
1

1

Building a Successful Scalable
Parallel Numerical Library:

Lessons From the PETSc Library

William D. Gropp
www.cs.uiuc.edu/homes/wgropp

2

What is PETSc?

• PETSc is a numerical library that is organized around
mathematical concepts appropriate for the solution of
linear and nonlinear systems of equations that arise
from discretizations of Partial Differential Equations

• PETSc began as a tool to aid in research into domain
decomposition methods for elliptic and hyperbolic (with
implicit time stepping) partial differential equations. A
new library was needed because

Numerical libraries of the time were organized around
particular algorithms, rather than mathematical problems,
making experimentation with different algorithms difficult

Most libraries were not re-entrant, making recursive use
impossible

• PETSc addressed these limitations and clearly filled a
need; PETSc is now used by both applications scientists
and researchers (100’s of users including DOE and NSF
leadership computing platforms)

2

3

The PETSc Team
(Past and Present)

Dinesh

Kaushik

Kris

Buschelman

Satish

Balay

Bill

Gropp

Lois

Curfman

McInnes

Barry

Smith

Hong

Zhang

Matt

Knepley
Lisandro

Dalcin

Victor

Eijkhout

Dmitry

Karpeev

Everyone contributed to the results described in this talk

4

How Should Numerical
Libraries Be Designed?

• It is common to choose an
algorithms and a data
structure

“Algorithms + Data Structures =
Programs”

• Rarely unique choices

• Better is to say: I’m solving
Ax=b

PETSc really looks at F(x,t) = 0,
for which Ax=b is a key
component

• Lets look at the Ax=b part…

3

5

The Constraints - Parallel
Computing Issues

• Distributed Memory Model
Programmer must participate in handling
decomposition of objects across processes

• Shared Memory Model
Poor integration with language (race detection,
volatile, lack of write/read barriers)

Difficult to achieve scalability (hardware costly,
complicated)

• Consequences
Choose MPI distributed memory model

Would do the same today
• But maybe PGAS language will be appropriate soon

Scalability requires careful attention to message
latency

6

Distributed Objects

• PETSc must provide a mechanism to work with objects
that are distributed across a collection of processors

• Common patterns:

Err = <THING>Create(parallel-context,<INFO>, <SIZE>,
&object)

Err = <THING>Destroy(object)
Err = <THING><Operation>(object, <other-parms>)

• For example,

VecCreate(MPI_COMM_WORLD, PETSC_DECIDE, n, &x)

MatMult(A, x, y)

• Operations use the same name when possible:

<THING>SetFromOptions(object)

• Use command line, environment variables, or defaults file to
set basic properties

4

7

Vectors in PETSc

• Mathematical Objects

Not a contiguous section of memory

• Distributed across a set of processes

May be a subset of all processes in the parallel job

First decision:

• How general a distribution is allowed for the
representation of data?

• For example, should ghost cells be allowed? Non-
contiguous sections?

PETSc uses a very simple decomposition

• A single, contiguous segment, ordered with the rank of
the processes

• Chosen for performance

Lesson 1: Permit the best performance

8

Does PETSc Need More
General Vectors?

• So, how do you handle more general
decompositions? PETSc provides several
alternatives, depending on the type of
generality

Non-contiguous in process: copy
• Not as bad as it seems, as the copy may provide better

cache locality and not be that costly

Non-contiguous across processes: permutations
• Often better to apply permutations, then use

Plus, PETSc allows the use of arbitrary
representations for vectors

• But then the user is responsible for implementing all
operations between vectors, and operations on vectors
by other objects, such as matrix-vector product

Lesson 2: Provide an escape for customization

5

9

Accessing Elements
of a Vector

• The element-wise approach seems simple:
V[k] = 3

• But what is involved with this in a parallel computer?
One possibility is:

• Retrieve cache line containing v[k] from the current owner of that
cache line if any, assert ownership (flush from owner’s cache)

• Update the bytes corresponding to V[k].

• Write out the data to memory

• When the original owner needs to access (even to read), figure out if
the ownership of the cache line should move

• !!!!

There are other options, but they all must handle where data is
cached and how it is updated.

• Is this a good operation to support?
Rarely a natural mathematical operation

E.g., usually define entire vector, as in v = f(x,y)

Setting a single element in a vector is both costly and rarely
necessary

10

Improving Performance of
Vector Element Update

• Lesson 3: Define/Update objects as a single
operation

Defer the “synchronization”; v[k] tells the language
that after the assignment, v[k] is visible anywhere v
is defined. This may force the system to wait until
the data is available or to implement complex
caching strategies

The alternative is relaxed consistency models, which
may lead the programmer to refer to data before it is
available (because of a mismatch between the
computer language and these memory consistency
models)

• Instead, define an operation that allows the
user to define when the object must be ready
for use. This is a simple generalization of the
notion of matrix assembly

6

11

Assembly

• PETSc uses the notion of object assembly
First, describe update

Initiate assembly
• Allow other work (Communication/Computation Overlap)

• At least, that was the theory:
Communication systems require extra hardware support to
effectively overlap communication and computation

There may not be natural work to insert in this slot

Wait for the assembly to complete
• Note: still introduces more synchronization than strictly

required (there are possibilities here for improvement)

• This model selected for its simplicity

• This applies to all objects that must be assembled

• Not a new idea
Same idea used to vectorize sparse matrix assembly

• Same problem - single element updates do not fit vector
model

12

Setting Elements of a Vector

• While changing the vector so that a single element is updated is
inefficient, it is simple

• PETSc provides a way to “set/add to an element that will be visible

after the assembly completes”:

VecSetValue()

• Since many multicomponent PDEs naturally compute/update all the
values at a grid point

VecSetValues()

• Key features:

Values set are in the mathematical vector object

• User need not know/understand decomposition of vector representation across
processes

Values are not available until after Assembly step completes

PETSc efficiently manages the implementation of assembly

• Caches data, aggregates values destined to the same process

• Transparent to the user

• Lesson 4: Provide ease-of-use features, even if they are not high-
performance. Note that this is not inconsistent with Lesson 1 (permit
high performance).

7

13

Matrices

• What are PETSc matrices?
Fundamental objects for storing linear operators (e.g.,
Jacobians)

• Create matrices via
MatCreate(…,Mat *)

• MPI_Comm - processes that share the matrix

• number of local/global rows and columns

MatSetType(Mat,MatType)
• where MatType is one of

default sparse AIJ: MPIAIJ, SEQAIJ

block sparse AIJ (for multi-component PDEs): MPIAIJ, SEQAIJ

symmetric block sparse AIJ: MPISBAIJ, SAEQSBAIJ

block diagonal: MPIBDIAG, SEQBDIAG

dense: MPIDENSE, SEQDENSE

matrix-free

etc.

• MatSetFromOptions(Mat) lets you set the MatType at runtime.

14

Matrices and Polymorphism

• Single user interface independent of the
underlying sparse data structure, e.g.,

Matrix assembly

• MatSetValues()

Matrix-vector multiplication

• MatMult()

Matrix viewing

• MatView()

• Multiple underlying implementations

AIJ, block AIJ, symmetric block AIJ, block
diagonal, dense, matrix-free, etc.

8

15

Matrices in PETSc

• A matrix is defined by its properties and the
operations that you can perform with it.

Not by its data structures

(Some operations require efficient access to matrix
elements; that only means that some operations,
such as incomplete factor, may not be available if
the matrix uses a matrix-free representation)

• The ability to associate different code for the
same abstract operation, depending on the
circumstances (such as the data structure) is
called polymorphism. It is a critical part of the
PETSc implementation approach

Typically implemented with a function pointer

16

What Advantage Does This
Approach Give You?

• Example: A Poisson Solver in PETSc
The following 7 slides show a complete 2-d
Poisson solver in PETSc. Features of this
solver:
• Fully parallel

• 2-d decomposition of the 2-d mesh

• Linear system described as a sparse matrix; user
can select many different sparse data structures

• Linear system solved with any user-selected
Krylov iterative method and preconditioner
provided by PETSc, including GMRES with ILU,
BiCGstab with Additive Schwarz, etc.

• Complete performance analysis built-in

Only 7 slides of code!

9

/* -*- Mode: C; c-basic-offset:4 ; -*- */

#include <math.h>

#include "petscsles.h"

#include "petscda.h"

extern Mat FormLaplacianDA2d(DA, int);

extern Vec FormVecFromFunctionDA2d(DA, int, double (*)(double,double));

/* This function is used to define the right-hand side of the

 Poisson equation to be solved */

double func(double x, double y) {

 return sin(x*M_PI)*sin(y*M_PI); }

int main(int argc, char *argv[])

{

 SLES sles;

 Mat A;

 Vec b, x;

 DA grid;

 int its, n, px, py, worldSize;

 PetscInitialize(&argc, &argv, 0, 0);

Solve a Poisson Problem with Preconditioned GMRES

PETSC “objects” hide
details of distributed
data structures and
function parameters

 /* Get the mesh size. Use 10 by default */

 n = 10;

 PetscOptionsGetInt(PETSC_NULL, "-n", &n, 0);

 /* Get the process decomposition. Default it the same as without

 DAs */

 px = 1;

 PetscOptionsGetInt(PETSC_NULL, "-px", &px, 0);

 MPI_Comm_size(PETSC_COMM_WORLD, &worldSize);

 py = worldSize / px;

 /* Create a distributed array */

 DACreate2d(PETSC_COMM_WORLD, DA_NONPERIODIC, DA_STENCIL_STAR,

n, n, px, py, 1, 1, 0, 0, &grid);

 /* Form the matrix and the vector corresponding to the DA */

 A = FormLaplacianDA2d(grid, n);

 b = FormVecFromFunctionDA2d(grid, n, func);

 VecDuplicate(b, &x);

PETSc provides
routines to access
parameters and
defaults

PETSc provides
routines to create,
allocate, and
manage distributed
data structures

10

 SLESCreate(PETSC_COMM_WORLD, &sles);

 SLESSetOperators(sles, A, A, DIFFERENT_NONZERO_PATTERN);

 SLESSetFromOptions(sles);

 SLESSolve(sles, b, x, &its);

 PetscPrintf(PETSC_COMM_WORLD, "Solution is:\n");

 VecView(x, PETSC_VIEWER_STDOUT_WORLD);

 PetscPrintf(PETSC_COMM_WORLD, "Required %d iterations\n", its);

 MatDestroy(A); VecDestroy(b); VecDestroy(x);

 SLESDestroy(sles); DADestroy(grid);

 PetscFinalize();

 return 0;

}

PETSc provides
routines that solve
systems of sparse
linear (and
nonlinear) equations

PETSc provides
coordinated I/O
(behavior is as-if a
single process),
including the output of
the distributed “vec”
object

/* -*- Mode: C; c-basic-offset:4 ; -*- */

#include "petsc.h"

#include "petscvec.h"

#include "petscda.h"

/* Form a vector based on a function for a 2-d regular mesh on the

 unit square */

Vec FormVecFromFunctionDA2d(DA grid, int n,

 double (*f)(double, double))

{

 Vec V;

 int is, ie, js, je, in, jn, i, j;

 double h;

 double **vval;

 h = 1.0 / (n + 1);

 DACreateGlobalVector(grid, &V);

 DAVecGetArray(grid, V, (void **)&vval);

11

/* Get global coordinates of this patch in the DA grid */

DAGetCorners(grid, &is, &js, 0, &in, &jn, 0);

ie = is + in - 1;

je = js + jn - 1;

 for (i=is ; i<=ie ; i++) {

for (j=js ; j<=je ; j++){

 vval[j][i] = (*f)((i + 1) * h, (j + 1) * h);

}

 }

 DAVecRestoreArray(grid, V, (void **)&vval);

 return V;

}

Almost the uniprocess
code

/* -*- Mode: C; c-basic-offset:4 ; -*- */

#include "petscsles.h"

#include "petscda.h"

/* Form the matrix for the 5-point finite difference 2d Laplacian

 on the unit square. n is the number of interior points along a

 side */

Mat FormLaplacianDA2d(DA grid, int n)

{

 Mat A;

 int r, i, j, is, ie, js, je, in, jn, nelm;

 MatStencil cols[5], row;

 double h, oneByh2, vals[5];

 h = 1.0 / (n + 1); oneByh2 = 1.0 / (h*h);

 DAGetMatrix(grid, MATMPIAIJ, &A);

 /* Get global coordinates of this patch in the DA grid */

 DAGetCorners(grid, &is, &js, 0, &in, &jn, 0);

 ie = is + in - 1;

 je = js + jn - 1;

Creating a Sparse Matrix, Distributed Across All Processes

Creates a parallel
distributed matrix using
compressed sparse row
format

12

for (i=is; i<=ie; i++) {

for (j=js; j<=je; j++){

 row.j = j; row.i = i; nelm = 0;

 if (j - 1 > 0) {

vals[nelm] = oneByh2;

cols[nelm].j = j - 1; cols[nelm++].i = i;}

 if (i - 1 > 0) {

vals[nelm] = oneByh2;

cols[nelm].j = j; cols[nelm++].i = i - 1;}

 vals[nelm] = - 4 * oneByh2;

 cols[nelm].j = j; cols[nelm++].i = i;

 if (i + 1 < n - 1) {

vals[nelm] = oneByh2;

cols[nelm].j = j; cols[nelm++].i = i + 1;}

 if (j + 1 < n - 1) {

vals[nelm] = oneByh2;

cols[nelm].j = j + 1; cols[nelm++].i = i;}

 MatSetValuesStencil(A, 1, &row, nelm, cols, vals,

 INSERT_VALUES);

}

 }

 MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);

 MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);

 return A;

}

Just the usual
code for setting
the elements of
the sparse matrix
(the complexity
comes, as it often
does, from the
boundary
conditions)

24

Computer Science Lessons

• Organize around user-centric concepts

PETSc used the mathematics

Provide all that is necessary to manage the
objects, not just the “key” functions

• Exploit Computer Science techniques to
provide that interface

Data Encapsulation and Data Hiding

Polymorphism

Inheritance

• Pay attention to performance

13

25

Numerical Analysis Lessons

• Algorithms!

Get the right ones

Get the scalable parallel ones

Note that there is (rarely) a unique
best choice

• Implies that the software must support
many algorithms

• This is why PETSc organized by
problems-to-solve rather than algorithms

This may be the most important lesson:
Organize by mathematical problem

26

Final Comments

• The success of PETSc is due to:

Performance and Scalability

• Performance is only weakly correlated with FLOPS

Consistent interface based on the mathematical problems

Completeness

• Can overcome “ease of use”

Attention to portability and configuration issues

• Particularly for libraries coming from research groups, this is
often the critical factor

• Portability requires care but isn’t hard.

• A key advantage to the PETSc approach

Algorithm Independence

• Until we know the best way, don’t make the choice

• Users can try new algorithms without giving up the ones with
which they are comfortable

