HPC in 2020
How Will We Get There?

William Gropp
www.cs.illinois.edu/—~wgropp

HPC Today

Extrapolation is Risky

!

 High(est)-End systems
¢ 1 PF (10%5 Ops/s) achieved on a few “peak friendly”
applications

¢ Much worry about scalability, how we’re going to get
to an ExaFLOPS

¢ Systems are all oversubscribed

= DOE INCITE awarded almost 900M processor hours in
2009, many turned away

= NSF PRAC awards for Blue Waters similarly competitive
» Widespread use of clusters, many with
accelerators; cloud computing services
¢ These are transforming the low and midrange

e Laptops (far) more powerful than the
supercomputers | used as a graduate student

3

1989 — T — 21 years
¢ Intel introduces 486DX

¢ Eugene Brooks writes “Attack of the Killer
Micros”

¢ 4 years before TOP500
¢ Top systems at about 2 GF Peak

e 1999 — T — 11 years

¢ NVIDIA introduces the GPU (GeForce 256)
* Programming GPUs still a challenge

¢ Top system — ASCI Red, 9632 cores, 3.2 TF
Peak

¢ MPIl is 7 years old |

HPC in 2011

e Sustained PF systems
¢ NSF Track 1 “Blue Waters” at lllinois
¢ “Sequoia” Blue Gene/Q at LLNL
¢ Undoubtedly others (Japan, China?, ...)

e Still programmed with MPI and MPI+other
(e.g., MPI+0OpenMP)

¢ But in many cases using toolkits, libraries, and other
approaches

 And not so bad — applications will be able to run when the
system is turned on

¢ Replacing MPI will require some compromise — e.g.,
domain specific (higher-level but less general)

= Still can’t compile single-threaded code to reliably get good
performance — see the work in autotuners. Lesson — there’s a
limit to what can be automated. Pretending that there’s an
automatic solution will stand in the way of a real solution
4

HPC in 2018-2020

HPC in 2030

I

1867

Exascale (10'8) systems arrive
¢ Issues include power, concurrency, fault

resilience, memory capacity g::ml;:fz_-]mr;: g,
leely featu res Achieving Exascale Systems .@
. . Peter Kogge, Editar & Study Lead 4
¢ Memory per core (or functional unit) Keven Bicymea
smaller than today’s systems IPTO

¢ 108-10° threads
¢ Heterogeneous processing elements
Software will be different
¢ You can use MPI, but constraints will get
in your way
¢ Likely a combination of tools, with

domain-specific solutions and some
automated code generation

¢ New languages possible but not certain
Algorithms need to change/evolve

¢ Extreme scalability, reduced memory

¢ Managed locality

¢ Participate in fault tolerance

The HPC Pyramid in 1993

e Will we even have Zettaflops (102! Ops/s)?

¢ Unlikely (but not impossible) in a single (even
highly parallel) system

= Power (again) — you need an extra 1000-fold
improvement in results/Joule over Exascale

= Concurrency
- 1011-1012 threads (1)

e See the Zettaflops workshops —
www.zettaflops.org
¢ Will require new device technology

Exascale systems?

- Will the high-end have reached a limit after

The HPC Pyramid in 2029 (?)

Center
Supercomputers

Mid-Range Parallel
Processors and Networked
Workstations

Center
Exascale
Supercomputers

Single Cabinet Petascale
Systems

(or attack of the killer GPU

SUCCessors)

Exascale Challenges Going Forward

= Exascale will be hard (see the DARPA Report » What needs to change?
[Kogge]) ¢ Everything!

¢ Conventional designs plateau at 100 PF (peak . - .
gns p (P ¢ Are we in a local minima (no painless path

= all energy is used to move data X -
¢ Aggressive design is at 70 MW and is very hard to to improvements)*

use e MPI (and parallel languages/
= 600M instruction/cycle - Concurrency frameworks)
0.0036 Byte moved/flop — All operations local

No ECC, no redundancy — Must detect/fix errors e Fortran/C/C++ and “node” Ianguage

No cache memory — Manual management of memory .
[J
HW failure every 35 minutes — Eeek! Operatlng SyStem

- Waiting doesn’t help = Application
].[¢ At the limits of CMOS technology j[e Architecture

Where Does MPI Need to

Breaking the MPI Stranglehold Change?

e MPI has be very successful = Nowhere -
¢ There are many MPI legacy applications
¢ Not an accident ¢ MPI has added routines to address problems rather than
. . . changing them
¢ RepIaCIng MPI requires understandlng ¢ For example, to address problems with the Fortran binding
the Strengths of MPI, not just the and 64-bit machines, MPI-2 added MPI_Get_address and
. MPI_Type_create_xxx and deprecated (but did not change
(sometimes alleged) weaknesses or remove) MPI_Address and MPI_Type_xxx.
= Where does MPI need to add routines and deprecate
others?

¢ For example, the MPI One Sided (RMA) does not match
some popular one-sided programming models

¢ Nonblocking collectives (proposed for MPI-3) needed to
provide efficient, scalable performance

1867
11 12

Extensions Challenges

What does MPI need that it doesn’t have? e Must avoid the traps:
Don’t start with that question. Instead ask ¢ The challenge is not to make easy programs easier. The challenge is to

. make hard programs possible.
¢ What tool do | need? Is there something that MPI needs

to work well with that tool (that it doesn’t already have)? ¢ Weneeda We”_Posedne5§ concept for programming tasks .
' Small changes in the requirements should require small changes in the code

b Example: Debugging « Rarely a property of “high productivity” languages
¢ Rather than define an MPI debugger, develop a thin and ¢ Latency hiding is not the same as low latency
simple interface to allow any MPI implementation to = Need “Support for aggregate operations on large collections”
interact with any debugger * An even harder challenge: make it hard to write incorrect
- Candidates for this kind of extension programs.

¢ OpenMP is not a step in the (entirely) right direction
¢ In general, current shared memory programming models are very
dangerous.
= They also perform action at a distance
e They require a kind of user-managed data decomposition to preserve
performance without the cost of locks/memory atomic operations
¢ Deterministic algorithms should have provably deterministic
implementations

¢ Interactions with process managers
e Thread co-existance (MPIT discussions)

= Choice of resources (e.g., placement of processes with Spawn)
Interactions with Integrated Development Environments (IDE)

¢ Tools to create and manage MPI datatypes

¢ Tools to create and manage distributed data structures

* A feature of the HPCS languages
13

14

Issues for MPI in the

How to Replace MPI Petascale Era

e Retain MPI’s strengths e Complement MPI with support for
¢ Performance from matching programming model to the realities of ¢ Distributed (possibly dynamic) data structures
underlying hardware ¢ Improved node performance (including multicore)
+ Ability to compose with other software (libraries, compilers, debuggers) - May include tighter integration, such as MP1+OpenMP with compiler
¢ Determinism (without MPI_ANY_{TAG,SOURCE}) and runtime awareness of both
+ Run-everywhere portability = Must be coupled with latency tolerant and memory hierarchy sensitive

algorithms
¢ Fault tolerance
¢ Load balancing

= Address the real memory wall - latency

e Add to what MPI is missing, such as
¢ Distributed data structures (not just a few popular ones)

¢ Low overhead remote operations; better latency hiding/management;
overlap with computation (not just latency; MPI can be implemented in a

few hundred instructions, so overhead is roughly the same as remote ¢ Likely to need_ hardware support + programming models to handle
memory reference (memory wall)) memory consistency model

¢ Dynamic load balancing for dynamic, distributed data structures = MPI RMA model needs updating

¢ Unified method for treating multicores, remote processors, other ¢ To match locally cache-coherent hardware designs
resources ¢ Add better atomic remote op support

Enable the transition from MPI programs
¢ Build component-friendly solutions
= There is no one, true language
15

« Parallel I/0 model needs more support

¢ For optimal productivity of the computational scientist, data files
should be processor-count independent (canonical form)
16

Breaking the Fortran/C/C++
Stranglehold

Make the Compiler Better

e Issue:
¢ Ad hoc concurrency model
¢ Mismatch to user needs
¢ Mismatch to hardware
¢ Lack of support for correctness
e Summed up: Support for what is really
hard in writing effective programs

* Improve node performance
¢ Make the compiler better
- ¢ Give better code to the compiler -
JI ¢ Get realistic with algorithms/data structures JI

17

Compilers Versus Libraries in
DFT

e It remains the case that most
compilers cannot compete with
hand-tuned or autotuned code on
simple code

¢ Just look at dense matrix-matrix
multiplication or matrix transpose
¢ Try it yourself!
* Matrix multiply on my laptop:
* N=100 (in cache): 1818 MF (1.1ms)
« N=1000 (not): 335 MF (6s)

18

How Do We Change This?

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz

Gflop/s
30
25
20
15 Multiple threads: 2x
10
Vector instructions: 3x
5 ——————————t———t o &
Memory hierarchy: 5x Te—
oh———‘&—@'——é 4 & < - 4- & 5 < < >
16 32 64 128 256 512 1,024 2048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

1 Source: Markus Puschel. Spring 2008.
19

!

= Test compiler against “equivalent” code (e.g., best hand-tuned or
autotuned code that performs the same computation, under
some interpretation or “same”)
¢ In a perfect world, the compiler would provide the same, excellent
performance for all equivalent versions
= As part of the Blue Waters project, Padua, Garzaran, Maleki are
developing a test suite that evaluates how the compiler does with
such equivalent code
¢ Identify necessary transformations and for better interaction with the
programmer to facilitate manual intervention.
¢ Main focus has been on code generation for vector extensions
¢ Result is a compiler whose realized performance is less sensitive to
different expression of code and therefore closer to that of the best
hand-tuned code.
¢ Just by improving automatic vectorization, loop speedups of more
than 5 have been observed on the Power 7.
= But this is a long-term project

¢ What can we do in the meantime?
20

Give “Better” Code to the
Compiler

How Can Autotuning Tools Fit
Into Application Development?

e Augmenting current programming

models and languages to exploit
advanced techniques for
performance optimization (i.e.,
autotuning)

Not a new idea, and some tools
already do this.

But how can these approaches
become part of the mainstream
development?

21

Application Requirements
and Implications

e In the short run, just need effective
mechanisms to replace user code with
tuned code

¢ Manual extraction of code, specification of
specific collections of code transformations

e But this produces at least two versions
of the code (tuned (for a particular
architecture and problem choice) and
untuned). And there are other issues.

= What does an application want (what is
the Dream)?

22

Application-Relevant
Abstractions

!

Portable - augment existing language.

¢ Best if the tool that performs all of these steps looks like just
like the compiler, for integration with build process

Persistent
¢ Keep original and transformed code around
Maintainable
¢ Let user work with original code and ensure changes
automatically update tuned code
Correct
¢ Do whatever the app developer needs to believe that the
tuned code is correct
Faster

¢ Must be able to interchange tuning tools - pick the best tool
for each part of the code

¢+ No captive interfaces

+ Extensibility - a clean way to add new tools, transformations,
properties, ...
23

e Language for interfacing with autotuning must
convey concepts that are meaningful to the
application programmer

= Wrong: unroll by 5
¢ Though could be ok for performance expert, and
some compilers already provide pragmas for specific
transformations
« Right (maybe): Performance precious, typical
loop count between 100 and 10000, even, not
power of 2

= We need work at developing higher-level,
performance-oriented languages or language
extensions

24

Breaking the Application

Breaking the OS Stranglehold Stranglehold

 Middle ground between single system e Problem
image and single node OS everywhere ¢ Applications often froze in legacy
= Single system image programming systems; modified for
¢ Hard to fully distribute idiosyncrasies of this year’s system
¢ Not clear that it is needed e Solution
¢ But some features require coordination . i
: . . ¢ Use of abstraction, autotuning, tools
¢ Examples include collective 1/0 (for file
open/close and coordinated read/write), ¢ Interoperable programming models
scheduling (for services that must not and frameworks
interfere with loosely synchronized
] applications), and memory allocation for ﬂ
PGAS languages

Hardest: Breaking the

Architecture Stranglehold Research Directions

= Greater power efficiency implies less

Integrated, interoperable, component oriented

speculation in operation, memory languages

e Must Sti_” be able _tO reason about what is ¢ Generalization of so-called domain-specific language
happenlng (Ca_n’t JUSt have ad hoc - Really data-structure-specific languages
memory CO_nS|StenCys e.g.) _ = Performance modeling and tuning

. Need_COOI’dlnated ad_/ances in software, ¢ Performance info in language; performance
algorithms, and architecture considered as part of correctness

¢ Danger is special purpose hardware,

.) Fault tolerance at the high end
constrained by today’s software, old .)
algorithms ¢ Fault tolerance features in the language, working

with hardware and algorithms

¢ “Tomorrows hardware, with today’s

software, running yesterday’s algorithms” e Correctness
= ¢ Particularly essential for fault tolerance, - ¢ Correctness features for testing in the language
ﬂ latency hiding ﬂ ¢ Support for special cases (e.g., provably

deterministic expressiozrg of deterministic algorithms)
27

