
A U.S. Department of Energy
Office of Science Laboratory
Operated by The University of Chicago

Argonne National Laboratory

Office of Science
U.S. Department of Energy

Towards a Productive MPI

Environment

William Gropp

www.mcs.anl.gov/~gropp

2

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Outline

• Building, testing, distributing MPI-based applications

- MPI API vs. MPI ABI

- Partial Steps

• Enhancing and customizing the MPI environment

- MPICH2 components

• Improving the programmability of MPI

- Enhanced error detection, reporting

- Exploiting the Profiling interface

- Introducing higher-level abstractions

- Higher Level Libraries

- Source-to-source transformations

3

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Working with Multiple MPI Implementations

• MPI ABI Revisited

- History:

- Building Library Components That Can Use Any MPI
Implementation at Euro PVMMPI 2002

- Greg Lindahl’s The Case for an MPI ABI

- Subsequent comments on the Beowulf list and elsewhere

- Obvious Issues

- Mpi.h contents

- Library linkage

- Non-opaque objects

- Less Obvious Issues

- Process Startup

- Shared libraries

- Scalability

4

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

The Problem

• Libraries and ISVs want to use MPI

- Which MPI? MPICH? OpenMPI? LAM/MPI? Vendor MPI? MPICH-
G2? <your-favorite-MPI-here>?

- Could build under all versions

- Must install and test each version

- Most libraries distributed as object files are built for a single MPI

• Applications want to use libraries

- What if the libraries need different MPI implementations?

5

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Building a Generic mpi.h

• To create a common mpi.h, the following parts of the MPI definition
must be addressed:
- Compile-time values

- E.g., MPI_ERR_TRUNCATE, MPI_ANY_SOURCE

- Compile-time values used in declarations

- E.g., MPI_MAX_ERROR_STRING

- Init-time constants

- E.g., MPI_INT, MPI_COMM_WORLD

- Opaque objects

- E.g., MPI_Request, MPI_Comm

- Defined Pointers

- E.g., MPI_BOTTOM, MPI_STATUS_IGNORE

- Defined Objects

- E.g., MPI_Status

• For systems with sizeof(int) == sizeof(void*), most of these can be
handled by carefully making values extern ints rather then #define or
enums. The exception is MPI_Status:

6

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Defined Objects

• MPI_Status

- Defined as a struct, but not all fields (and hence size) nor the
placement of the fields defined

• Replace interface with access methods (close to the C++ interface)

- One possible approach: define an API for handling arrays of status
(needed by Wait/Test some/all)

- int GMPI_Status_get_tag(MPI_Status *s, int idx)
MPI_Status *GMPI_Status_create(int n)
void GMPI_Status_free(MPI_Status *p)

- This API permits macro implementation for specific MPI
implementations, e.g.,

- #define GMPI_Status_get_tag(s, idx) s[idx].MPI_TAG

7

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Using Generic MPI

Independent of MPI implementation (generic mpi.h in
/usr/local/gmpi)

% cc -c myprog.c -I/usr/local/gmpi/include

% cc -c mylib.c -I/usr/local/gmpi/include

% ar cr libmylib.a mylib.o

% ranlib libmylib.a

For MPICH

% /usr/local/mpich/bin/mpicc -o myprog myprog.o -lmylib \

 -L/usr/local/gmpi/lib -lgmpitompich

For LAM/MPI

% /usr/local/lammpi/bin/mpicc -o myprog myprog.o -lmylib \

 -L/usr/local/gmpi/lib -lgmpitolam

Compile with gmpi

Link with specific
MPI implementation

• How easy is it to use a generic MPI based on these ideas?

8

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Handling 64-Bit Systems

• 64bit systems

- Ints usually 32 bits, pointers 64 bits

- Handles are no longer the same length in all implementations

• Solutions:

- Separate based on handle length

- Reduces overall number of versions

- gmpi32.h and gmpi64.h ?

- Use methods to create and delete handles

- Forces more significant changes to existing C programs

- A generic C++ binding could handle this

9

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Why Wasn’t this enough?

• Construction of shim programs and header files (e.g., to replace #define
MPI_INT … with const int MPI_INT=(int)…)
- Partially automated as part of 2002 paper, but process is fragile and requires

manual inspection

• Changes MPI
- Programs must be rewritten to handle MPI_Status

• Greg Lindahl pointed out missing features in model
- Does not address starting and running MPI jobs

- Many libraries and applications wish to use shared libraries instead of static
libraries

- Real potential for problems with mismatched shared libraries. This problem
is so common that it is called “DLL Hell”. Most (all?) suggestions to date are
very fragile

- One piece of the solution may be “collective system calls”, part of one of the
DOE FastOS projects

- The 64-bit “problem” isn’t going to go away

• Let’s look at starting and running MPI jobs
- Beginning with MPI_Init…

10

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

DLL Hell Illustrated

Common Shared Library

System suffers a “system call storm”

Distributed Shared Library

(All of these are identical, right?)

11

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

MPI Process Startup

• MPI-2 specified mpiexec

- Scripts can now use mpiexec –n 64 a.out

• Some features still missing, as Lindahl points out

- Standard I/O: Mpiexec a.out < foo >bar

- But the same problem exists with queuing systems

- Try qsub a.out < foo > bar

- Command line arguments, environment variables are not guaranteed

• Some things undefined

- Process state before MPI_Init or after MPI_Finalize

- How many processes? Values of environment variables?

• But a major problem is that mpiexec and a particular MPI
implementation (and even choice of communication device) have
been closely coupled

12

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Process Manager Interface

• The process manager and the interface between the process manager and the
MPI job can be a separately standardized component

• In standardizing the functions and the interface, scalability is a key issue.

- Starting with the “BNR” interface in MPICH-1, MPICH2 uses a scalable process
management interface (PMI) defined by:

- An Applications Programmer Interface (API) (set of routines called by
MPICH2)

- A wire protocol for a particular implementation of the API

- All process management functions (startup, spawn, connect) are handled
through this interface

- Note that the interface is scalable. It is easy to make mistakes here.

• In MPICH2, a single executable may be run with different process managers

- Configure –with-pm=mpd:gforker … ; make ; make install

- mpicc –o myprog myprog.c

- mpiexec –n 10 myprog

- mpiexec.gforker –n 10 myprog

13

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Customizing the MPI implementation

• Well-defined component interfaces provide a good way to
customize MPI implementations

- Process management interface makes it easy to connect to

other process management styles

- I’m looking for people interested in adding new mpiexec

implementations, including bproc and remote shell (ssh)

versions

MPICH2

MyLogger

src

includempi

mpich2build

• Other interfaces
• Performance information

• MPICH2 provides configure-time hook

with

 Configure –with-logging=/abspathname

…

where /abspathname is a directory

containing an implementation of the

MPICH2 logging interface and

Implementation of MPI operations

14

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Implementation of MPI Operations

• Collectives

- Since early in MPICH1, MPICH1 offered an interface allowing replacement of
each collective operation on a per-communicator basis

- Based on code provided by Jim Cownie for the Meiko

- MPICH2 redesigned this interface to minimize code footprint:

- Each collective defines a general yet high-quality implementation of the
collective

- Each communicator maintains a pointer to a table of function for collectives

- A null pointer for this table => use default

- A null pointer for this function in table => use default

- Allows customization based on communicator (Meiko use comm world and
dups of comm world), including application-specific (e.g., restricted
implementations in communicators used within a library)

• Topology

- Similar approach used to interface with information about process layout

• Both of these are exploited by the IBM BG/L implementation of MPI

15

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

IBM BlueGene/L MPI Software Architecture

(slide based on one provided by IBM)

Message passing Process management

MPICH2 PMIcollectivespt2pt datatype topo

CH3

socket

MM

sim
p

le

u
n
ip

ro
cesso

r

m
p

d

Message

Layer

bgl

torus tree GI b
g

lto
ru

s

Torus

Device

Tree

Device

GI

Device

CIO

Protocol

Packet

Layer

Abstract Device Interface

“glue”

bgl

16

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

State of MPICH2

• All new (from scratch) implementation of MPI-2 (and MPI-1)

- Not encumbered by limitations of old MPICH1 code

• Version 1.0 of MPICH2 released at SC2004

• Current version 1.0.2p1

• Supports all of MPI-2 except external32 data representation

• Includes beta-level support for MPI_THREAD_MULTIPLE

• Next release before SC2005

• Robust implementations for TCP and shared memory

• Experimental implementations for InfiniBand and GASNet

• Basis for many implementations, including

- IBM BG/L, Cray XT3, Intel, Microsoft, Myricom,

17

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Plans for the Next Year

• Full MPI-2 compliance
- Add external32 data representation

• Thread safety
- Thread safety is relatively easy; safety and performance is not

- Explore how to do this efficiently with fine-grained locks, rather than
locking the entire progress engine on entry

• Collective communication
- Currently optimized for flat network topologies

- Recent work this summer looked at multiple concurrent communication
channels (available on IBM BG/L)

- Optimize for hierarchical network topologies, such as clusters of SMPs
and the TeraGrid

• One-sided communication
- Synchronization functions already optimized, but data transfer uses

two-sided semantics at lowest levels

- Extend low-level APIs and implementation to allow true RDMA

• Replacement Basic Communication Device

18

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

New Communication Core

• Provide an infrastructure to answer basic questions about scaling MPI
implementations
- What is the overhead of MPI?

- Typically, one measures some MPI implementation, then claims that is the
overhead of MPI; confuses an implementation with a specification

• Our goal: Develop a fast, well-instrumented and analyzed communication core
- Answer questions about overhead, cost of MPI

- E.g., ~480 ns of latency below is mandatory cache miss cost

- Provide higher-performance, lower-latency open MPI

19

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

New MPICH2 Communication Device

• Current work is developing a “channel” for the ch3 device
• Key Features

- Shared memory is a special-case method

- Lock-free queues

- Low latency

- Extremely scalable

- Multi-method

- New networks are easy to add

- 4 required functions

- init, finalize, send, poll

- Optional functions for RMA and collectives for enhanced
performance

- Follows standard MPICH approach that allows easier initial
ports, followed by performance tuning (the ch3 device fell off the
true path for a while)

• See the Designing a Common Communication System on Wednesday
for more on high-performance communication device issues

20

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Lock-Free Queues

• Low latency

- No locks

- Uses compare-and-swap and swap atomic instructions

- Simple implementation

- Enqueue: 6 instructions, 1 L2 cache miss

- Dequeue: 11 instructions, 1-2 L2 cache misses

- Progress engine has only one queue to poll

• Extremely scalable

- Each process needs two queues regardless of the number of
processes

- Recv queue

- Free queue

- Progress engine has only one queue to poll

• Same queue mechanism is used for networks

- Messages received from networks are enqueued on the recv queue

21

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Improvements to MPICH2 I/O

• MPI-IO Enhancements in ROMIO

- MPI-2 one-sided (RMA) operations allow us to operate on

remote memory regions without remote process intervention

- Atomic mode and shared file pointers can be implemented using

MPI-2 capabilities

- Talks on both Tuesday (4B, 5B)

• MPI-IO Interface Extensions

- Extensions are needed for name space traversal

- Equivalent to readdir in POSIX

- Opportunity to think about forthcoming storage name space

organizations (e.g., database-like, others)

22

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Improving the MPI Development Environment

• Implementations should have robust, complete error reporting
• Errors should be instance specific

- Which would you rather have:

- Invalid rank

- Invalid rank of 5, must be between 0 and 4

- (You probably want a traceback too — a standard ABI for acquiring a traceback
would be a tremendous asset for any OS or language)

- MPICH2 exploits the difference between an error code and an error class

- Each error code includes a reference to the error class and a string that
contains the instance-specific data. A hash is used to address issues of
limited storage for errors and “stale” error codes

- Never worse than an error class

- It’s a good thing that the error codes were not fixed by the MPI Forum.

• Missplaced objects (e.g., a tag value where a communicator is expected)
should be detected

• For development, an implementation should pass at least the local error
detection tests in the Intel MPI-1 test suite

• Non-local tests (e.g., send/receive types and consistency of parameters to
collective calls) are harder

23

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Exploiting the Profiling Interface

• All MPI routines may be accessed through MPI_Xxx or PMPI_Xxx
• Allows customized development and debugging modifications
• Simple example: Write an MPI_Send that calls

PMPI_Issend/PMPI_Test to check for dependencies on message
buffering

• Many performance debugging tools, for example
- MPE tools within MPICH and MPICH2

- FPMPI (summary tool) www.mcs.anl.gov/fpmpi

• Correctness debugging tools
- E.g., detect errors in arguments to collective operations (4B)

• Another place to simplify life for users
- MPICH2 provides –profile=name argument for complication scripts

- If libname.a exists, use that (in the correct place in the link order)

- If name.conf exists, read that for more complex linking instructions

- Environment variables allow specification of profiling without changing
existing build or make scripts

• All of these do require a detailed understanding of the MPI standard

24

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Improving Parallel Programming

• How can we make the programming of real applications easier?
• Problems with the Shared Memory Model

- Performance costs

- False sharing, ensuring atomic updates, scalability, dependence on
the compiler to recognize and optimize collective operations

- “Action at a distance”

- Loss of determinism

- Performance goals may still require user-managed data decomposition

• Problems with the Message-Passing Model
- Performance costs of a library (no compile-time optimizations)

- Latency costs force larger “grain size”, exacerbating the
decomposition problem

- “Action at a distance”

- Matching sends and receives

- Remote memory access

- User’s responsibility for data decomposition

25

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Program Annotation Tools

• Use annotations to augment existing languages

- Not a new approach; used in HPF, OpenMP, others

- Aspect-oriented programming another example

- Some applications already use this approach for performance

portability

- WRF weather code

• Annotations do have limitations

- Fits best when most of the code is independent of the parts affected by

the annotations

- Limits optimizations that are available to approaches that augment the

language (e.g., telescoping languages)

• We are looking at a standard framework for annotating source code
that can invoke “third party” transformation tools

- Creates an “annotation ecosystem” to spur evolution of improved tools

- Provides a uniform approach for applications

26

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Annotation Example on BG/L

• Use of second FPU requires
that data be aligned on 16-
byte boundary

• Source code requires non-
portable pseudo-functions
(__alignx(16,var))

• By using simple, comment-
based annotations, speeds
up triad by 2x while
maintaining portability and
correctness

Size

T
ri

a
d

B
a
n

d
w

id
th

(M
B

/s
)

10
1

10
2

10
3

10
4

10
5

10
61000

2000

3000

4000

5000

6000

7000

8000

9000

10000

No Explicit Alignment

Align Annotation

27

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Annotations example: stream triad.c

void triad(double *a, double *b, double *c, int n)

{

 int i;

 double ss = 1.2;

 /* --Align;;var:a,b,c;; */

 for (i=0; i<n; i++)

 a[i] = b[i] + ss*c[i];

 /* --end Align */

}

void triad(double *a, double *b, double *c, int n)

{

#pragma disjoint (*c,*a,*b)

 int i;

 double ss = 1.2;

 /* --Align;;var:a,b,c;; */

 if (((int)(a) | (int)(b) | (int)(c)) & 0xf == 0) {

 __align(16,a)

 __alignx(16,a);

 __alignx(16,b);

 __alignx(16,c);

 for (_i=0; _i<=n; _i++) {

 a[_i]=b[_i]+ss*c[_i];

 }

 }

 else {

 for (_i=0;_i<=n;_i++) {

 a[_i]=b[_i]+ss*c[_i];

 }

 /* --end Align */

}

28

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Simple annotation example: stream triad.c

1830.891291.81500000

1442.171282.121000000

1415.521282.922000000

6299.213037.97100

2424.241920.0010

8275.863341.221000

Annotations

(MB/s)

No Annotations

(MB/s)

Size

1446.481290.815000000

 3727.211291.77100000

3725.481291.5250000

3717.881290.8110000 >2X

29

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Alternative example: A Regular Mesh Sweep

• C$AAS Declare Mesh(nx,ny); stencil width 1; a
double precision a(nx,ny)
C$AAE
…
C$AA Init a
…
C$AAS LoopOver a
do i=1, nx
 do j=1, ny
 a(i,j) = a(i-1,j-1) + ….
 enddo
enddo
C$AAE LoopOver nolast

Regular mesh, distributed

across all processes

Usual grid sweep, written in

“global” coordinates

Require user provide

information on halo

(easy for users, hard for

compiler)

Hook for initialization

30

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Generated (Readable!) Code

• C$AAS Declare Mesh(nx,ny); stencil width 1; a; md5=0xccde2
double precision locala(0:lnx+1,0:lny+1)
C$AAE
…
C$AAS Init a; md5=00
call AAMeshInit(locala,nx,ny,lnx,lny)
C$AAE
…
C$AAS LoopOver a; md5=0xcfd234
call AAMeshExchange(locala,lnx,lny)
do i=1,lnx
 do j=1,lny
 locala(i,j) = locala(i-1,j-1)+…
 enddo
enddo
C$AAE LoopOver nolast

Or explicit MPI-1 or

MPI-2 calls

Or split into Morton

ordered loops

Or allocate dynamically

Detect user changes to block

31

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

A Real Example

#include <stdio.h>

#include <math.h>

#include "mpi.h"

int main()

{

 int i;

 /* --DA1d-declare

 var:mesh;;type:double;;halo:1;; */

 double mesh[100];

 /* --end DA1d-declare */

 /* --DA1d-alloc var:mesh;;gsize:100;; */

 /* --end DA1d-alloc */

 /* --DA1d-sweep var:mesh;;block:mesh[@] = sin(@/100.0);; */

 for (i=0; i<100; i++) {

mesh[i] = sin(i / 100.0);

 }

 /* --end DA1d-sweep */

 /* --DA1d-sweep var:mesh;;block:<<within>>;;index:i;; */

 for (i=1; i<99; i++) {

mesh[i] = 0.5 * (mesh[i-1] + mesh[i+1]);

 }

 /* --end DA1d-sweep */

 /* --DA1d-serialize var:mesh;;block:<<within>>;; */

 for (i=0; i<100; i++) {

 printf("mesh[%d] %f\n", i, mesh[i]);

 }

 /* --end DA1d-serialize */

}

#include <stdio.h>

#include <math.h>

#include "mpi.h"

int main()

{

 int i;

 /* --DA1d-declare var:mesh;;type:double;;halo:1;; */

 double* _lmesh=0;

 int _lsizemesh = 0, _gsizemesh = 0, _gleftmesh;

 int _crankmesh = -1, _csizemesh = 0;

 /* --end DA1d-declare */

 /* --DA1d-alloc var:mesh;;gsize:100;; */

 MPI_Comm_rank(MPI_COMM_WORLD, &_crankmesh);

 MPI_Comm_size(MPI_COMM_WORLD, &_csizemesh);

 _lsizemesh = 100/_csizemesh + 2 * 1;

 _gleftmesh = _crankmesh * _lsizemesh;

 _lmesh = (double *)malloc(sizeof(double) * _lsizemesh);

 /* --end DA1d-alloc */

 /* --DA1d-sweep var:mesh;;block:mesh[@] = sin(@g/100.0);; */

 for (i=0; i<=_lsizemesh; i++) _lmesh[i] = sin((i+_gleftmesh)/100.0);

 /* --end DA1d-sweep */

 /* --DA1d-sweep var:mesh;;block:<<within>>;;index:i;; */

 for (i=0; i<=_lsizemesh; i++) {

_lmesh[i] = 0.5 * (_lmesh[i-1] + _lmesh[i+1]);

 }

 /* --end DA1d-sweep */

 /* --DA1d-serialize var:mesh;;block:<<within>>;; */

 if (_crankmesh > 0) {

 MPI_Recv(MPI_BOTTOM,0,MPI_BYTE,_crankmesh-1, 5678,MPI_COMM_WORLD,

MPI_STATUS_IGNORE);}

 for (i=0; i<=_lsizemesh; i++) {

 printf("mesh[%d] %f\n", i+_gleftmesh, _lmesh[i]);

 }

 if (_crankmesh+1 < _csizemesh) {

 MPI_Send(MPI_BOTTOM,0,MPI_BYTE,_crankmesh+1,5678,

MPI_COMM_WORLD);}

 /* --end DA1d-serialize */

32

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Conclusions

• MPI has served us well, but

- Need to address API/ABI issues in MPI-3

- Scalability and performance are still two of the great strengths of
MPI

• Some issues can be addressed by embracing components

- Standardized components are easiest

- (Almost) any component allows a “shim” implementation

• MPICH2 continues to explore the implementation space

- Long history of components, focus on development aids

• Finally, MPI often called the “assembly language of parallel
programming”. Given a portable, high-performance assembly
language, where are the high-level languages?

- Annotations provide on easy, application or domain-specific path

