
MPI and High
Productivity
Programming

William Gropp
Argonne National Laboratory
www.mcs.anl.gov/~gropp

2
Argonne National

Laboratory MPI and Productivity

Dedicated to Ken Kennedy

A gentleman and a scholar.

His many contributions to computing
included starting the process that led
to the MPI standard.

In addition to his outstanding
intellectual contributions to
computing, he was generous, open,
and funny. He will be missed.

3
Argonne National

Laboratory MPI and Productivity

Quotes from “System Software and Tools for High
Performance Computing Environments” (1993)

“The strongest desire expressed by these users was simply to
satisfy the urgent need to get applications codes running on
parallel machines as quickly as possible”

In a list of enabling technologies for mathematical software,
“Parallel prefix for arbitrary user-defined associative operations
should be supported. Conflicts between system and library
(e.g., in message types) should be automatically avoided.”

– Note that MPI-1 provided both

Immediate Goals for Computing Environments:

– Parallel computer support environment

– Standards for same

– Standard for parallel I/O

– Standard for message passing on distributed memory machines

“The single greatest hindrance to significant penetration of
MPP technology in scientific computing is the absence of
common programming interfaces across various parallel
computing systems”

4
Argonne National

Laboratory MPI and Productivity

Quotes from “Enabling Technologies for
Petaflops Computing” (1995):

“The software for the current generation of 100 GF machines is not

adequate to be scaled to a TF…”

“The Petaflops computer is achievable at reasonable cost with

technology available in about 20 years [2014].”

– (estimated clock speed in 2004 — 700MHz)*

“Software technology for MPP’s must evolve new ways to design

software that is portable across a wide variety of computer

architectures. Only then can the small but important MPP sector of the

computer hardware market leverage the massive investment that is

being applied to commercial software for the business and commodity

computer market.”

“To address the inadequate state of software productivity, there is a

need to develop language systems able to integrate software

components that use different paradigms and language dialects.”

(9 overlapping programming models, including shared memory,

message passing, data parallel, distributed shared memory, functional

programming, O-O programming, and evolution of existing languages)

5
Argonne National

Laboratory MPI and Productivity

MPI is a Success

Applications
– Most recent Gordon Bell prize winners use MPI

Libraries
– Growing collection of powerful software components

Tools
– Performance tracing (Vampir, Jumpshot, etc.)
– Debugging (Totalview, etc.)

Results
– Papers and science: http://www.mcs.anl.gov/mpi/papers

Implementations
– Multiple, high-quality implementations

Beowulf
– Ubiquitous parallel computing

6
Argonne National

Laboratory MPI and Productivity

But “MPI is the Problem”

Many people feel that programming with MPI is too hard

– And they can prove it

Others believe that MPI is fine

– And they can prove it

7
Argonne National

Laboratory MPI and Productivity

Consider These Five Examples

Three Mesh Problems

– Regular mesh

– Irregular mesh

– C-mesh

Indirect access

Broadcast of data to all processes

8
Argonne National

Laboratory MPI and Productivity

Regular Mesh Codes

Classic example of what is wrong
with MPI

– Some examples follow, taken
from CRPC Parallel
Computing Handbook and ZPL
web site, of mesh sweeps

The algorithm requires the
averaging of nearby values, shown
by the green cross (the stencil of
the computation)

9
Argonne National

Laboratory MPI and Productivity

Uniprocessor Sweep

do k=1, maxiter

do j=1, n-1

do i=1, n-1

 unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

 u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

u = unew

enddo

10
Argonne National

Laboratory MPI and Productivity

MPI Sweep

do k=1, maxiter
! Send down, recv up
call MPI_Sendrecv(u(1,js), n-1, MPI_REAL, nbr_down, k &

u(1,je+1), n-1, MPI_REAL, nbr_up, k, &
MPI_COMM_WORLD, status, ierr)

! Send up, recv down
call MPI_Sendrecv(u(1,je), n-1, MPI_REAL, nbr_up, k+1, &

u(1,js-1), n-1, MPI_REAL, nbr_down, k+1,&
MPI_COMM_WORLD, status, ierr)

do j=js, je
 do i=1, n-1
 unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))
 enddo

 enddo
u = unew

enddo

And the more scalable 2-d decomposition is even messier

11
Argonne National

Laboratory MPI and Productivity

HPF Sweep

!HPF$ DISTRIBUTE u(:,BLOCK)

!HPF$ ALIGN unew WITH u

!HPF$ ALIGN f WITH u

do k=1, maxiter

unew(1:n-1,1:n-1) = 0.25 * &

(u(2:n,1:n-1) + u(0:n-2,1:n-1) + &

u(1:n-1,2:n) + u(1:n-1,0:n-2) - &

h * h * f(1:n-1,1:n-1))

u = unew

enddo

12
Argonne National

Laboratory MPI and Productivity

OpenMP Sweep

!$omp parallel

!$omp do

do j=1, n-1

do i=1, n-1

 unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

 u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

!$omp enddo

13
Argonne National

Laboratory MPI and Productivity

ZPL Sweep

region

 R = [0..n+1,0..n+1];

direction

 N=[-1,0]; S = [1,0]; W=[0,-1]; E=[0,1];

Var

 u : [BigR] real;

[R] repeat

 u:=0.25*(u@n + u@e + u@s + u@w)-h*h*f;

Until (…convergence…);

(Roughly, since I’m not a ZPL programmer)

14
Argonne National

Laboratory MPI and Productivity

Lessons

Strengths of non-MPI solutions

– Data decomposition done for the programmer

– No “action at a distance”

So why does anyone use MPI?

– Performance

– Completeness

– Ubiquity

•Does your laptop have MPI on it? Why not?

But more than that…

15
Argonne National

Laboratory MPI and Productivity

Not All Codes Are Completely Regular

Examples:
– Adaptive Mesh refinement

• How does one process know what data to access on another
process?
– Particularly as mesh points are dynamically allocated

• (You could argue for fine-grain shared/distributed memory, but
performance cost is an unsolved problem in general)
• Libraries exist (in MPI), e.g., Chombo, KeLP (and successors)

– Unstructured mesh codes
• More challenging to write in any language
• Support for abstractions like index sets can help, but only a

little
• MPI codes are successful here …

16
Argonne National

Laboratory MPI and Productivity

FUN3d Characteristics

Tetrahedral vertex-centered unstructured grid code developed by W.
K. Anderson (NASA LaRC) for steady compressible and
incompressible Euler and Navier-Stokes equations (with one-
equation turbulence modeling)

Won Gordon Bell Prize in 1999

Uses MPI for parallelism

Application contains ZERO explicit lines of MPI

– All MPI within the PETSc library

17
Argonne National

Laboratory MPI and Productivity

Fun3d Performance

Performance
close to
“achievable peak”
based on memory
bandwidth

18
Argonne National

Laboratory MPI and Productivity

Another Example: Regular Grids—But With
a Twist

“C Grids” common for certain
geometries
Communication pattern is regular
but not part of “mesh” or “matrix”
oriented languages
– |i-n/2|>L, use one rule,

otherwise, use a different rule
– No longer transparent in HPF

or ZPL
– Convenience features are

brittle
• Great when they match

what you want
• But frustrating when they

don’t

19
Argonne National

Laboratory MPI and Productivity

Irregular Access

For j=1, zillion
 table[f(j)] ^= intable[f(j)]

Table, intable are “global” arrays (distributed across all processes)

Seems simple enough

– ^ is XOR, which is associative and commutative, so order of
evaluation is irrelevant

Core of the GUPS (also called TableToy) example

– Two version: MPI and shared memory

– MPI code is much more complicated

20
Argonne National

Laboratory MPI and Productivity

But…

MPI version produces the same answer every time
Shared/Distributed memory version does not
– Race conditions are present (did you spot them?)
– Benchmark is from a problem domain where getting the same answer

every time is not required
– Scientific simulation often does not have this luxury

You can make the shared memory version produce the same answer every
time, but
– You either need fine-grain locking

• In software, costly in time, may reduce effective parallelism
• In hardware, with sophisticated remote atomic operations (such as a

remote compare and swap), but costly in /£/¥/$/Ft/…
• (Transactional memory may address some of these issues)

– Or you can aggregate operations
• Code starts looking like MPI version (if you have to do it by hand)…

21
Argonne National

Laboratory MPI and Productivity

Broadcast And Allreduce

Simple in MPI:
– MPI_Bcast, MPI_Allreduce

Simple in shared memory (?)
– do i=1,n

a(i) = b(i) ! B (shared) broadcast to A
enddo

– do i=1,n
sum = sum + A(i) ! A (shared) reduced to sum

enddo
But wait — how well would those perform?
– Poorly. Very Poorly (much published work in shared-memory literature)
– Optimizing these operations is not easy
– Unrealistic to expect a compiler to come up with these algorithms
– E.g., OpenMP admits this and contains a special operation for scalar

reductions (OpenMP v2 adds vector reductions)
What can we say about the success of MPI?

22
Argonne National

Laboratory MPI and Productivity

Why Was MPI Successful?

It address all of the following issues:

– Portability

– Performance

– Simplicity and Symmetry

– Modularity

– Composability

– Completeness

For a more complete discussion, see “Learning from the
Success of MPI”,
http://www.mcs.anl.gov/~gropp/bib/papers/2001/mpi-
lessons.pdf

23
Argonne National

Laboratory MPI and Productivity

Portability

Hardware changes (and improves) frequently

– Moving from system to system is often the fastest
route to higher performance

– Lifetime of an application (typically 5-20 years) greatly
exceeds any hardware (3 years)

Non-portable solutions trap the application

– Short-term gain is not worth the long term cost

24
Argonne National

Laboratory MPI and Productivity

Portability and Performance

Portability does not require a “lowest common denominator”
approach

– Good design allows the use of special, performance enhancing
features without requiring hardware support

– For example, MPI’s nonblocking message-passing semantics
allows but does not require “zero-copy” data transfers

MPI is really a “Greatest Common Denominator” approach

– It is a “common denominator” approach; this is portability

• To fix this, you need to change the hardware (change
“common”)

– It is a (nearly) greatest approach in that, within the design space
(which includes a library-based approach), changes don’t
improve the approach

• Least suggests that it will be easy to improve; by definition,
any change would improve it.

• Have a suggestion that meets the requirements? Lets talk!

– More on “Greatest” versus “Least” at the end of this talk…

25
Argonne National

Laboratory MPI and Productivity

Simplicity and Symmetry

MPI is organized around a small number of concepts

– The number of routines is not a good measure of
complexity

– Fortran

• Large number of intrinsic functions

– C and Java runtimes are large

– Development Frameworks

•Hundreds to thousands of methods

– This doesn’t bother millions of programmers

26
Argonne National

Laboratory MPI and Productivity

Symmetry

Exceptions are hard on users

– But easy on implementers — less to implement and test

Example: MPI_Issend

– MPI provides several send modes:

• Regular

• Synchronous

• Receiver Ready

• Buffered

– Each send can be blocking or non-blocking

– MPI provides all combinations (symmetry), including the “Nonblocking
Synchronous Send”

• Removing this would slightly simplify implementations

• Now users need to remember which routines are provided, rather
than only the concepts

– It turns out he MPI_Issend is useful in building performance and
correctness debugging tools for MPI programs

27
Argonne National

Laboratory MPI and Productivity

Modularity

Modern algorithms are hierarchical

– Do not assume that all operations involve all or only
one process

– Provide tools that don’t limit the user

Modern software is built from components

– MPI designed to support libraries

– Communication contexts in MPI are an example

•Other features, such as communicator attributes,
were less successful features

28
Argonne National

Laboratory MPI and Productivity

Composability

Environments are built from components

– Compilers, libraries, runtime systems

– MPI designed to “play well with others”

MPI exploits newest advancements in compilers

– … without ever talking to compiler writers

– OpenMP is an example

•MPI (the standard) requried no changes to work
with OpenMP

29
Argonne National

Laboratory MPI and Productivity

Completeness

MPI provides a complete parallel programming model
and avoids simplifications that limit the model

– Contrast: Models that require that synchronization
only occurs collectively for all processes or tasks

– Contrast: Models that provide support for a
specialized (sub)set of distributed data structures

Make sure that the functionality is there when the user
needs it

– Don’t force the user to start over with a new
programming model when a new feature is needed

30
Argonne National

Laboratory MPI and Productivity

Is Ease of Use the Overriding Goal?

MPI often described as “the assembly language of
parallel programming”

C and Fortran have been described as “portable
assembly languages”

– (That’s company MPI is proud to keep)

Ease of use is important. But completeness is more
important.

– Don’t force users to switch to a different approach as
their application evolves

•Remember the mesh examples

31
Argonne National

Laboratory MPI and Productivity

Lessons From MPI

A successful parallel programming model must enable
more than the simple problems

– It is nice that those are easy, but those weren’t that
hard to begin with

Scalability is essential

– Why bother with limited parallelism?

– Just wait a few months for the next generation of
hardware

Performance is equally important

– But not at the cost of the other items

32
Argonne National

Laboratory MPI and Productivity

More Lessons

A general programming model for high-performance technical computing
must address many issues to succeed, including:

Completeness

– Support the evolution of applications

Simplicity

– Focus on users not implementors

– Symmetry reduces the burden on users

Portability rides the hardware wave

– Sacrifice only if the advantage is huge and persistent

– Competitive performance and elegant design is not enough

Composability rides the software wave

– Leverage improvements in compilers, runtimes, algorithms

– Matches hierarchical nature of systems

Even that is not enough. Also need:

– Good design

– Buy-in by the community

– Effective implementations

MPI achieved these through an Open Standards Process

33
Argonne National

Laboratory MPI and Productivity

Improving Parallel Programming

How can we make the programming of real applications easier?

Problems with the Message-Passing Model

– User’s responsibility for data decomposition

– “Action at a distance”

• Matching sends and receives

• Remote memory access

– Performance costs of a library (no compile-time optimizations)

– Need to choose a particular set of calls to match the hardware

In summary, the lack of abstractions that match the applications

34
Argonne National

Laboratory MPI and Productivity

Challenges

Must avoid the traps:

– The challenge is not to make easy programs easier. The challenge is to make
hard programs possible.

– We need a “well-posedness” concept for programming tasks

• Small changes in the requirements should only require small changes in the
code

• Rarely a property of “high productivity” languages

– Abstractions that make easy programs easier don’t solve the problem

– Evaluating a specific MPI implementation is not the same as evaluating MPI the
programming model

– Latency hiding is not the same as low latency

• Need “Support for aggregate operations on large collections”

An even harder challenge: make it hard to write incorrect programs.

– OpenMP is not a step in the (entirely) right direction

– In general, current shared memory programming models are very dangerous.

• They also perform action at a distance

• They require a kind of user-managed data decomposition to preserve
performance without the cost of locks/memory atomic operations

– Deterministic algorithms should have provably deterministic implementations

35
Argonne National

Laboratory MPI and Productivity

What is Needed To Achieve Real High
Productivity Programming

Simplify the construction of correct, high-performance applications

Managing Data Decompositions

– Necessary for both parallel and uniprocessor applications

– Many levels must be managed

– Strong dependence on problem domain (e.g., halos, load-balanced
decompositions, dynamic vs. static)

Possible approaches include

– Language-based

• Limited by predefined decompositions

– Some are more powerful than others; Divacon provided a built-in divided
and conquer

– Library-based

• Overhead of library (incl. lack of compile-time optimizations), tradeoffs
between number of routines, performance, and generality

– Domain-specific languages
• Example: mesh handling

– Standard rules can define mesh
– Alternate mappings easily applied (e.g., Morton orderings)
– Careful source-to-source methods can preserve human-readable code
– In the longer term, debuggers could learn to handle programs built with language

composition (they already handle 2 languages – assembly and C/Fortran/…)

36
Argonne National

Laboratory MPI and Productivity

Distributed Memory code

Single node performance is clearly a problem.

What about parallel performance?

– Many successes at scale (e.g., Gordon Bell Prizes for >200TF on 64K
BG/L nodes

– Some difficulties with load-balancing, designing code and algorithms for
latency, but skilled programmers and applications scientists have been
remarkably successful

Is there a problem?

– There is the issue of productivity.

– It isn’t just message-passing vs shared memory

• Message passing codes can take longer to write but bugs are often
deterministic (program hangs). Explicit memory locality simplifies
fixing performance bugs

• Shared memory codes can be written quickly but bugs due to races
are difficult to find; performance bugs can be harder to identify and fix

– It isn’t just the way in which you move data

• Consider the NAS parallel benchmark code for Multigrid (mg.f):

What is the problem?
The user is responsible for all
steps in the decomposition of
the data structures across the
processors

Note that this does give the
user (or someone) a great
deal of flexibility, as the data
structure can be distributed in
arbitrary ways across
arbitrary sets of processors

Another example…

39
Argonne National

Laboratory MPI and Productivity

Manual Decomposition of Data
Structures

Trick!

– This is from a paper on dense matrix tiling for uniprocessors!

This suggests that managing data decompositions is a common problem
for real machines, whether they are parallel or not

– Not just an artifact of MPI-style programming

– Aiding programmers in data structure decomposition is an important
part of solving the productivity puzzle

40
Argonne National

Laboratory MPI and Productivity

How to Replace (or Evolve) MPI

Retain MPI’s strengths

– Performance from matching programming model to the realities of underlying
hardware

– Ability to compose with other software (libraries, compilers, debuggers)

– Determinism (without MPI_ANY_{TAG,SOURCE})

– Run-everywhere portability

Add to what MPI is missing, such as

– Distributed data structures (not just a few popular ones)

– Low overhead remote operations; better latency hiding/management; overlap with
computation (not just latency; MPI can be implemented in a few hundred
instructions, so overhead is roughly the same as remote memory reference
(memory wall))

– Dynamic load balancing for dynamic, distributed data structures

– Unified method for treating multicores, remote processors, other resources

Enable the transition from MPI programs

– Build component-friendly solutions

• There is no one, true language

41
Argonne National

Laboratory MPI and Productivity

Is MPI the Least Common Denominator
Approach?

“Least common denominator”

– Not the correct term

– It is “Greatest Common Denominator”! (Ask any Mathematician)

– This is critical, because it changes the way you make
improvements

If it is “Least” then improvements can be made by picking a better
approach. I.e., anything better than “the least”.

If it is “Greatest” then improvements require changing the rules
(either the “Denominator,” the scope (“Common”), or the goals (how
“Greatest” is evaluated)

Where can we change the rules for MPI?

42
Argonne National

Laboratory MPI and Productivity

Changing the Common

Give up on ubiquity/portability and aim for a subset of architectures

– Vector computing was an example (and a cautionary tale)

– Possible niches include

• SMT for latency hiding

• Reconfigurable computing; FPGA

• Stream processors

• GPUs

• Etc.

Not necessarily a bad thing (if you are willing to accept being on the
fringe)

– Risk: Keeping up with the commodity curve (remember vectors)

43
Argonne National

Laboratory MPI and Productivity

Changing the Denominator

This means changing the features that are assumed present in every
system on which the programming model must run

Some changes since MPI was designed:

– RDMA Networks

• Best for bulk transfers

• Evolution of these may provide useful signaling for shorter
transfers

– Cache-coherent SMPs (more precisely, lack of many non-cache-
coherent SMP nodes)

– Exponentially increasing gap between memory and CPU
performance

– Better support for source-to-source transformation

• Enables practical language solutions

If DARPA HPCS is successful at changing the “base” HPC systems,
we may also see

– Remote load/store

– Hardware support for hiding memory latency

44
Argonne National

Laboratory MPI and Productivity

Changing the Goals

Change the space of features

– That is, change the problem definition so that there is room to
expand (or contract) the meaning of “greatest”

Some possibilities

– Integrated support for concurrent activities

• Not threads:

– See, e.g., Edward A. Lee, "The Problem with Threads,"
Computer, vol. 39, no. 5, pp. 33-42, May, 2006.

– “Night of the Living Threads”,
http://weblogs.mozillazine.org/roc/archives/2005/12/night_o
f_the_living_threads.html, 2005

– “Why Threads Are A Bad Idea (for most purposes)” John
Ousterhout (~2004)

– “If I were king: A proposal for fixing the Java programming
language's threading problems” http://www-
128.ibm.com/developerworks/library/j-king.html, 2000

– Support for (specialized or general) distributed data structures

45
Argonne National

Laboratory MPI and Productivity

Conclusions

MPI is a successful “Greatest Common Denominator” parallel
programming model

Properly used, MPI has enabled high(er) productivity

– Libraries, design templates, tools

The next success must

– Change the rules

– Be an developed as an open process

– Have a clear focus on the audience

46
Argonne National

Laboratory MPI and Productivity

Interested in working with us?

DOE has many opportunities for student participation:

– Undergraduate internships

– Graduate research aide appointments

– See http://www.dep.anl.gov/ for details (unfortunately, the
Summer 2007 deadline just past. But you there are both fall and
winter term programs, and you can put January 2008 on your
calendar)

47
Argonne National

Laboratory MPI and Productivity

Backup

48
Argonne National

Laboratory MPI and Productivity

Further Reading

For a historical perspective (and a reality check),
– “Enabling Technologies for Petaflops Computing”, Thomas Sterling,

Paul Messina, and Paul H. Smith, MIT Press, 1995
– “System Software and Tools for High Performance Computing

Environments”, edited by Paul Messina and Thomas Sterling, SIAM,
1993

For recent thinking on possible directions,
– “Report of the Workshop on High-Productivity Programming Languages

and Models”, edited by Hans Zima, May 2004.

49
Argonne National

Laboratory MPI and Productivity

More Lessons

Completeness

– Support the evolution of applications

Simplicity

– Focus on users not implementors

– Symmetry reduces users burden

Portability rides the hardware wave

– Sacrifice only if the advantage is huge and persistent

– Competitive performance and elegant design is not
enough

50
Argonne National

Laboratory MPI and Productivity

Why Not Always Use HPF?

Performance!
– From “A Comparison of

PETSC Library and HPF
Implementations of an
Archetypal PDE
Computation” (M.
Ehtesham Hayder, David E.
Keyes, and Piyush
Mehrotra)

– PETSc (Library using MPI)
performance double HPF

Maybe there’s something to
explicit management of the
data decomposition…

51
Argonne National

Laboratory MPI and Productivity

Performance Portability

Goal: A programming model that ensures that any program achieves
best (or near best) performance on all hardware.
– MPI is sometimes criticized because there are many ways to

express the same operation.
Reality: This is an unsolved problem, even for Fortran on
uniprocessors. Expecting a solution for parallel systems is
unrealistic.
– Consider dense matrix-matrix multiplications.
– 6 ways to order the natural loops, discussed in a famous paper
– None of these is optimal (various cache blocking strategies are

necessary)
– Automated search techniques can out-perform hand-code

(ATLAS)

52
Argonne National

Laboratory MPI and Productivity

Performance

Performance must be competitive

– Pay attention to memory motion

– Leave freedom for implementers to exploit any special features

• Standard document requires careful reading

• Not all implementations are perfect

– (When you see MPI pingpong
asymptotic bandwidths that are
much below the expected
performance, it is the
implementation that is broken,
not MPI)

2230Shmem

793MPI

BandwidthMethod

These should
be the same

53
Argonne National

Laboratory MPI and Productivity

MPI’s Memory Model

Match to OS model

– OS: Each process has memory whose locality is important

– Locality for threads may not be appropriate, depending on how
the thread is used.

 Not a new approach

– register in C

– Local and shared
data in HPF, UPC,
CoArray Fortran

54
Argonne National

Laboratory MPI and Productivity

Parallel Computing and Uniprocessor
Performance

Deeper memory
hierarchy

Synchronization/
coordination

Load balancing
Remote Memory

CPUs

Cache

Main Memory

CPUs

Cache

Main Memory

10000Remote Memory (with MPI)

1000DRAM Memory

1–10Cache

1Register

Access Time (cycles)Memory Layer

10

100

10

1

Relative

This is the

hardest gap

Not this

55
Argonne National

Laboratory MPI and Productivity

Measuring Complexity

Complexity should be measured in the number of
concepts, not functions or size of the manual

MPI is organized around a few powerful concepts

– Point-to-point message passing

– Datatypes

– Blocking and nonblocking buffer handling

– Communication contexts and process groups

56
Argonne National

Laboratory MPI and Productivity

Elegance of Design

MPI often uses one concept to solve multiple problems

Example: Datatypes

– Describe noncontiguous data transfers, necessary for
performance

– Describe data formats, necessary for heterogeneous
systems

“Proof” of elegance:

– Datatypes exactly what is needed for high-
performance I/O, added in MPI-2.

