
second, independent authorization)

• Emphasizes connectivity

Argonne National Laboratory + University of Chicago 26

Opportunities Overview

• Enabling Computational Science

• High-end computing

• Programming models

• Parallel I/O (and reuse of latency-tolerant concepts to distributed
data)

• Code transformations for legacy software and software evolution

• Ensuring that applications are ready for the next generation of
machines

• Enabling Collaborations

• Interaction tools

• Using ETF to connect HPC facilities

• Making tools transparent

• Match needs of users (scientists and engineers)

Argonne National Laboratory + University of Chicago 27

Opportunities

• Data Sharing
• Not just read-only data

• Some grid I/O proposals are syntax only – no semantics (!!!)

• But update-rarely and write-once data are important

• One interesting file system concept — Immutable files

• Don’t forget the most common data write-once, read-never

• Many other capabilities will be enabled by robust, semantically-clean
interfaces

• Federated data, discovery, serendipity, …

• Virtual Meetings
• What needs to be done to make these as easy to schedule as a local

conference room?

• Better (and easier!) then teleconferences?

• Always-on AG (mini)nodes?

Argonne National Laboratory + University of Chicago 28

Conclusions

• Orient HPC towards scientists needs

• Many opportunities
• High-end applications

• Next-generation parallel architectures

• Software tools

• Programming models

• Collaborations

• Transparent tools

• UK eScience examples

