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Extrapolation is Risky 

• 1989 – T – 21 years 

Intel introduces 486DX 

Eugene Brooks writes “Attack of the Killer 

Micros” 

4 years before TOP500 

Top systems at about 2 GF Peak 

• 1999 – T – 11 years 

NVIDIA introduces the GPU (GeForce 256) 

• Programming GPUs still a challenge  

Top system – ASCI Red, 9632 cores, 3.2 TF 

Peak 

MPI is 7 years old 
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HPC Today 

• High(est)-End systems 

1 PF (1015 Ops/s) achieved on a few “peak friendly” 
applications 

Much worry about scalability, how we’re going to get 
to an ExaFLOPS 

Systems are all oversubscribed 

• DOE INCITE awarded almost 900M processor hours in 
2009, many turned away 

• NSF PRAC awards for Blue Waters similarly competitive 

• Widespread use of clusters, many with 
accelerators; cloud computing services 

These are transforming the low and midrange 

• Laptops (far) more powerful than the 
supercomputers I used as a graduate student  
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HPC in 2011 

• Sustained PF systems 

NSF Track 1 “Blue Waters” at Illinois 

“Sequoia” Blue Gene/Q at LLNL 

Undoubtedly others (Japan, China?, … ) 

• Still programmed with MPI and MPI+other 

(e.g., MPI+OpenMP) 

But in many cases using toolkits, libraries, and other 
approaches 

• And not so bad – applications will be able to run when the 
system is turned on 

Replacing MPI will require some compromise – e.g., 
domain specific (higher-level but less general) 

• Still can’t compile single-threaded code to reliably get good 
performance – see the work in autotuners.  Lesson – there’s a 

limit to what can be automated.  Pretending that there’s an 
automatic solution will stand in the way of a real solution 
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HPC in 2018-2020 

• Exascale (1018) systems arrive  
Issues include power, concurrency, fault 
resilience, memory capacity 

• Likely features 

Memory per core (or functional unit) 
smaller than today’s systems 

108-109 threads 

Heterogeneous processing elements 

• Software will be different 

You can use MPI, but constraints will get 
in your way 

Likely a combination of tools, with 
domain-specific solutions and some 
automated code generation 

New languages possible but not certain 

• Algorithms need to change/evolve 
Extreme scalability, reduced memory 

Managed locality 

Participate in fault tolerance 
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HPC in 2030 

• Will we even have Zettaflops (1021 Ops/s)? 

Unlikely (but not impossible) in a single (even 
highly parallel) system 

• Power (again) – you need an extra 1000-fold 
improvement in results/Joule over Exascale 

• Concurrency 

1011-1012 threads (!) 

• See the Zettaflops workshops – 

www.zettaflops.org 

Will require new device technology 

• Will the high-end have reached a limit after 
Exascale systems? 
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The HPC Pyramid in 1993 

High Performance 
Workstations 

Mid-Range Parallel 
Processors and Networked 

Workstations 

Center 
Supercomputers 

Tera 
Flop 
Class 
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The HPC Pyramid in 2029 (?) 

Laptops, phones, 
wristwatches, eye glasses… 

Single Cabinet Petascale 
Systems 

(or attack of the killer GPU 
successors) 

Center  
Exascale 

Supercomputers 
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Exascale Challenges 

• Exascale will be hard (see the DARPA Report 
[Kogge]) 

Conventional designs plateau at 100 PF (peak 

• all energy is used to move data 

Aggressive design is at 70 MW and is very hard to 
use 

• 600M instruction/cycle - Concurrency 

• 0.0036 Byte moved/flop – All operations local 

• No ECC, no redundancy – Must detect/fix errors 

• No cache memory – Manual management of memory  

• HW failure every 35 minutes – Eeek! 

• Waiting doesn’t help 
At the limits of CMOS technology 
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Going Forward 

• What needs to change? 

Everything! 

Are we in a local minima (no painless path 

to improvements)? 

• MPI (and parallel languages/
frameworks) 

• Fortran/C/C++ and “node” language 

• Operating System 

• Application 

• Architecture 
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Breaking the MPI Stranglehold 

• MPI has be very successful  

Not an accident 

Replacing MPI requires understanding 
the strengths of MPI, not just the 
(sometimes alleged) weaknesses 
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Where Does MPI Need to 
Change? 

• Nowhere 

There are many MPI legacy applications 

MPI has added routines to address problems rather than 
changing them 

For example, to address problems with the Fortran binding 
and 64-bit machines, MPI-2 added MPI_Get_address and 

MPI_Type_create_xxx and deprecated (but did not change 

or remove) MPI_Address and MPI_Type_xxx. 

• Where does MPI need to add routines and deprecate 
others? 

For example, the MPI One Sided (RMA) does not match 
some popular one-sided programming models 

Nonblocking collectives (proposed for MPI-3) needed to 
provide efficient, scalable performance 
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Extensions 

• What does MPI need that it doesn’t have? 

• Don’t start with that question.  Instead ask 

What tool do I need?  Is there something that MPI needs 
to work well with that tool (that it doesn’t already have)? 

• Example: Debugging 

Rather than define an MPI debugger, develop a thin and 
simple interface to allow any MPI implementation to 

interact with any debugger 

• Candidates for this kind of extension 

Interactions with process managers 

• Thread co-existance (MPIT discussions) 

• Choice of resources (e.g., placement of processes with Spawn) 
Interactions with Integrated Development Environments (IDE) 

Tools to create and manage MPI datatypes  

Tools to create and manage distributed data structures 

• A feature of the HPCS languages 
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Challenges 

• Must avoid the traps:  

The challenge is not to make easy programs easier.  The challenge is to 
make hard programs possible. 

We need a “well-posedness” concept for programming tasks 

• Small changes in the requirements should require small changes in the code 

• Rarely a property of “high productivity” languages 

Latency hiding is not the same as low latency 

• Need “Support for aggregate operations on large collections” 

• An even harder challenge: make it hard to write incorrect 
programs. 

OpenMP is not a step in the (entirely) right direction 

In general, current shared memory programming models are very 
dangerous. 

• They also perform action at a distance 

• They require a kind of user-managed data decomposition to preserve 

performance without the cost of locks/memory atomic operations 

Deterministic algorithms should have provably deterministic 
implementations 
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How to Replace MPI  

• Retain MPI’s strengths 

Performance from matching programming model to the realities of 
underlying hardware 

Ability to compose with other software (libraries, compilers, debuggers) 

Determinism (without MPI_ANY_{TAG,SOURCE}) 

Run-everywhere portability 

• Add to what MPI is missing, such as 

Distributed data structures (not just a few popular ones) 

Low overhead remote operations; better latency hiding/management; 
overlap with computation (not just latency; MPI can be implemented in a 
few hundred instructions, so overhead is roughly the same as remote 
memory reference (memory wall)) 

Dynamic load balancing for dynamic, distributed data structures 

Unified method for treating multicores, remote processors, other 
resources 

• Enable the transition from MPI programs 

Build component-friendly solutions 

• There is no one, true language 
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Issues for MPI in the 
Petascale Era 

• Complement MPI with support for  

Distributed (possibly dynamic) data structures 

Improved node performance (including multicore) 

• May include tighter integration, such as MPI+OpenMP with compiler 
and runtime awareness of both 

• Must be coupled with latency tolerant and memory hierarchy sensitive 
algorithms 

Fault tolerance 

Load balancing 

• Address the real memory wall - latency 

Likely to need hardware support + programming models to handle 
memory consistency model  

• MPI RMA model needs updating 

To match locally cache-coherent hardware designs 

Add better atomic remote op support 

• Parallel I/O model needs more support 

For optimal productivity of the computational scientist, data files 
should be processor-count independent (canonical form) 
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Breaking the Fortran/C/C++ 
Stranglehold 

• Issue: 

Ad hoc concurrency model 

Mismatch to user needs 

Mismatch to hardware  

Lack of support for correctness 

• Summed up: Support for what is really 
hard in writing effective programs 

• Improve node performance 

Make the compiler better 

Give better code to the compiler 

Get realistic with algorithms/data structures 
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Make the Compiler Better 

• It remains the case that most 
compilers cannot compete with 

hand-tuned or autotuned code on 
simple code 

Just look at dense matrix-matrix  
multiplication or matrix transpose 

Try it yourself! 

• Matrix multiply on my laptop: 

• N=100 (in cache): 1818 MF (1.1ms) 

• N=1000 (not): 335 MF (6s) 
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Compilers Versus Libraries in 
DFT 

Source: Markus Püschel. Spring 2008.   
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How Do We Change This? 

• Test compiler against “equivalent” code (e.g., best hand-tuned or 

autotuned code that performs the same computation, under 
some interpretation or “same”) 

In a perfect world, the compiler would provide the same, excellent 
performance for all equivalent versions 

• As part of the Blue Waters project, Padua, Garzaran, Maleki are 
developing a test suite that evaluates how the compiler does with 

such equivalent code 

Identify necessary transformations and for better interaction with the 
programmer to facilitate manual intervention. 

Main focus has been on code generation for vector extensions 

Result is a compiler whose realized performance is less sensitive to 
different expression of code and therefore closer to that of the best 

hand-tuned code. 

Just by improving automatic vectorization, loop speedups of more 
than 5 have been observed on the Power 7. 

• But this is a long-term project 

What can we do in the meantime? 
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Give “Better” Code to the 
Compiler 

• Augmenting current programming 
models and languages to exploit 
advanced techniques for 
performance optimization (i.e., 
autotuning) 

• Not a new idea, and some tools 
already do this.   

• But how can these approaches 
become part of the mainstream 
development? 
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How Can Autotuning Tools Fit 
Into Application Development? 

• In the short run, just need effective 
mechanisms to replace user code with 
tuned code 

Manual extraction of code, specification of 
specific collections of code transformations 

• But this produces at least two versions 
of the code (tuned (for a particular 
architecture and problem choice) and 
untuned).  And there are other issues. 

• What does an application want (what is 

the Dream)? 
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Application Requirements 
and Implications 

• Portable - augment existing language.   

Best if the tool that performs all of these steps looks like just 
like the compiler, for integration with build process 

• Persistent 
Keep original and transformed code around 

• Maintainable 
Let user work with original code and ensure changes 
automatically update tuned code 

• Correct 
Do whatever the app developer needs to believe that the 
tuned code is correct 

• Faster 

Must be able to interchange tuning tools - pick the best tool 
for each part of the code 

No captive interfaces 

Extensibility - a clean way to add new tools, transformations, 
properties, … 
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Application-Relevant 
Abstractions 

• Language for interfacing with autotuning must 
convey concepts that are meaningful to the 
application programmer 

• Wrong: unroll by 5 

Though could be ok for performance expert, and 
some compilers already provide pragmas for specific 
transformations 

• Right (maybe): Performance precious, typical 
loop count between 100 and 10000, even, not 
power of 2 

• We need work at developing higher-level, 
performance-oriented languages or language 
extensions 
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Breaking the OS Stranglehold 

• Middle ground between single system 
image and single node OS everywhere 

• Single system image 

Hard to fully distribute 

Not clear that it is needed 

But some features require coordination 

Examples include collective I/O (for file 

open/close and coordinated read/write), 
scheduling (for services that must not 
interfere with loosely synchronized 
applications), and memory allocation for 
PGAS languages 
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Breaking the Application 
Stranglehold 

• Problem 

Applications often froze in legacy 

programming systems; modified for 
idiosyncrasies of this year’s system 

• Solution 

Use of abstraction, autotuning, tools 

Interoperable programming models 

and frameworks 
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Hardest: Breaking the 
Architecture Stranglehold 

• Greater power efficiency implies less 
speculation in operation, memory 

• Must still be able to reason about what is 
happening (can’t just have ad hoc 
memory consistency, e.g.) 

• Need coordinated advances in software, 
algorithms, and architecture 

Danger is special purpose hardware, 
constrained by today’s software, old 
algorithms 
“Tomorrows hardware, with today’s 
software, running yesterday’s algorithms” 
Particularly essential for fault tolerance, 
latency hiding 
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Research Directions 

• Integrated, interoperable, component oriented 
languages 

Generalization of so-called domain-specific language 
• Really data-structure-specific languages 

• Performance modeling and tuning 

Performance info in language; performance 
considered as part of correctness 

• Fault tolerance at the high end 
Fault tolerance features in the language, working 
with hardware and algorithms 

• Correctness 

Correctness features for testing in the language 

Support for special cases (e.g., provably 
deterministic expression of deterministic algorithms) 


