
Panel: System Software Issues
for the Future

William Gropp
Mathematics and Computer Science
www.mcs.anl.gov/~gropp

Panelists

Bill Gropp, panel chair (Argonne)

Satoshi Matsuoka (Tokyo Tech)

Alok Choudhary (Northwestern)

Henry Tufo (NCAR)

Pete Beckman (Argonne)

Todd Inglett (IBM)

Questions for Panel

1. From the perspective of system software, what are the biggest
challenges facing users of BG?

 (Users can be system administrators or computational
scientists. System software is anything that the user doesn't
write.)

2. How can we quantify that challenge?

3. What can be done in the next year? In the next two years?
Which of these are primarily software and which are strongly
affected by hardware?

4. Are there opportunities for collaboration in solving some of these
problems?

My Answers

1. Biggest challenge: Sustained performance

2. Quantification:

1. Per-node performance, particularly with respect to systems of similar

capability, and “scaled” processors (define a “processor” as the

number of CPUs that are needed for 1 GFLOP of achieved

performance)

2. Scalability (once per-node performance is good)

3. What can be done: Must be software; better tools to transform code

4. Collaborations? Yes!

1. Shared experiences in performance artifacts (Wiki?)

2. Library of code transformation templates

Sustained Performance

Single node

– Using “double hummer”

– Managing memory hierarchy

Parallelism

– Managing topology

– Detecting performance deficiency

– Making efficient use of BG features (such as concurrent
communication on each link)

Interrogation

– Did you get what you expected?

• Use of double hummer

• Cache efficiency

• Did system apply specified topology?

Annotations example: STREAM triad.c for BG/L

void triad(double *a, double *b, double *c, int n)

{

 /* --Disjoint;;var:a,bc --*/

 int i;

 double ss = 1.2;

 /* --Align;;var:a,b,c;; */

 for (i=0; i<n; i++)

 a[i] = b[i] + ss*c[i];

 /* --end Align */

}

void triad(double *a, double *b, double *c, int n)

{

#pragma disjoint (*c,*a,*b)

 int i;

 double ss = 1.2;

 /* --Align;;var:a,b,c;; */

 if (((int)(a) | (int)(b) | (int)(c)) & 0xf == 0) {

 __alignx(16,a);

 __alignx(16,b);

 __alignx(16,c);

 for (i=0;i<n;i++) {

 a[i] = b[i] + ss*c[i];

 }

 }

 else {

 for (i=0;i<n;i++) {

 a[i]=b[i] + ss*c[i];

 }

 /* --end Align */

}

Maintains portability of code:

• Original code runs

everywhere

• Transformed code SIMD-

friendly

Resulting code is up to

2.9X faster

Using Concurrent Links on BG/L

Four Neighbor Halo Exchange

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Log(message size in bytes)

ping pong

Bandwidth (one send)

Halo Exchange (4 nbrs)

Halo Exchange (phased)

How can system software help?

Annotations provide a way to maintain portability while adding information

needed by the compiler (BG/L isn’t the only system that needs these

annotations; drops in performance can be seen on other systems)

– Natural to share transformations (both successes and failures)

– Other annotations can express more complex properties and/or

recommended transformations

Multiple sends may require special ordering

– Need graph coloring, similar to data structure decomposition support

– Should be consistent with physical and logical topology

System software support can:

– Identify performance defect (achieving lower than expected

performance)

– Support software aids to performance

