Some Thoughts on Programming
Languages for HPC

\\

T -
9§ ¥
] 3

V4
7

T
4
A
1S
I
y
0
a
g
]

(=

William D. Gropp
Mathematics and Computer Science

C=

3
NATION AL

>

. -
5-
y a

Argonne National Laboratory

|7 A U.S. Department of Energy
Office of Science Laboratory
office of Science - Qperated by The University of Chicago

Questions to Panel

Which language in 20157
- Something (C, Fortran, Java, ...) + MPI-3
- MPIl is already 14 years old, 2015 is only 9 years away
- Domain-specific, higher-level languages
Do we need a new paradigm?

- Yes: composable, customized micro-languages targeted at
particular goals

Commercial aspects?

- Argues against an all-in-one solution; must leverage other tools
with a broader market

Performance and programming optimization?

Performance is #1

No-one wants to write a parallel program

They do it because they need to for performance (why use 8
oxen if you have 1 really strong 0x?) or memory

Lack of performance predictability makes it difficult to design
algorithms, data structures, and code

- “psychoanalyze the compiler”

(Almost) Every operation in the hardware is a split operation

Every operation is pipelined
Even on slow processors (like 700MHz BG/L), as many as 5
cycles required. 25+ for some chips

Memory references can take 100+ cycles, remote refs in a
Petascale system will take 1000-10000 cycles

Several operations may start in the same cycle

A sequential listing of program steps doesn’t reflect the
hardware execution model, leading to a lack of performance
transparency

Programmers have a hard time thinking in terms of operations
that are completed “later”, even at a high level

- MPI_Get(&a,);if (a==...)
Suggests that the separation between initiation and completion
should be visible to the performance programmer

A Visual Performance-Oriented Language View

Provide a view of, e.g., aloop that
shows time in y and concurrent
operations in x, color for op type,
shading for begin/end, hazards

Provide a view that shows memory
access (query user and/or run
program to determine necessary
Info)

- E.qg., access patterns for FFT
kernel E% >

Changes to the graphical
representation should edit the
“conventional” representation

Represent uncertainty (e.g., load
costs for
L1/L2/L3/Mem/RemoteMem)

Has the computer do what
performance programmers must do
“by hand” now

Not a new language — a different
view of existing languages

- May need small extensions to
language, e.g., asm(...)

