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But First…

Are we too CPU-centric?

What about I/O?

– What do applications need (not what are they

doing)?

– Will problems with scalable, parallel I/O be

what keeps massively parallel machines from

succeeding?

•Are you sure?  How much are you willing to
bet? $100M? $200M?
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Where will we get (Sustained)
Performance?

Algorithms that are a better
match for the architectures

Parallelism at all levels

Concurrency at all levels

A major challenge is to realize
these approaches in code

– Most compilers do poorly with important
kernels in computational science

– Three examples - sparse matrix vector
product, dense matrix-matrix multiply, flux
calculation
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Realistic Measures of  Peak Performance
Sparse Matrix Vector Product
One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

Thanks to Dinesh Kaushik;
ORNL and ANL for compute time
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Very Few Compilers do well on
DGEMM (n=500)
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Effect of code transformations for uni-
processor performance

Factor

of 7
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Performance for Real Applications

Dense matrix-matrix example shows that even for well-studied,

compute-bound kernels, compiler-generated code achieves only a

small fraction of available performance

– “Fortran” code uses “natural” loops, i.e., what a user would write

for most code

– Others use multi-level blocking, careful instruction scheduling etc.

Algorithms design also needs to take into account the capabilities of

the system, not just the hardware

– Example: Cache-Oblivious Algorithms

(http://supertech.lcs.mit.edu/cilk/papers/abstracts/abstract4.html)

Adding concurrency (whether multicore or multiple processors) just

adds to the problems
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Possible solutions

Single, integrated system

– Best choice when it works

• Matlab

Current Terascale systems and many proposed petascale systems exploit hierarchy

– Successful at many levels

• Cluster hardware

• OS scalability

– We should apply this to productivity software

• The problem is hard

• Apply classic and very successful Computer Science strategies to address the
complexity of generating fast code for a wide range of user-defined data
structures.

How can we apply hierarchies?

– One approach is to use libraries

• Limited by the operations envisioned by the library designer

– Another is to enhance the users ability to express the problem in source code
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Annotations

Aid in the introduction of hierarchy into the software

– Its going to happen anyway, so make a virtue of it

Create a “market” or ecosystem in transformation tools

Longer term issues

– Integrate annotation language into “host” language to ensure

type safety, ensure consistency (both syntactic and semantic),

closer debugger integration, additional optimization opportunities

through information sharing, …
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Examples of the Challenges

Fast code for DGEMM (dense matrix-matrix multiply)

– Code generated by ATLAS omitted to avoid blindness 

– Example code from “Superscalar GEMM-based Level 3 BLAS”,

Gustavson et al on the next slide

PETSc code for sparse matrix operations

– Includes unrolling and use of registers

– Code for diagonal format is fast on cache-based systems but

slow on vector systems.

• Too much code to rewrite by hand for new architectures

MPI implementation of collective communication and computation

– Complex algorithms for such simple operations as broadcast and

reduce are far beyond a compiler’s ability to create from simple

code
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A fast DGEMM (sample)

      SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, 

     $                   BETA, C, LDC ) 

... 

                  UISEC = ISEC-MOD( ISEC, 4 ) 

                  DO 390 J = JJ, JJ+UJSEC-1, 4 

                     DO 360 I = II, II+UISEC-1, 4 

                        F11 = DELTA*C( I,J ) 

                        F21 = DELTA*C( I+1,J ) 

                        F12 = DELTA*C( I,J+1 ) 

                        F22 = DELTA*C( I+1,J+1 ) 

                        F13 = DELTA*C( I,J+2 ) 

                        F23 = DELTA*C( I+1,J+2 ) 

                        F14 = DELTA*C( I,J+3 ) 

                        F24 = DELTA*C( I+1,J+3 ) 

                        F31 = DELTA*C( I+2,J ) 

                        F41 = DELTA*C( I+3,J ) 

                        F32 = DELTA*C( I+2,J+1 ) 

                        F42 = DELTA*C( I+3,J+1 ) 

                        F33 = DELTA*C( I+2,J+2 ) 

                        F43 = DELTA*C( I+3,J+2 ) 

                        F34 = DELTA*C( I+2,J+3 ) 

                        F44 = DELTA*C( I+3,J+3 ) 

                        DO 350 L = LL, LL+LSEC-1 

                           F11 = F11 + T1( L-LL+1, I-II+1 )* 

     $                                              T2( L-LL+1, J-JJ+1 ) 

                           F21 = F21 + T1( L-LL+1, I-II+2 )* 

     $                                              T2( L-LL+1, J-JJ+1 ) 

                           F12 = F12 + T1( L-LL+1, I-II+1 )* 

     $                                              T2( L-LL+1, J-JJ+2 ) 

                           F22 = F22 + T1( L-LL+1, I-II+2 )* 

     $                                              T2( L-LL+1, J-JJ+2 ) 

                           F13 = F13 + T1( L-LL+1, I-II+1 )* 

     $                                              T2( L-LL+1, J-JJ+3 ) 

                           F23 = F23 + T1( L-LL+1, I-II+2 )* 

     $                                              T2( L-LL+1, J-JJ+3 ) 

                           F14 = F14 + T1( L-LL+1, I-II+1 )* 

     $                                              T2( L-LL+1, J-JJ+4 ) 

                           F24 = F24 + T1( L-LL+1, I-II+2 )* 

     $                                              T2( L-LL+1, J-JJ+4 ) 

                           F31 = F31 + T1( L-LL+1, I-II+3 )* 

     $                                              T2( L-LL+1, J-JJ+1 ) 

                           F41 = F41 + T1( L-LL+1, I-II+4 )* 

     $                                              T2( L-LL+1, J-JJ+1 ) 

                           F32 = F32 + T1( L-LL+1, I-II+3 )* 

     $                                              T2( L-LL+1, J-JJ+2 ) 

                           F42 = F42 + T1( L-LL+1, I-II+4 )* 

     $                                              T2( L-LL+1, J-JJ+2 ) 

                           F33 = F33 + T1( L-LL+1, I-II+3 )* 

     $                                              T2( L-LL+1, J-JJ+3 ) 

                           F43 = F43 + T1( L-LL+1, I-II+4 )* 

     $                                              T2( L-LL+1, J-JJ+3 ) 

                           F34 = F34 + T1( L-LL+1, I-II+3 )* 

     $                                              T2( L-LL+1, J-JJ+4 ) 

                           F44 = F44 + T1( L-LL+1, I-II+4 )* 

     $                                              T2( L-LL+1, J-JJ+4 ) 

  350                   CONTINUE 

 ... 

*     End of DGEMM. 

* 

      END 

 

 

Why not just

do i=1,n

   do j=1,m

      c(i,j) = 0

      do k=1,p

         c(i,j) = c(i,j) + a(i,k)*b(k,j)

     enddo

  enddo

enddo

Note: This is just part of DGEMM!
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Performance of Matrix-Matrix Multiplication
(MFlops/s vs. n2; n1 = n2; n3 = n2*n2)
Intel Xeon 2.4 GHz, 512 KB L2 Cache, Intel Compilers at –O3 (Version 8.1),
February 12, 2006
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Observations

Much use of mechanical transformations of code to achieve better

performance

– Compilers do not do this well

• Too many other demands on the compiler

Use of carefully crafted algorithms for specific operations such as

allreduce, matrix-matrix multiply

– Far more challenging than the performance transformations

Increasing acceptance of some degree of automation in creating

code

– ATLAS, PhiPAC, TCE

– Source-to-source transformation systems

• E.g., ROSE, Aspect Oriented Programming (asod.net)



Argonne National
Laboratory Title / email

Key Observations

90/10 rule

– current languages adequate for 90% of code

– 10% of code causes 90% of trouble

Memory hierarchy issues a major source of problems

– Significant effort is put into relatively mechanical transformations of code

– Other transformations are avoided because of their negative impact on

the readability and maintainability of the code.

• Example is loop fusion for routines that sweep over a mesh to apply
different physics.  Fusion, needed to reduce memory bandwidth
requirements, breaks modularity of routines written by different
groups.

Coordination of distributed data structures another major source of problems

– But the need for performance encourages a global/local separation

• Reflected in PGAS languages

New languages may help, but not anytime soon

– New languages will never be the entire solution

– Applications need help now
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One Possible Approach

Use annotations to augment existing languages

– Not a new approach; used in HPF, OpenMP, others

– Some applications already use this approach for performance

portability

• WRF weather code

Annotations do have limitations

– Fits best when most of the code is independent of the parts

affected by the annotations

– Limits optimizations that are available to approaches that

augment the language (e.g., telescoping languages)

But they also have many advantages…
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Annotations example: STREAM triad.c
for BG/L

void triad(double *a, double *b, double *c, int n)

{

  int i;

  double ss = 1.2;

  /* --Align;;var:a,b,c;; */

  for (i=0; i<n; i++)

    a[i] = b[i] + ss*c[i];

 /* --end Align */

}

void triad(double *a, double *b, double *c, int n)

{

#pragma disjoint (*c,*a,*b)

  int i;

  double ss = 1.2;

  /* --Align;;var:a,b,c;; */

 if ( ((int)(a) | (int)(b) | (int)(c)) & 0xf == 0) {

   __alignx(16,a);

   __alignx(16,b);

   __alignx(16,c);

  for (i=0;i<n;i++) {

    a[i] = b[i] + ss*c[i];

 } 

 } 

 else {

    for (i=0;i<n;i++) {

        a[i]=b[i] + ss*c[i];

 }

  /* --end Align */

}
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Simple annotation example: STREAM triad.c on BG/L

1830.891291.81500000

1442.171282.121000000

1415.521282.922000000

6299.213037.97100

2424.241920.0010

8275.863341.221000

Annotations (MB/s)No Annotations

(MB/s)

Size

1446.481290.815000000

 3727.211291.77100000

3725.481291.5250000

3717.881290.8110000

2.5X

2.9X

1.12X
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Summary

Provide tools to help computational scientists build transportable,

high-performance applications by working with, not against the

compiler

Enable an ecosystem so that tools can compete

– Enables and rewards research and development

Lowers the barrier to introducing more complex data structures and

algorithms

And don’t forget the I/O!


