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Challenges at Exascale 

• Exascale is not just 
“more” Petascale 

Concurrency 

Fault Resilience 

Memory Capacity 

Power and Energy 

• These are just what’s 
needed to get something 
to run at Exascale 

For an Exascale system 
to work effectively on 

applications, it must 

scale well 

• This implies 
communication/
computation overlap 

ExaScale Computing Study: 
Technology Challenges in  

Achieving Exascale Systems 
 
Peter Kogge, Editor & Study Lead  
Keren Bergman 
Shekhar Borkar 
Dan Campbell 
William Carlson 
William Dally 
Monty Denneau 
Paul Franzon 
William Harrod 
Kerry Hill 
Jon Hiller 
Sherman Karp 
Stephen Keckler 
Dean Klein 
Robert Lucas 
Mark Richards 
Al Scarpelli 
Steven Scott 
Allan Snavely 
Thomas Sterling 
R. Stanley Williams 
Katherine Yelick 
 
September 28, 2008 

 
This work was sponsored by DARPA IPTO in the ExaScale Computing Study with Dr. William Harrod 
as Program Manager; AFRL contract number FA8650-07-C-7724.  This report is published in the 
interest of scientific and technical information exchange and its publication does not constitute the 
Government’s approval or disapproval of its ideas or findings 

 

NOTICE 
 
Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U.S. Government. 
The fact that the Government formulated or supplied the drawings, specifications, or other data 
does not license the holder or any other person or corporation; or convey any rights or permission to 
manufacture, use, or sell any patented invention that may relate to them. 
 
APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED. 



3 

What Will Exascale Systems 
Look Like? 

• Constraints 

Power: < 100MW total system (including 
cooling and storage) 

• Clock rate 4-10 GHz 

• Implies about 108 functional units per peak ExaOp 

• 100-1000 times as power efficient as current 
Petascale systems 

• 4-40 pJ/operation 

Cost and Size 

• 100-1000 Racks 

(DARPA UHPC RFI envisions a 1PF Rack/half rack) 

Two obvious approaches 
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Very light-weight cores 

• Very simple, low-power processors 

in-order execution  

small caches  

no hardware cache coherence 

• Intel TFLOPS processor an early 
example 
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Heterogeneous  

• Several  different cores, optimized 
for different operations 

GPGPU + Commodity processor a 
very small step in this direction 

Exascale likely to be more tightly 
integrated (for power, fault) and 
more specialized (for power, density) 
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Energy and Power 

• Energy is “wasted” in data motion 

• Need to compute closer to memory 

Argues for embedded memory processors 
(EMP) 

• Network Costs 

Specialize here as well 

Simple operations, offloaded from processor 

to make effective use of space and power 

Not offloaded to increase performance at 
the cost of additional power 
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How many MPI processes are 
there? 

• Case 1: MPI Everywhere 

Memory needs if all data local 

Distributed data 

• Architectural support 

• Case 2: nested parallelism 

Hierarchical models and support; 
progress 

• Natural decomposition 

• Cross-node decomposition 
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The Homogenous Approach 

• MPI Everywhere 

One MPI “process” per core 

Note that an MPI process may be 
lighter-weight than an OS process 

• E.g., tmpi (thread MPI) 
Used combination of compiler techniques and 
runtime to let each MPI “process” be an OS 
thread, with global variables handled correctly 

• System parameters include 

108 cores 

1018-1022 bytes mass storage 
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Lets look at possible issues 

• Basic API Issues 

• Memory use implied by distributed 
Memory model 

• Scalability of algorithms used to 
implement MPI features 
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Basic API Issues 

• 108 cores requires 27 bit integer to enumerate 

Ranks will just fit into 4 byte integers 

• Possible problem: virtualization of processes to provide 
latency hiding could push this to more than 31 bits (ranks are 
signed integers) 

Good news – with that many cores, memory / core is 
likely to be  under 4GB 

• MPI_Aint can be 4 bytes 

• 1018-1022 bytes mass storage requires 60-74 bit 
integers 

MPI_Offset must be large than an 8-byte integer 

• Datatypes 

Do these use MPI_Aint (4 bytes) or MPI_Offset (12-16 
bytes)? 

Using Datatypes for Messages and IO is elegant 

• But offsets in messages are relative to one MPI process 
whereas offsets in IO may be relative to p-processes 
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Replicated Data Structures 

• MPI objects are often used by 
many/every process 

Simple and natural implementation is 
to have a representation in each MPI 
process 

• Even simple objects, such as 
datatypes, represent significant 

storage when there are 108 copies 
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MPI_Group 

• Consider an MPI_Group, consisting of g 
members 

Either enumerated or a collection of strides 

• No MPI_Group_split 

• Thus no implicit description of groups 

An enumerated list is good (even efficient) 

for <1K processes 

Storage is O(pg) total 

• Some groups are collective (results 

from MPI_Comm_group), some are 
individual (groups used in RMA PSCW) 
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RMA Windows 

• MPI_Win_create allows each process to specify 
a different local offset 

This provides flexibility for applications with dynamic 
object creation (no need to require “symmetric” 
allocation of memory 

• However, to perform direct remote memory 

access, the origin process needs the offset of 
the target process’s memory window 

Simple and obvious implementation is a table of 
offsets  

O(p2) memory required 

For 108 processes, this is 4*1016 bytes (40 Petabyes) 
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MPI Communicators 

• Communicators have a similar problem 
as RMA Windows 

• Each communicator must map each 

rank to a specific MPI process 

Some one needs to be able to map this to a 

specific physical location in the parallel 
computer 

Easiest: maintain a table 

• O(p2) – 40 Petabytes again 

• May have additional storage, such as state of 
connection/communication with each remote 
process 
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Using Special Information 

• Some special communicators can use implicit 
representations 

E.g., MPI_COMM_WORLD (and its dups) on hardware 
where rank can be mapped to specific hardware, 
such as on a mesh 

MPI_Comm_split could also store implicit 
representation in some cases 

• Row or column in  a mesh 

• Immediate neighbors 

But the general case no practical implicit 
representation exists 

Should it be possible to manipulate implicit 
representations directly? 

• What if physical network is not simple? 
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Cost of non-Canonical 
Communicators 

• MPI_Bcast on MPI_COMM_WORLD and 
“MPI_COMM_WORLD – 1 process” 

See “Toward message passing for a million 
processes: characterizing MPI on a massive 
scale BlueGene/P”, Balaji, Chan, Thakur, 
Gropp, and Lusk 
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Communication Queues 

• Simple implementations of message-
passing queues can lead to problems 

Simple implementation uses a single queue 

In alltoall communication, each search-and-
remove takes O(p) time, for O(p2) total 
work  

See “Non-Data-Communicatin Overheads in 
MPI: Analysis on Blue Gene/P, “ Balaji, 
Chan, Thakur, Gropp, Lusk 
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Some Queue Options 

• Single Queue for all communications 

Excellent performance on pingpong benchmark 

Search time O(q), q=queue length 

• Separate Queue for each partner 

Search time likely to be O(1)  

Requires O(p) storage on each process, or O(p2) 
total 

• Optimziation: queue only for active partner 

• Adds overhead to deal with new partners, agin old 
partners 

Has “MPI_ANY_SOURCE” problem 

• Single Queue, with hash for search 
Adds some extra overhead (and thus costs power 
and time) 
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Aside on the  
“ANY_SOURCE” problem 

• Many data-parallel applications are (or should be) 
deterministic and do not require ANY_SOURCE 

• Why not get rid of it? 

More dynamic computations may be weakly deterministic – 
enforcing a specific completion order may impact 
scalability 

May also not have predictable source 

• Should we look at alternatives? 

Most applications either want messages from a specific 
sender or the next message from any sender in the group 
of senders-whose-destinations-I-don’t-know-in-advance 

Why mix these in the same interface? 

Use a separate interface for each; optimize for each type 
separately 

Same idea as heterogeneous nodes – optimize for separate 
function 

• Something for MPI-3? 
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Buffer Management 

• Common to use eager buffering to reduce overhead of 
short messages 

• Simple (and most efficient for p < 1k) approach is to 
preallocate a buffer for each process 

O(p2) data required 

• For a mere 16k bytes/buffer, requires 2*1020 bytes (200 
Exabytes) 

• Alternative – provide buffering to preselected partners 

Matches many simulations, particular PDE-based ones 

Ancient approach (available on Intel Paragon) 

• More sophisticated alternative, adaptive buffer 
allocation 

Current project of Dooley, Kale, Gropp 
• Reduces necessity for rendezvous or other control messages (good) 

• But adds overhead to decision (bad) 

• Recall control messages use energy with performing useful 
computation 
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Common Issues 

• Partitioned, local address space 

Gives good locality, but 

Encourages “early, deep copies” 

• Alternate approach 

Late, shallow copies 

Also known as caching 

• But  
Adds a level of indirection 

MPI Implementation must have low-latency access to 
remote data 

Programmer-assisted prefetch will (probably) be 
needed 

• As with current, high-performance caches 
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Replicated Data Structures 

• MPI Communicators are an example of using 
replication of identical or similar data 
structures 

User applications (too) often do the same thing 

Cannot afford this approach at Exascale 

• One solution 

Don’t replicate - distribute  

Cache values actually needed locally 
• Adds overhead – looking up in cache must be very fast 

Use remote load/get on a cache miss 

• Mapping must be simple to compute (no tables!) 
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Example of the Benefit of 
Programming for Prefetch 

• S-CSR format is better than CSR format for all (on Power 5 and 6) or Most ( on Power 4) matrices 

• S-BCSR format is better than BCSR format for all (on Power 6) or Most ( on Power 4 and 5) matrices 

• Blocked format performance from  to 3x CSR. 

Performance Ratio Compared to CSR 
format 

Work of Dahai Guo (NCSA) 

and Gropp 
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Performance Requirements 
for an AlltoAll Algorithm 

• Global 3D FFT a 
very demanding 
application 

• Best case 
assumption: only 
communication 
cost, using LogP 
model (with 
overhead = zero) 

• Current latency
+overhead times 
are .25-10 usec 

Roughly the right 
edges 

10 12 10 10 10 8 10 6
10 12

10 11

10 10

10 9

10 8

10 7

10 6

L

g

Feasibility Region for 3D FFT

 

 

16K cube, Ideal
16K cube, Real World
64K cube, Ideal
64K cube, Real World

Work of Gahvari 

and Gropp 
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Implementing MPI 
Operations 

• Some MPI operations are non-local 

For these, scalability must be evaluated 

• MPI_Comm_split is a powerful, elegant 
method for creating new communicators 

No explicit enumeration of processes 

• The other option is to create a group, then use 
MPI_Comm_create 

But using a group (with enumerated members) 
requires O(p2) total space 

• But can MPI_Comm_split be implemented 
scalably? 
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Implementing COMM_SPLIT 

• MPI_COMM_SPLIT(inComm, color, key, 
&outComm) 

Processes with same color are in the same 

output communicator 

Key used to order ranks 

• Simple Algorithm 

Alltoall (color,rank) 

Each process locally finds those in the same 

color, ordered according to rank 

Create new communicator from that 

information 
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Scalability Analysis 

• Allgather 

O(p2) space to store tables 
• Communication time depends on interconnect, 

but includes O(p) term for amount of data and 
probably at least log p latency – O(p2) total 
communication work 

• P logp time to sort to find processes in 
the same communicator and order rank 
by key. 

• The Simple algorithm for 

MPI_Comm_split is not scalable 
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A (sketch of a more) Scalable 
Algorithm 

• Work of Paul Sack 

• Solution: distributed tree structure for communicators 

No process ever has the entire data structure 

Use parallel sort by color/key 

Then distribute results to the processes sharing the same 
color 

• Space is O(p4/3) 

For 108, this is only about 4 * 1010 

• Further tune by hybridizing 

Some local copies 

• Faster, but redundant – watch that energy use 

Design for smooth performance from small to enormous 

Also optimize for special cases, such as 

• Few colors 

• Key=rank in oldComm 



29 

Summary for MPI 
Everywhere Case 

• Exascale stretches the 64-bit integer space 

Should MPI skip from external32 directly to external128? 

• Flexibility of independent operations at every rank add cost in 
time/space 

But other extreme, rigid, COMM_WORLD – only, limits applications 
(e.g., AMR, dynamic algorithms) 

• Replicated data structures are not viable at (homogeneous) 
Exascale 

Both software and hardware support required for late/shallow 
copies 

Such features are also of general value to the programmer 

• Algorithms must be revisited for scaling 

COMM_SPLIT is not as bad as you might think 

Solution leverages support for distributed data structures 

But all-to-all algorithms are in trouble 
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Is a Homogeneous System 
the Answer? 

• What if instead we have 100k 
“processes”, each with 1000-fold 
parallelism? 

MPI already runs (with some struggle) with 
this number of processes 

Implementations do need improvement 

Enumeration of ranks etc. is still a concern 
• Note memory capacity is an issue for exascale 

systems – total memory per core may be low 
relative to current systems 

This still adds complexity to the 

programming model 
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Hybrid Models for MPI 

• MPI on SMP 

Typical implementation 

• Use regular processes for each MPI process, use special 
services to share memory between the processes 

An alternative 

• Use each MPI process on the SMP is a thread that is 
part of a single operating system process 

• See “Optimizing threaded MPI execution on SMP 
clusters”, H. Tang and T. Yang 

• Must use a special compiler 

• Global variables in the user program must be thread-
private by default 

• Question: should we rethink the identification 

of MPI processes with OS Processes? 

Particularly with respect to memory requirements 
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Generalized MPI Processes 

Let an MPI “Process” 
span multiple nodes 

• Solves the memory 
problem 

• Provides a way to 
address the local/global 
problem 

Issues 
• What does a send with 

a remote pointer mean? 

• What is the address 
space for an MPI 
process? 

• Initializing - who is in 
charge? 

• Programming model 
support for the MPI 
“Process” 

Distributed OpenMP? 

UPC? CAF? 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

MPI Process 
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More General MPI Hybrid 
Programming Models 

• Why consider the Hybrid Model with PGAS or other 
programming models? 

Load balancing 

Shared data (reduce memory pressure, particularly for 
processor-rich (and hence memory poor) nodes) 

Component software (use the best programming model to 
implement a component) 

OpenMP and MPI understood 

What about others:  MPI/UPC (or PGAS) interoperability 

• The following is based on discussions at a “Workshop on 
collective communication primitives in PGAS and SPMD 
languages”, May 2008, IBM Hawthorne 

• Possible combinations for MPI and UPC (or other PGAS) 
languages include: 

MPI processes are UPC programs 

MPI processes are UPC threads 

UPC Programs are combined into MPI programs 
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MPI Processes are  
UPC Programs 

• MPI Processes are 
UPC programs (not 
threads), spanning 
multiple nodes.  This 
model is the closest 
counterpart to the 
MPI+OpenMP model, 
using PGAS to 
extend the "process" 
beyond a single 
node.  (An MPI 
process need not be 
an OS process). 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

MPI Process/ 
UPC Program 
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MPI Processes are UPC 
Threads 

• The program starts as a single 
UPC program.  Each UPC thread 
calls MPI_Init (or 
MPI_Init_thread). The process 
management system must 
permit UPC programs to use 
MPI_Init to also become MPI 
programs.  

• The program starts as a single 
MPI program (started with 
mpiexec). UPC is initialized 
somehow 

UPC initialized explicitly with a 
routine call 

UPC initialized implicitly 
because UPC compiler knew this 
was an MPI + UPC program 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 
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MPI Processes are UPC 
Threads (con’t) 

• The MPI program is tiled with 
separate UPC programs.  That is, 
every MPI process is also a UPC 
thread, but not all MPI processes 
belong to the same UPC program.   

a) The UPC programs are created from 
MPI subcommunicators with an 
explicit call, e.g., add a 
upc_init( MPI_Comm ) (proposed by 
Marc Snir) 

b) The UPC programs are defined at 
startup through interaction with the 
process management system; e.g., 
an extension to mpiexec defines how 
the MPI processes are tiled with UPC 
programs. 

c) Like (b), but not all MPI processes 
correspond to a UPC thread.  This is 
like (a) if not all MPI processes were 
to call upc_init. 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 
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The Program is a Collection 
of UPC Programs 

• The program starts as a collection 
of separate UPC programs. 

Use MPI_Comm_connect/accept to 
become an MPI program on all 
threads 

Use MPI_Comm_connect/accept to 

become an MPI program on a subset 
of UPC threads 

• Both require efficient support for 
updating routing information 
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Handling Faults in Memory 

• A major source of faults in current, large 
systems are transient memory faults (e.g., 
two-bit upsets) 

• Some data must be robust (cannot be 

recomputed, updated in random way) 

Control data, often on stack.  Failures not 
recoverable. 

• Some data may be recoverable  
Large arrays.  If updated en masse, recovery 
possible with in-memory ECC 

• Should we have different kinds of memory for 
these different cases? 
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MPI Fault Issues: Memory 

• MPI application data is in several 
categories 

Shared, updated frequently.  Failures 
not recoverable 

Static (const object), such as 
communicator.  Rebuild from 
software; ECC possible 

Cached.  Recover from other copies 

possible 
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Aside: Thoughts on Reducing 
Impact of Faults 

• User application data is in similar 
categories to MPI data 

May want to generalize this: 

• Stack data is robust; use hardware to provide 
additional reliability 

• Large object (e.g., array) data is protected in 
collaboration with programming model, algorithm 

Need not guarantee all faults handled 

(impossible anyway). (Just make the rate of 
unrecoverable faults small enough) 

• Beginning to explore these ideas, particularly wrt 
numerical algorithms, with Elizabeth Jessup of U 
Colorado at Boulder 
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Conclusions 

• An MPI Everywhere model will be challenging 
for an Exascale system 

Not impossible, however, particular with more 
distributed implementation strategies 

Such strategies will be needed by applications as 
well 

• A Hybrid Model reduces demands on MPI 

But increases demands on an efficient interface 
between MPI and other programming models 

• Faults, scaling may require new algorithmic 
approaches, both in applications and in MPI 
implementations 


