
HPC in 2020
How Will We Get There?

William Gropp
www.cs.illinois.edu/~wgropp

2

Extrapolation is Risky

• 1989 – T – 21 years

Intel introduces 486DX

Eugene Brooks writes “Attack of the Killer

Micros”

4 years before TOP500

Top systems at about 2 GF Peak

• 1999 – T – 11 years

NVIDIA introduces the GPU (GeForce 256)

• Programming GPUs still a challenge

Top system – ASCI Red, 9632 cores, 3.2 TF

Peak

MPI is 7 years old

3

HPC Today

• High(est)-End systems

1 PF (1015 Ops/s) achieved on a few “peak friendly”
applications

Much worry about scalability, how we’re going to get
to an ExaFLOPS

Systems are all oversubscribed

• DOE INCITE awarded almost 900M processor hours in
2009, many turned away

• NSF PRAC awards for Blue Waters similarly competitive

• Widespread use of clusters, many with
accelerators; cloud computing services

These are transforming the low and midrange

• Laptops (far) more powerful than the
supercomputers I used as a graduate student

4

HPC in 2011

• Sustained PF systems

NSF Track 1 “Blue Waters” at Illinois

“Sequoia” Blue Gene/Q at LLNL

Undoubtedly others (Japan, China?, …)

• Still programmed with MPI and MPI+other

(e.g., MPI+OpenMP)

But in many cases using toolkits, libraries, and other
approaches

• And not so bad – applications will be able to run when the
system is turned on

Replacing MPI will require some compromise – e.g.,
domain specific (higher-level but less general)

• Still can’t compile single-threaded code to reliably get good
performance – see the work in autotuners. Lesson – there’s a

limit to what can be automated. Pretending that there’s an
automatic solution will stand in the way of a real solution

5

HPC in 2018-2020

• Exascale (1018) systems arrive
Issues include power, concurrency, fault
resilience, memory capacity

• Likely features

Memory per core (or functional unit)
smaller than today’s systems

108-109 threads

Heterogeneous processing elements

• Software will be different

You can use MPI, but constraints will get
in your way

Likely a combination of tools, with
domain-specific solutions and some
automated code generation

New languages possible but not certain

• Algorithms need to change/evolve
Extreme scalability, reduced memory

Managed locality

Participate in fault tolerance

6

HPC in 2030

• Will we even have Zettaflops (1021 Ops/s)?

Unlikely (but not impossible) in a single (even
highly parallel) system

• Power (again) – you need an extra 1000-fold
improvement in results/Joule over Exascale

• Concurrency

1011-1012 threads (!)

• See the Zettaflops workshops –

www.zettaflops.org

Will require new device technology

• Will the high-end have reached a limit after
Exascale systems?

7

The HPC Pyramid in 1993

High Performance
Workstations

Mid-Range Parallel
Processors and Networked

Workstations

Center
Supercomputers

Tera
Flop
Class

8

The HPC Pyramid in 2029 (?)

Laptops, phones,
wristwatches, eye glasses…

Single Cabinet Petascale
Systems

(or attack of the killer GPU
successors)

Center
Exascale

Supercomputers

9

Exascale Challenges

• Exascale will be hard (see the DARPA Report
[Kogge])

Conventional designs plateau at 100 PF (peak

• all energy is used to move data

Aggressive design is at 70 MW and is very hard to
use

• 600M instruction/cycle - Concurrency

• 0.0036 Byte moved/flop – All operations local

• No ECC, no redundancy – Must detect/fix errors

• No cache memory – Manual management of memory

• HW failure every 35 minutes – Eeek!

• Waiting doesn’t help
At the limits of CMOS technology

10

Going Forward

• What needs to change?

Everything!

Are we in a local minima (no painless path

to improvements)?

• MPI (and parallel languages/
frameworks)

• Fortran/C/C++ and “node” language

• Operating System

• Application

• Architecture

11

Breaking the MPI Stranglehold

• MPI has be very successful

Not an accident

Replacing MPI requires understanding
the strengths of MPI, not just the
(sometimes alleged) weaknesses

12

Where Does MPI Need to
Change?

• Nowhere

There are many MPI legacy applications

MPI has added routines to address problems rather than
changing them

For example, to address problems with the Fortran binding
and 64-bit machines, MPI-2 added MPI_Get_address and

MPI_Type_create_xxx and deprecated (but did not change

or remove) MPI_Address and MPI_Type_xxx.

• Where does MPI need to add routines and deprecate
others?

For example, the MPI One Sided (RMA) does not match
some popular one-sided programming models

Nonblocking collectives (proposed for MPI-3) needed to
provide efficient, scalable performance

13

Extensions

• What does MPI need that it doesn’t have?

• Don’t start with that question. Instead ask

What tool do I need? Is there something that MPI needs
to work well with that tool (that it doesn’t already have)?

• Example: Debugging

Rather than define an MPI debugger, develop a thin and
simple interface to allow any MPI implementation to

interact with any debugger

• Candidates for this kind of extension

Interactions with process managers

• Thread co-existance (MPIT discussions)

• Choice of resources (e.g., placement of processes with Spawn)
Interactions with Integrated Development Environments (IDE)

Tools to create and manage MPI datatypes

Tools to create and manage distributed data structures

• A feature of the HPCS languages
14

Challenges

• Must avoid the traps:

The challenge is not to make easy programs easier. The challenge is to
make hard programs possible.

We need a “well-posedness” concept for programming tasks

• Small changes in the requirements should require small changes in the code

• Rarely a property of “high productivity” languages

Latency hiding is not the same as low latency

• Need “Support for aggregate operations on large collections”

• An even harder challenge: make it hard to write incorrect
programs.

OpenMP is not a step in the (entirely) right direction

In general, current shared memory programming models are very
dangerous.

• They also perform action at a distance

• They require a kind of user-managed data decomposition to preserve

performance without the cost of locks/memory atomic operations

Deterministic algorithms should have provably deterministic
implementations

15

How to Replace MPI

• Retain MPI’s strengths

Performance from matching programming model to the realities of
underlying hardware

Ability to compose with other software (libraries, compilers, debuggers)

Determinism (without MPI_ANY_{TAG,SOURCE})

Run-everywhere portability

• Add to what MPI is missing, such as

Distributed data structures (not just a few popular ones)

Low overhead remote operations; better latency hiding/management;
overlap with computation (not just latency; MPI can be implemented in a
few hundred instructions, so overhead is roughly the same as remote
memory reference (memory wall))

Dynamic load balancing for dynamic, distributed data structures

Unified method for treating multicores, remote processors, other
resources

• Enable the transition from MPI programs

Build component-friendly solutions

• There is no one, true language
16

Issues for MPI in the
Petascale Era

• Complement MPI with support for

Distributed (possibly dynamic) data structures

Improved node performance (including multicore)

• May include tighter integration, such as MPI+OpenMP with compiler
and runtime awareness of both

• Must be coupled with latency tolerant and memory hierarchy sensitive
algorithms

Fault tolerance

Load balancing

• Address the real memory wall - latency

Likely to need hardware support + programming models to handle
memory consistency model

• MPI RMA model needs updating

To match locally cache-coherent hardware designs

Add better atomic remote op support

• Parallel I/O model needs more support

For optimal productivity of the computational scientist, data files
should be processor-count independent (canonical form)

17

Breaking the Fortran/C/C++
Stranglehold

• Issue:

Ad hoc concurrency model

Mismatch to user needs

Mismatch to hardware

Lack of support for correctness

• Summed up: Support for what is really
hard in writing effective programs

• Improve node performance

Make the compiler better

Give better code to the compiler

Get realistic with algorithms/data structures
18

Make the Compiler Better

• It remains the case that most
compilers cannot compete with

hand-tuned or autotuned code on
simple code

Just look at dense matrix-matrix
multiplication or matrix transpose

Try it yourself!

• Matrix multiply on my laptop:

• N=100 (in cache): 1818 MF (1.1ms)

• N=1000 (not): 335 MF (6s)

19

Compilers Versus Libraries in
DFT

Source: Markus Püschel. Spring 2008.

20

How Do We Change This?

• Test compiler against “equivalent” code (e.g., best hand-tuned or

autotuned code that performs the same computation, under
some interpretation or “same”)

In a perfect world, the compiler would provide the same, excellent
performance for all equivalent versions

• As part of the Blue Waters project, Padua, Garzaran, Maleki are
developing a test suite that evaluates how the compiler does with

such equivalent code

Identify necessary transformations and for better interaction with the
programmer to facilitate manual intervention.

Main focus has been on code generation for vector extensions

Result is a compiler whose realized performance is less sensitive to
different expression of code and therefore closer to that of the best

hand-tuned code.

Just by improving automatic vectorization, loop speedups of more
than 5 have been observed on the Power 7.

• But this is a long-term project

What can we do in the meantime?

21

Give “Better” Code to the
Compiler

• Augmenting current programming
models and languages to exploit
advanced techniques for
performance optimization (i.e.,
autotuning)

• Not a new idea, and some tools
already do this.

• But how can these approaches
become part of the mainstream
development?

22

How Can Autotuning Tools Fit
Into Application Development?

• In the short run, just need effective
mechanisms to replace user code with
tuned code

Manual extraction of code, specification of
specific collections of code transformations

• But this produces at least two versions
of the code (tuned (for a particular
architecture and problem choice) and
untuned). And there are other issues.

• What does an application want (what is

the Dream)?

23

Application Requirements
and Implications

• Portable - augment existing language.

Best if the tool that performs all of these steps looks like just
like the compiler, for integration with build process

• Persistent
Keep original and transformed code around

• Maintainable
Let user work with original code and ensure changes
automatically update tuned code

• Correct
Do whatever the app developer needs to believe that the
tuned code is correct

• Faster

Must be able to interchange tuning tools - pick the best tool
for each part of the code

No captive interfaces

Extensibility - a clean way to add new tools, transformations,
properties, …

24

Application-Relevant
Abstractions

• Language for interfacing with autotuning must
convey concepts that are meaningful to the
application programmer

• Wrong: unroll by 5

Though could be ok for performance expert, and
some compilers already provide pragmas for specific
transformations

• Right (maybe): Performance precious, typical
loop count between 100 and 10000, even, not
power of 2

• We need work at developing higher-level,
performance-oriented languages or language
extensions

25

Breaking the OS Stranglehold

• Middle ground between single system
image and single node OS everywhere

• Single system image

Hard to fully distribute

Not clear that it is needed

But some features require coordination

Examples include collective I/O (for file

open/close and coordinated read/write),
scheduling (for services that must not
interfere with loosely synchronized
applications), and memory allocation for
PGAS languages

26

Breaking the Application
Stranglehold

• Problem

Applications often froze in legacy

programming systems; modified for
idiosyncrasies of this year’s system

• Solution

Use of abstraction, autotuning, tools

Interoperable programming models

and frameworks

27

Hardest: Breaking the
Architecture Stranglehold

• Greater power efficiency implies less
speculation in operation, memory

• Must still be able to reason about what is
happening (can’t just have ad hoc
memory consistency, e.g.)

• Need coordinated advances in software,
algorithms, and architecture

Danger is special purpose hardware,
constrained by today’s software, old
algorithms
“Tomorrows hardware, with today’s
software, running yesterday’s algorithms”
Particularly essential for fault tolerance,
latency hiding

28

Research Directions

• Integrated, interoperable, component oriented
languages

Generalization of so-called domain-specific language
• Really data-structure-specific languages

• Performance modeling and tuning

Performance info in language; performance
considered as part of correctness

• Fault tolerance at the high end
Fault tolerance features in the language, working
with hardware and algorithms

• Correctness

Correctness features for testing in the language

Support for special cases (e.g., provably
deterministic expression of deterministic algorithms)

