
Overcoming the
Barriers to Sustained
Petaflop Performance

William D. Gropp
Mathematics and Computer Science
www.mcs.anl.gov/~gropp

Argonne National
Laboratory Barriers 2006

Why is achieved performance on a single
node so poor?

1

10

100

1000

Aug-76 Aug-80 Aug-84 Aug-88 Aug-92 Aug-96 Aug-00

Date of Introduction

C
lo

c
k
 R

a
te

 (
n

s
)

Supercomputer (Cray, NEC) RISC (HP, MIPS) CISC (Intel) Memory

DRAM

Performance

Floating

point

relevant

Floating

point

irrelevant

Argonne National
Laboratory Barriers 2006

Peak CPU speeds are stable

From

http://www.tomshardware.com/2005/11/21/the_mother_of_all_cpu

_charts_2005/

Argonne National
Laboratory Barriers 2006

Why are CPUs not getting faster?

Power dissipation problems will force more changes

– Current trends imply chips with energy densities greater than

a nuclear reactor

– Already a problem: Recalls of recent Mac laptops because

they could overheat.

– Will force

new ways

to get

performance,

such as

extensive

parallelism

Argonne National
Laboratory Barriers 2006

Where will we get (Sustained)
Performance?

Algorithms that are a better match for the architectures

Parallelism at all levels

– Algorithms and Hardware

•Hardware includes multicore,

GPU, FPGA,…

Concurrency at all levels

A major challenge is to realize
these approaches in code

– Most compilers do poorly with important kernels in
computational science

– Three examples - sparse matrix vector product,
dense matrix-matrix multiply, flux calculation

Argonne National
Laboratory Barriers 2006

Sparse Matrix-Vector Product

Common operation for optimal (in floating-point operations)

solution of linear systems

Sample code (in C):

for row=1,n

 m = i[row] - i[row-1];

 sum = 0;

 for k=1,m

 sum += *a++ * x[*j++];

 y[i] = sum;

Data structures are a[nnz], j[nnz], i[n], x[n], y[n]

Argonne National
Laboratory Barriers 2006

Simple Performance Analysis

Memory motion:

– nnz (sizeof(double) + sizeof(int)) +

n (2*sizeof(double) + sizeof(int))

– Assume a perfect cache (never load same data twice; only

compulsory loads)

Computation

– nnz multiply-add (MA)

Roughly 12 bytes per MA

Typical WS node can move 1-4 bytes/MA

– Maximum performance is 8-33% of peak

Argonne National
Laboratory Barriers 2006

More Performance Analysis

Instruction Counts:

– nnz (2*load-double + load-int + mult-add) +

n (load-int + store-double)

Roughly 4 instructions per MA

Maximum performance is 25% of peak (33% if MA overlaps one

load/store)

– (wide instruction words can help here)

Changing matrix data structure (e.g., exploit small block structure)

allows reuse of data in register, eliminating some loads (x and j)

Implementation improvements (tricks) cannot improve on these

limits

Argonne National
Laboratory Barriers 2006

Realistic Measures of Peak Performance
Sparse Matrix Vector Product
one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

Argonne National
Laboratory Barriers 2006

Realistic Measures of Peak Performance
Sparse Matrix Vector Product
one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

Argonne National
Laboratory Barriers 2006

Realistic Measures of Peak Performance
Sparse Matrix Vector Product
One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

Thanks to Dinesh Kaushik;
ORNL and ANL for compute time

Argonne National
Laboratory Barriers 2006

What About CPU-Bound Operations?

Dense Matrix-Matrix Product

– Probably the numerical program most studied by compiler

writers

– Core of some important applications

– More importantly, the core operation in High Performance

Linpack (HPL)

– Should give optimal performance…

Argonne National
Laboratory Barriers 2006

How Successful are Compilers with CPU
Intensive Code?

From Atlas

Compiler

Hand-tuned

Enormous effort required to get good performance

Large gap between
natural code and
specialized code

Argonne National
Laboratory Barriers 2006

Consequences of Memory/CPU
Performance Gap

Performance of an application may be (and often is) limited by

memory bandwidth or latency rather than CPU clock

“Peak” performance determined by the resource that is operating

at full speed for the algorithm

– Often memory system (e.g., see STREAM results)

– Sometimes instruction rate/mix (including integer ops)

For example, sparse matrix-vector operation performance is best

estimated by using STREAM performance

– Note that STREAM performance is delivered performance to a

Fortran or C program, not memory bus rate time width

– High latency of memory and low number of outstanding loads

can significantly reduce sustained memory bandwidth

Argonne National
Laboratory Barriers 2006

Performance for Real Applications

Dense matrix-matrix example shows that even for well-studied,

compute-bound kernels, compiler-generated code achieves only a

small fraction of available performance

– “Fortran” code uses “natural” loops, i.e., what a user would

write for most code

– Others use multi-level blocking, careful instruction scheduling

etc.

Algorithms design also needs to take into account the capabilities

of the system, not just the hardware

– Example: Cache-Oblivious Algorithms

(http://supertech.lcs.mit.edu/cilk/papers/abstracts/abstract4.ht

ml)

Adding concurrency (whether multicore or multiple processors)

just adds to the problems…

Argonne National
Laboratory Barriers 2006

Distributed Memory code

Single node performance is clearly a problem.

What about parallel performance?

– Many successes at scale (e.g., Gordon Bell Prizes for >100TF

on 64K BG nodes

– Some difficulties with load-balancing, designing code and

algorithms for latency, but skilled programmers and

applications scientists have been remarkably successful

Is there a problem?

– There is the issue of productivity. Consider the NAS parallel

benchmark code for Multigrid (mg.f):

What is the problem?

The user is responsible for all

steps in the decomposition of

the data structures across the

processors

Note that this does give the

user (or someone) a great

deal of flexibility, as the data

structure can be distributed in

arbitrary ways across

arbitrary sets of processors

Another example…

Argonne National
Laboratory Barriers 2006

Manual Decomposition of Data
Structures

Trick!

– This is from a paper on dense matrix tiling for uniprocessors!

This suggests that managing data decompositions is a common problem
for real machines, whether they are parallel or not

– Not just an artifact of MPI-style programming

– Aiding programmers in data structure decomposition is an important
part of solving the productivity puzzle

Argonne National
Laboratory Barriers 2006

Possible solutions

Single, integrated system

– Best choice when it works

• Matlab

Current Terascale systems and many proposed petascale systems exploit hierarchy

– Successful at many levels

• Cluster hardware

• OS scalability

– We should apply this to productivity software

• The problem is hard

• Apply classic and very successful Computer Science strategies to address the

complexity of generating fast code for a wide range of user-defined data

structures.

How can we apply hierarchies?

– One approach is to use libraries

• Limited by the operations envisioned by the library designer

– Another is to enhance the users ability to express the problem in source code

Argonne National
Laboratory Barriers 2006

Annotations

Aid in the introduction of hierarchy into the software

– Its going to happen anyway, so make a virtue of it

Create a “market” or ecosystem in transformation tools

Longer term issues

– Integrate annotation language into “host” language to ensure
type safety, ensure consistency (both syntactic and semantic),
closer debugger integration, additional optimization
opportunities through information sharing, …

Argonne National
Laboratory Barriers 2006

Examples of the Challenges

Fast code for DGEMM (dense matrix-matrix multiply)

– Code generated by ATLAS omitted to avoid blindness

– Example code from “Superscalar GEMM-based Level 3

BLAS”, Gustavson et al on the next slide

PETSc code for sparse matrix operations

– Includes unrolling and use of registers

– Code for diagonal format is fast on cache-based systems but

slow on vector systems.

• Too much code to rewrite by hand for new architectures

MPI implementation of collective communication and computation

– Complex algorithms for such simple operations as broadcast

and reduce are far beyond a compiler’s ability to create from

simple code

Argonne National
Laboratory Barriers 2006

A fast DGEMM (sample)

 SUBROUTINE DGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,

 $ BETA, C, LDC)

...

 UISEC = ISEC-MOD(ISEC, 4)

 DO 390 J = JJ, JJ+UJSEC-1, 4

 DO 360 I = II, II+UISEC-1, 4

 F11 = DELTA*C(I,J)

 F21 = DELTA*C(I+1,J)

 F12 = DELTA*C(I,J+1)

 F22 = DELTA*C(I+1,J+1)

 F13 = DELTA*C(I,J+2)

 F23 = DELTA*C(I+1,J+2)

 F14 = DELTA*C(I,J+3)

 F24 = DELTA*C(I+1,J+3)

 F31 = DELTA*C(I+2,J)

 F41 = DELTA*C(I+3,J)

 F32 = DELTA*C(I+2,J+1)

 F42 = DELTA*C(I+3,J+1)

 F33 = DELTA*C(I+2,J+2)

 F43 = DELTA*C(I+3,J+2)

 F34 = DELTA*C(I+2,J+3)

 F44 = DELTA*C(I+3,J+3)

 DO 350 L = LL, LL+LSEC-1

 F11 = F11 + T1(L-LL+1, I-II+1)*

 $ T2(L-LL+1, J-JJ+1)

 F21 = F21 + T1(L-LL+1, I-II+2)*

 $ T2(L-LL+1, J-JJ+1)

 F12 = F12 + T1(L-LL+1, I-II+1)*

 $ T2(L-LL+1, J-JJ+2)

 F22 = F22 + T1(L-LL+1, I-II+2)*

 $ T2(L-LL+1, J-JJ+2)

 F13 = F13 + T1(L-LL+1, I-II+1)*

 $ T2(L-LL+1, J-JJ+3)

 F23 = F23 + T1(L-LL+1, I-II+2)*

 $ T2(L-LL+1, J-JJ+3)

 F14 = F14 + T1(L-LL+1, I-II+1)*

 $ T2(L-LL+1, J-JJ+4)

 F24 = F24 + T1(L-LL+1, I-II+2)*

 $ T2(L-LL+1, J-JJ+4)

 F31 = F31 + T1(L-LL+1, I-II+3)*

 $ T2(L-LL+1, J-JJ+1)

 F41 = F41 + T1(L-LL+1, I-II+4)*

 $ T2(L-LL+1, J-JJ+1)

 F32 = F32 + T1(L-LL+1, I-II+3)*

 $ T2(L-LL+1, J-JJ+2)

 F42 = F42 + T1(L-LL+1, I-II+4)*

 $ T2(L-LL+1, J-JJ+2)

 F33 = F33 + T1(L-LL+1, I-II+3)*

 $ T2(L-LL+1, J-JJ+3)

 F43 = F43 + T1(L-LL+1, I-II+4)*

 $ T2(L-LL+1, J-JJ+3)

 F34 = F34 + T1(L-LL+1, I-II+3)*

 $ T2(L-LL+1, J-JJ+4)

 F44 = F44 + T1(L-LL+1, I-II+4)*

 $ T2(L-LL+1, J-JJ+4)

 350 CONTINUE

 ...

* End of DGEMM.

*

 END

Why not just

do i=1,n

 do j=1,m

 c(i,j) = 0

 do k=1,p

 c(i,j) = c(i,j) + a(i,k)*b(k,j)

 enddo

 enddo

enddo

Note: This is just part of DGEMM!

Argonne National
Laboratory Barriers 2006

Performance of Matrix-Matrix Multiplication
(MFlops/s vs. n2; n1 = n2; n3 = n2*n2)
Intel Xeon 2.4 GHz, 512 KB L2 Cache, Intel Compilers at –O3 (Version 8.1),
February 12, 2006

Argonne National
Laboratory Barriers 2006

Observations About Performance
Programming

Much use of mechanical transformations of code to achieve better

performance

– Compilers do not do this well

• Too many other demands on the compiler

Use of carefully crafted algorithms for specific operations such as

allreduce, matrix-matrix multiply

– Far more challenging than the performance transformations

Increasing acceptance of some degree of automation in creating

code

– ATLAS, PhiPAC, TCE

– Source-to-source transformation systems

• E.g., ROSE, Aspect Oriented Programming (asod.net)

Argonne National
Laboratory Barriers 2006

Potential challenges faced by
languages

1. Time to develop the language.

2. Divergence from mainstream compiler and language

development.

3. Mismatch with application needs.

4. Performance.

5. Performance portability.

6. Concern of application developers about the success of the

language.

Understanding these provides insights into potential solutions

Annotations can complement language research by using the

principle of separation of concerns

The annotation approach can be applied to new languages, as

well

Argonne National
Laboratory Barriers 2006

Key Observations

90/10 rule

– current languages adequate for 90% of code

– 10% of code causes 90% of trouble

Memory hierarchy issues a major source of problems

– Significant effort is put into relatively mechanical transformations of code

– Other transformations are avoided because of their negative impact on the

readability and maintainability of the code.

• Example is loop fusion for routines that sweep over a mesh to apply

different physics. Fusion, needed to reduce memory bandwidth

requirements, breaks modularity of routines written by different groups.

Coordination of distributed data structures another major source of problems

– But the need for performance encourages a global/local separation

• Reflected in PGAS languages

New languages may help, but not anytime soon

– New languages will never be the entire solution

– Applications need help now

Argonne National
Laboratory Barriers 2006

One Possible Approach

Use annotations to augment existing languages

– Not a new approach; used in HPF, OpenMP, others

– Some applications already use this approach for performance

portability

• WRF weather code

Annotations do have limitations

– Fits best when most of the code is independent of the parts

affected by the annotations

– Limits optimizations that are available to approaches that

augment the language (e.g., telescoping languages)

But they also have many advantages…

Argonne National
Laboratory Barriers 2006

Annotations example: STREAM triad.c
for BG/L

void triad(double *a, double *b, double *c, int n)

{

 int i;

 double ss = 1.2;

 /* --Align;;var:a,b,c;; */

 for (i=0; i<n; i++)

 a[i] = b[i] + ss*c[i];

 /* --end Align */

}

void triad(double *a, double *b, double *c, int n)

{

#pragma disjoint (*c,*a,*b)

 int i;

 double ss = 1.2;

 /* --Align;;var:a,b,c;; */

 if (((int)(a) | (int)(b) | (int)(c)) & 0xf == 0) {

 __alignx(16,a);

 __alignx(16,b);

 __alignx(16,c);

 for (i=0;i<n;i++) {

 a[i] = b[i] + ss*c[i];

 }

 }

 else {

 for (i=0;i<n;i++) {

 a[i]=b[i] + ss*c[i];

 }

 /* --end Align */

}

Argonne National
Laboratory Barriers 2006

Simple annotation example: STREAM triad.c on BG/L

1830.891291.81500000

1442.171282.121000000

1415.521282.922000000

6299.213037.97100

2424.241920.0010

8275.863341.221000

Annotations (MB/s)No Annotations

(MB/s)

Size

1446.481290.815000000

 3727.211291.77100000

3725.481291.5250000

3717.881290.8110000

2.5X

2.9X

1.12X

Argonne National
Laboratory Barriers 2006

Code Development Cycle

Permit evolution of the transformed code

Transformer

Annotation

Implementation

Modify Annotation

implementation

Performance

Tests

Test

again

Reprocess

annotated code

Original

annotated

source

Agent iterates choices

based on tests

Argonne National
Laboratory Barriers 2006

Advantages of annotations

These parallel the challenges for languages

1. Speeds development and deployment by using source-to-

source transformations.

– Higher-quality systems can preserve the readability of the

source code, avoiding one of the classic drawbacks of

preprocessor and source-to-source systems.

2. Leverages mainstream language developments by building on

top of those languages, not replacing them.

3. Provides a simpler method to match application needs by

allowing experts to develop abstractions tuned to the needs of a

class (or even a single important) application.

– Also enables the evaluation of new features and data

structures

Argonne National
Laboratory Barriers 2006

Advantages of annotations (con’t)

4. Provides an effective approach for addressing performance

issues by permitting (but not requiring) access by the

programmer to low-level details.

– Abstractions that allow domain or algorithm-specific

approaches to performance can be used because they can

be tuned to smaller user communities than is possible in a

full language.

5. Improves performance portability by abstracting platform-

specific low-level optimization code.

6. Preserves application investment in current languages.

– Allows use of existing development tools (debuggers) and

allows maintenance and development of code independent

of the tools the process the annotations.

Argonne National
Laboratory Barriers 2006

Is This Ugly?

You bet!

– But it starts the process of considering the code generation

process as consisting of a hierarchy of solutions

– Separates the integration of the tools as seen by the user from

the integration as seen by “the code”

It can evolve toward a cleaner approach, with well-defined

interfaces between hierarchies, and with a compilation-based

approach to provide better syntax and semantic analysis

But only if we accept the need for a hierarchical, compositional

approach.

This complements rather than replaces advances in languages,

such as global view approaches

In the near term, how do these ideas apply to multicore

processors. Here are my top three …

Argonne National
Laboratory Barriers 2006

Three Ways to Make Multicore Work

Number 3:

Software Engineering: Better ways to restructure codes

– E.g. Loop fusion (vs the more maintainable and

understandable to the computational scientist

approach of using separate loops). Need to

present the computational scientist with the best

code to maintain and change, while efficiently

managing the creation of more memory-bandwidth-

friendly codes. Must manage the issues

mentioned by Ken

– Library routine fusion (telescoping languages)

• While libraries provide good abstractions and

often better implementations, those very

abstractions can introduce extra memory

motion

– Tools to manage locality

• Compile time (local/global?) and Runtime

(memory views, perhaps similar to file views in

parallel file systems)

Source code transformation tool for performance

annotations, thanks to Boyanna Norris

Argonne National
Laboratory Barriers 2006

Three Ways to Make Multicore Work

Number 2:

Programming Models: Work with the system to coordinate data motion

– Vectors, Streams, Scatter/Gather, …

– Provide better compile and runtime abstractions about reuse and locality of data

– Stop pretending that we can provide an efficient, single-clock-cycle-to-memory, programming

model and help programmers express what really happens (but maintaining an abstraction so

that codes are not instance-specific)

– I didn’t say programming languages

– I didn’t say threads

• See, e.g., Edward A. Lee, "The Problem with Threads," Computer, vol. 39, no. 5, pp. 33-

42, May, 2006.

• “Night of the Living Threads”,

http://weblogs.mozillazine.org/roc/archives/2005/12/night_of_the_living_thread

s.html, 2005

• “Why Threads Are A Bad Idea (for most purposes)” John Ousterhout (~2004)
• “If I were king: A proposal for fixing the Java programming language's

threading problems” http://www-128.ibm.com/developerworks/library/j-

king.html, 2000

Argonne National
Laboratory Barriers 2006

Three Ways to Make Multicore Work

Number 1:

Mathematics: Do more computational work with less data motion

– E.g., Higher-order methods

• Trades memory motion for more operations per word,

producing an accurate answer in less elapsed time than lower-

order methods

– Different problem decompositions (no stratified solvers)

• The mathematical equivalent of loop fusion

• E.g., nonlinear Schwarz methods

– Ensemble calculations

• Compute ensemble values directly

– It is time (really past time) to rethink algorithms for memory

locality and latency tolerance

Argonne National
Laboratory Barriers 2006

Conclusions

It’s the memory hierarchy

A pure, compiler based approach is not credible until

1.

2. The “condition number” of that ratio is small (less than 2)

3. Your favorite performance challenge

Compilation is hard!

At the node, the memory hierarchy limits performance

– Architectural changes can help (e.g., prefetch, more pending

loads/stores) but will always need algorithmic and programming

help

– Algorithms must adapt to the realities of modern architectures

Between nodes, complexity of managing distributed data structures

limits productivity and the ability to adopt new algorithms

– Domain (or better, data-structure) specific nano-languages, used as

part of a hierarchical language approach, can help

9.0
MM) tuned-hand of eperformancmax(

MM)on compiler of eperformancmin(
>

