
A U.S. Department of Energy
Office of Science Laboratory
Operated by The University of Chicago

Argonne National Laboratory

Office of Science
U.S. Department of Energy

Overcoming the Barriers to Sustained

Petaflop Performance

William D. Gropp

Mathematics and Computer Science
www.mcs.anl.gov/~gropp

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Why is achieved performance on a single node so poor?

1

10

100

1000

Aug-76 Aug-80 Aug-84 Aug-88 Aug-92 Aug-96 Aug-00

Date of Introduction

C
lo

c
k
 R

a
te

 (
n

s
)

Supercomputer (Cray, NEC) RISC (HP, MIPS) CISC (Intel) Memory

DRAM

Performance

Floating

point

relevant

Floating

point

irrelevant

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Consequences of Memory/CPU Performance Gap

• Performance of an application may be (and often is) limited by
memory bandwidth or latency rather than CPU clock

• “Peak” performance determined by the resource that is
operating at full speed for the algorithm

- Often memory system (e.g., see STREAM results)

- Sometimes instruction rate/mix (including integer ops)

• For example, sparse matrix-vector operation performance is
best estimated by using STREAM performance

- Note that STREAM performance is delivered performance to a

Fortran or C program, not memory bus rate time width

- High latency of memory and low number of outstanding loads

can significantly reduce sustained memory bandwidth

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

What About CPU-Bound Operations?

• Dense Matrix-Matrix Product

- Probably the numerical program most studied by compiler

writers

- Core of some important applications

- More importantly, the core operation in High Performance

Linpack (HPL)

- Should give optimal performance…

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

How Successful are Compilers with CPU Intensive Code?

From Atlas

Compiler

Hand-tuned

Enormous effort required to get good performance

Large gap between
natural code and
specialized code

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Distributed Memory code

• Single node performance is clearly a problem.

• What about parallel performance?

- Many successes at scale (e.g., Gordon Bell Prizes for >100TF

on 64K BG nodes), David’s talk

- Some difficulties with load-balancing, designing code and

algorithms for latency, but skilled programmers and applications

scientists have been remarkably successful

• Is there a problem?

- There is the issue of productivity. Consider the NAS parallel

benchmark code for Multigrid (mg.f):

What is the problem?

The user is responsible for all

steps in the decomposition of

the data structures across the

processors

Note that this does give the

user (or someone) a great

deal of flexibility, as the data

structure can be distributed in

arbitrary ways across

arbitrary sets of processors

Another example…

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Manual Decomposition of Data Structures

• Trick!

- This is from a paper on dense matrix tiling for uniprocessors!

• This suggests that managing data decompositions is a common problem for
real machines, whether they are parallel or not

- Not just an artifact of MPI-style programming

- Aiding programmers in data structure decomposition is an important part of
solving the productivity puzzle

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Possible solutions

• Single, integrated system

- Best choice when it works

- Matlab

- Commander Data

• Current Terascale systems and many proposed petascale systems exploit hierarchy

- Successful at many levels

- Cluster hardware

- OS scalability

- We should apply this to productivity software

- The problem is hard

- Apply classic and very successful Computer Science strategies to address the

complexity of generating fast code for a wide range of user-defined data structures.

• How can we apply hierarchies?

- One approach is to use libraries

- Limited by the operations envisioned by the library designer

- Another is to enhance the users ability to express the problem in source code

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Annotations

• Aid in the introduction of hierarchy into the software

- Its going to happen anyway, so make a virtue of it

• Create a “market” or ecosystem in transformation tools

• Longer term issues

- Integrate annotation language into “host” language to ensure
type safety, ensure consistency (both syntactic and semantic),
closer debugger integration, additional optimization opportunities
through information sharing, …

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Examples of the Challenges

• Fast code for DGEMM (dense matrix-matrix multiply)

- Code generated by ATLAS omitted to avoid blindness

- Example code from “Superscalar GEMM-based Level 3 BLAS”,

Gustavson et al on the next slide

• PETSc code for sparse matrix operations

- Includes unrolling and use of registers

- Code for diagonal format is fast on cache-based systems but slow on

vector systems.

- Too much code to rewrite by hand for new architectures

• MPI implementation of collective communication and computation

- Complex algorithms for such simple operations as broadcast and

reduce are far beyond a compiler’s ability to create from simple code

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

A fast DGEMM (sample)

 SUBROUTINE DGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,

 $ BETA, C, LDC)

...

 UISEC = ISEC-MOD(ISEC, 4)

 DO 390 J = JJ, JJ+UJSEC-1, 4

 DO 360 I = II, II+UISEC-1, 4

 F11 = DELTA*C(I,J)

 F21 = DELTA*C(I+1,J)

 F12 = DELTA*C(I,J+1)

 F22 = DELTA*C(I+1,J+1)

 F13 = DELTA*C(I,J+2)

 F23 = DELTA*C(I+1,J+2)

 F14 = DELTA*C(I,J+3)

 F24 = DELTA*C(I+1,J+3)

 F31 = DELTA*C(I+2,J)

 F41 = DELTA*C(I+3,J)

 F32 = DELTA*C(I+2,J+1)

 F42 = DELTA*C(I+3,J+1)

 F33 = DELTA*C(I+2,J+2)

 F43 = DELTA*C(I+3,J+2)

 F34 = DELTA*C(I+2,J+3)

 F44 = DELTA*C(I+3,J+3)

 DO 350 L = LL, LL+LSEC-1

 F11 = F11 + T1(L-LL+1, I-II+1)*

 $ T2(L-LL+1, J-JJ+1)

 F21 = F21 + T1(L-LL+1, I-II+2)*

 $ T2(L-LL+1, J-JJ+1)

 F12 = F12 + T1(L-LL+1, I-II+1)*

 $ T2(L-LL+1, J-JJ+2)

 F22 = F22 + T1(L-LL+1, I-II+2)*

 $ T2(L-LL+1, J-JJ+2)

 F13 = F13 + T1(L-LL+1, I-II+1)*

 $ T2(L-LL+1, J-JJ+3)

 F23 = F23 + T1(L-LL+1, I-II+2)*

 $ T2(L-LL+1, J-JJ+3)

 F14 = F14 + T1(L-LL+1, I-II+1)*

 $ T2(L-LL+1, J-JJ+4)

 F24 = F24 + T1(L-LL+1, I-II+2)*

 $ T2(L-LL+1, J-JJ+4)

 F31 = F31 + T1(L-LL+1, I-II+3)*

 $ T2(L-LL+1, J-JJ+1)

 F41 = F41 + T1(L-LL+1, I-II+4)*

 $ T2(L-LL+1, J-JJ+1)

 F32 = F32 + T1(L-LL+1, I-II+3)*

 $ T2(L-LL+1, J-JJ+2)

 F42 = F42 + T1(L-LL+1, I-II+4)*

 $ T2(L-LL+1, J-JJ+2)

 F33 = F33 + T1(L-LL+1, I-II+3)*

 $ T2(L-LL+1, J-JJ+3)

 F43 = F43 + T1(L-LL+1, I-II+4)*

 $ T2(L-LL+1, J-JJ+3)

 F34 = F34 + T1(L-LL+1, I-II+3)*

 $ T2(L-LL+1, J-JJ+4)

 F44 = F44 + T1(L-LL+1, I-II+4)*

 $ T2(L-LL+1, J-JJ+4)

 350 CONTINUE

 ...

* End of DGEMM.

*

 END

Why not just

do i=1,n

 do j=1,m

 c(i,j) = 0

 do k=1,p

 c(i,j) = c(i,j) + a(i,k)*b(k,j)

 enddo

 enddo

enddo

Note: This is just part of DGEMM!

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Performance of Matrix-Matrix Multiplication

(MFlops/s vs. n2; n1 = n2; n3 = n2*n2)
Intel Xeon 2.4 GHz, 512 KB L2 Cache, Intel Compilers at –O3 (Version 8.1), February 12, 2006

316

1177

724

579

1298
1253

699

1214

1305

744

1145 1136

661

1077 1103

0

200

400

600

800

1000

1200

1400

5 10 15 20 25

Triply Nested Loops Hand Unrolled Loop DGEMM from Intel MKL

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Potential challenges faced by languages

1. Time to develop the language.

2. Divergence from mainstream compiler and language development.

3. Mismatch with application needs.

4. Performance.

5. Performance portability.

6. Concern of application developers about the success of the
language.

• Understanding these provides insights into potential solutions

• Annotations can complement language research by using the
principle of separation of concerns

• The annotation approach can be applied to new languages, as well

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Advantages of annotations

• These parallel the challenges for languages

1. Speeds development and deployment by using source-to-source
transformations.

- Higher-quality systems can preserve the readability of the source code,

avoiding one of the classic drawbacks of preprocessor and source-to-source

systems.

2. Leverages mainstream language developments by building on top of those
languages, not replacing them.

3. Provides a simpler method to match application needs by allowing experts to
develop abstractions tuned to the needs of a class (or even a single
important) application.

- Also enables the evaluation of new features and data structures

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Advantages of annotations (con’t)

4. Provides an effective approach for addressing performance issues by
permitting (but not requiring) access by the programmer to low-level details.

- Abstractions that allow domain or algorithm-specific approaches to

performance can be used because they can be tuned to smaller user

communities than is possible in a full language.

5. Improves performance portability by abstracting platform-specific low-level
optimization code.

6. Preserves application investment in current languages.

- Allows use of existing development tools (debuggers) and allows maintenance

and development of code independent of the tools the process the annotations.

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Annotations example: STREAM triad.c for BG/L

void triad(double *a, double *b, double *c, int n)

{

 int i;

 double ss = 1.2;

 /* --Align;;var:a,b,c;; */

 for (i=0; i<n; i++)

 a[i] = b[i] + ss*c[i];

 /* --end Align */

}

void triad(double *a, double *b, double *c, int n)

{

#pragma disjoint (*c,*a,*b)

 int i;

 double ss = 1.2;

 /* --Align;;var:a,b,c;; */

 if (((int)(a) | (int)(b) | (int)(c)) & 0xf == 0) {

 __alignx(16,a);

 __alignx(16,b);

 __alignx(16,c);

 for (i=0;i<n;i++) {

 a[i] = b[i] + ss*c[i];

 }

 }

 else {

 for (i=0;i<n;i++) {

 a[i]=b[i] + ss*c[i];

 }

 /* --end Align */

}

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Simple annotation example: STREAM triad.c on BG/L

1830.891291.81500000

1442.171282.121000000

1415.521282.922000000

6299.213037.97100

2424.241920.0010

8275.863341.221000

Annotations (MB/s)No Annotations
(MB/s)

Size

1446.481290.815000000

 3727.211291.77100000

3725.481291.5250000

3717.881290.8110000

2.5X

2.9X

1.12X

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Alternative example: A Regular Mesh Sweep

• C$AAS Declare Mesh(nx,ny); stencil width 1; a
double precision a(nx,ny)
C$AAE
…
C$AA Init a
…
C$AAS LoopOver a
do i=1, nx
 do j=1, ny
 a(i,j) = a(i-1,j-1) + ….
 enddo
enddo
C$AAE LoopOver nolast

Regular mesh, distributed

across all processes

Usual grid sweep, written in

“global” coordinates

Require user provide

information on halo

(easy for users, hard for

compiler)

Hook for initialization

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Generated (Almost Readable!) Code

• C$AAS Declare Mesh(nx,ny); stencil width 1; a; md5=0xccde2
double precision locala(0:lnx+1,0:lny+1)
C$AAE
…
C$AAS Init a; md5=00
call AAMeshInit(locala,nx,ny,lnx,lny)
C$AAE
…
C$AAS LoopOver a; md5=0xcfd234
call AAMeshExchange(locala,lnx,lny)
do i=1,lnx
 do j=1,lny
 locala(i,j) = locala(i-1,j-1)+…
 enddo
enddo
C$AAE LoopOver nolast

Or explicit MPI-1 or

MPI-2 calls

Or split into Morton

ordered loops

Or allocate dynamically

Detect user changes to block

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Is This Ugly?

• You bet!

- But it starts the process of considering the code generation
process as consisting of a hierarchy of solutions

- Separates the integration of the tools as seen by the user from
the integration as seen by “the code”

• It can evolve toward a cleaner approach, with well-defined
interfaces between hierarchies

• But only if we accept the need for a hierarchical, compositional
approach.

• This complements rather than replaces advances in languages,
such as global view approaches

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Conclusions

• It’s the memory hierarchy

• A pure, compiler based approach is not credible until

1.

2. “condition” of that ratio is small (less than 2)

3. Your favorite performance challenge

• Compilation is hard!

• At the node, the memory hierarchy limits performance

- Architectural changes can help (e.g., prefetch, more pending

loads/stores) but will always need algorithmic and programming help

• Between nodes, complexity of managing distributed data structures
limits productivity, ability to adopt new algorithms

- Domain (or better, data-structure) specific nano-languages, used as

part of a hierarchical language approach, can help

9.0
MM) tuned-hand of eperformancmax(

MM)on compiler of eperformancmin(
>

