
Performance Modeling as the
Key to Extreme Scale

Computing
William Gropp

www.cs.illinois.edu/~wgropp

2

Performance is Key

•  Parallelism is (usually) used to get more
performance
♦ How do you know if you are making good

(not even best) use of a parallel system?
•  Even measurement-based approaches

can be (and all to often are) performed
without any real basis of comparison
♦ The key questions are

• Where is most of the time spent?
• What is the achieveable performance, and how do

I get there?
♦ This latter is often overlooked, leading to

erroneous conclusions based on the
(immature) state of compiler / runtime /
code implementations

3

How Do We Know if there is
a Performance Problem?

• My application scales well!
♦ So what!

• Is it efficient?
• Making the scalar code more efficient

decreases scalability
♦ How can we know?
♦ To what do we compare?

4

Tuning A Parallel Code

•  Typical Approach
♦  Profile code. Determine where most time is being

spent
♦  Study code. Measure absolute performance, look at

performance counters, compare FLOP rates
♦  Improve code that takes a long time, reduce time

spent in “unproductive” operations
•  Why this isn’t the right approach:

♦  How do you know when you are done?
♦  How do you know how much performance

improvement you can obtain?
•  Why is it hard to know?

5

An Extreme System

Power7	 Chip	
Nearly	 256	 GF	 peak	 performance	
Over	 3.5	 GHz	
Up	 to	 8	 cores,	 32	 SMT	 threads	
Caches	
	 L1	 (2x64	 KB),	 L2	 (256	 KB),	
	 L3	 (32	 MB,	 complex	 policy)	

Memory	 Subsystem	
	 Two	 memory	 controllers	
	 128	 GB/s	 memory	 bandwidth	

PERCS	 Hub	 Chip	
1.128	 TB/s	 total	 bandwidth	

Connections:	
	 192	 	 GB/s	 QCM	 (4	 P7/QCM)	 connection	
	 896	 	 GB/s	 to	 other	 QCMs	
	 	 	 40	 	 GB/s	 general	 purpose	 I/O	

6

Two-level (L, D) Direct-connect
Network

Each Supernode = 32 QCMs
(4 Drawers x 8 SMPs/Drawer)

Fully Interconnected with
Llocal and Lremote Links

QCM	 QCM	

QCM	

Q
CM

	
Q
CM

	

Q
CM

	
Q
CM

	

…

Supernode	 Supernode	

Supernode	
Su
pe

rn
od

e	
Su
pe

rn
od

e	

Supernode	
Supernode	

…

Blue Waters = 320 Supernodes
(40 BBs x 8 SNs/BB)

Fully Interconnected with
D Links But complex, nonuniform network; full

system (too?) costly

7

Another Example System

•  128 node GPU Cluster
•  #3 on Green500 in 2010
•  Each node has

♦  One Core i3 530 2.93 GHz dual-
core CPU

♦  One Tesla C2050 GPU per node
•  33.62 TFLOPS on HPL
•  934 MFLOPS/Watt
•  How can we engineer codes for

performance on these complex
systems?

•  And an exercise for the viewer:
what do performance models
tell you about the CPU/GPU
comparisons you see?

8

An Even More Radical System
•  Rack Scale

♦  Processing:128 Nodes, 1 (+) PF/s
♦  Memory:

•  128 TB DRAM
•  0.4 PB/s Aggregate Bandwidth

♦  NV Memory
•  1 PB Phase Change Memory (addressable)
•  Additional 128 for Redundancy/RAID

♦  Network
•  0.13 PB/sec Injection, 0.06 PB/s Bisection

9

Why Performance Modeling?

• What is the goal?
♦ It is not precise predictions
♦ It is insight into whether a code is

achieving the performance it could,
and if not, how to fix it

• Performance modeling can be used
♦ To estimate the baseline performance
♦ To estimate the potential benefit of a

nontrivial change to the code
♦ To identify the resource limiting

performance

10

What do I mean by
Performance Modeling?

•  Actually two different models
♦  First, an analytic expression based on the application

code
♦  Second, an analytic expression based on the

application’s algorithm and data structures
•  Note that a series of measurements from

benchmarks are not a performance model
•  Why this sort of modeling

♦  The obvious: extrapolation to other systems, such as
scalability in nodes or different interconnect

♦  Also: comparison of the two models with observed
performance can identify

•  Inefficiencies in compilation/runtime
•  Mismatch in developer expectations

11

Different Philosophies for
Performance Models

•  Simulation:
♦ Very accurate prediction, little insight

•  Traditional Performance Modeling (PM):
♦  Focuses on accurate predictions
♦ Tool for computer scientists, not application

developers
•  PM as part of the software engineering process

(our view)
♦  PM for design, tuning and optimization
♦  PMs are developed with algorithms and used in

each step of the development cycle
Ø Performance Engineering

12

Our Methodology

•  Combine analytical methods and performance
measurement tools
♦  Programmer specifies parameterized expectation

•  E.g., T = a+b*N3

♦  Estimate coefficients with appropriate benchmarks
♦  We derive the scaling analytically and fill in the

constants with empirical measurements
♦  Focus on upper and lower bounds rather than precise

predictions
•  Models must be as simple and effective as possible

♦  Simplicity increases the insight
♦  Precision needs to be just good enough to drive action.

•  An example: Sparse matrix-vector multiply

13

Sparse Matrix-Vector Product

• Common operation for optimal (in
floating-point operations) solution of
linear systems

• Sample code (common CSR format):
for row=1,n
 m = i[row] - i[row-1];
 sum = 0;
 for k=1,m
 sum += *a++ * x[*j++];
 y[i] = sum;

• Data structures are a[nnz], j[nnz],
i[n], x[n], y[n]

14

Simple Performance Analysis

•  Memory motion:
♦  nnz (sizeof(double) + sizeof(int)) +

n (2*sizeof(double) + sizeof(int))
♦  Assume a perfect cache (never load same data twice)

•  Computation
♦  nnz multiply-add (MA)

•  Roughly 12 bytes per MA
•  Typical node can move 1-4 bytes/MA

♦  Maximum performance is 8-33% of peak
♦  Use STREAM benchmark to get sustained memory

bandwidth
•  Similar analysis gives bound based on instruction issue

rate
•  Implementation improvements (tricks) cannot improve

on these limits
•  W. K. Anderson, William D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith.

Achieving high sustained performance in an unstructured mesh CFD application,
SC’99 (Gordon Bell Prize)

15

Realistic Measures of Peak Performance
Sparse Matrix Vector Product

One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

Thanks to Dinesh Kaushik;
ORNL and ANL for compute time

Note excellent match to simple performance
model. Current systems show similar results
(but there is a difference to be discussed later)

16

But the problem is so big!

•  Real applications are much larger – isn’t it
hard to do this for the entire application?

•  Yes, but it doesn’t matter for runnable
apps. Look at the parts that take the
most time. Break the problem into
digestible parts

•  Contributions to performance issues
from:
♦ Single thread and node performance
♦ Node and the Network
♦ Placement in the Network

17

Utilizing the Processor

•  Note rapidly growing numbers of functional units
– Power7 has 2 multiply-add units per core; BG/
Q has 4, accessed through “vector” instructions

•  How do we know how well we are doing?
•  How do we know how well the compiler is doing?
•  We can model the expected performance,

including vectorization!
•  Using the model, we can also identify where

manually applying well-known transformations
will help

•  Also identifies where extra constraints, such as
alignment restrictions, may inhibit use of
vectorization

18

How Good are Compilers at
Vectorizing Codes?

28

27

6

4

34

ICC

XLCXLC

GCC

1
3

Not Vectorizable

Auto Vectorized

1

3

Vectorizable

Vectorizable but none of the
compilers auto vectorized

21

7 18 5

Intel IBM

S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing
Compilers. PACT 2011.

19

Media Bench II Applications
Appl XLC

ICC

GCC

XLC

ICC

GCC

 Automatic Manual
JPEG Enc - 1.33 - 1.39 2.13 1.57
JEPG Dec - - - - 1.14 1.13
H263 Enc - - - 1.25 2.28 2.06
H263 Dec - - - 1.31 1.45 -
MPEG2 Enc - - - 1.06 1.96 2.43

MPEG2 Dec - - 1.15 1.37 1.45 1.55

MPEG4 Enc - - - 1.44 1.81 1.74

MPEG4 Dec - - - 1.12 - 1.18

Table shows whole program speedups measured against
unvectorized application

S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing Compilers. PACT 2011

20

Processes and Memory

•  For many computations, sustained memory
performance is the limiting resource
♦  As in sparse matrix-vector multiply

•  What is the appropriate sustained rate?
♦  Memory bus bandwidth is nearly irrelevant – it is the

sustained rate that is usually important
♦  What about other ways to increase effective

sustained performance, such as prefetch?
•  Prefetch hardware can detect regular accesses

and prefetch data, making use of otherwise
idle memory bus time.
♦  However, the hardware must be presented with

enough independent data streams
•  Guo and Gropp, IJHPCA 2011

21

Streamed Compressed
Sparse Row (S-CSR) format

•  S-CSR format partitions the sparse matrix into blocks along rows with size of
bs. Zeros are added in to keep the number of elements the same in each row
of a blockThe first rows of all blocks are stored first, then second, third … and
bs-th rows.

•  For the sample matrix in the following Figure, NNZ = 29. Using a block size
of bs = 4, it generates four equal length streams R, G, B and P. This new
design only adds 7 zeros every 4 rows.

0

0 0

0 0

•Partition	 the	 sparse	 matrix	 into	 blocks	 along	 rows	 with	 size	 of	 bs.	 Add	 in	 ZEROs	 to	 keep	 the	 amount	 of	 stored	 values	 is	
the	 same	 for	 every	 row	 in	 each	 block.	 Store	 the	 first	 rows	 of	 all	 blocks	 	 first,	 then	 second,	 third	 	 …	 and	 bs-‐th rows.	

•using	 bs =4	 block	 for	 example,	 it	 will	 generate	 R,	 G,	 B	 and	 P	 four	 equal	 length	 streams.	 In	 the	 above	 matrix,	 NNZ	 =	 	 29.	
Design	 III	 only	 adds	 in	 7	 zeros.	 However,	 if	 4x4	 block	 is	 employed,	 144-‐29	 =	 115	 zeros	 have	 to	 be	 included.

•This	 format	 adds	 in	 	 the	 same	 	 or	 less	 amount	 	 of	 ZEROs	 	 than	 blocking	 format,	 but	 more	 index	 for	 vector	 X	 than	 the	
traditional	 CSR	 format.	

R

G

B

P

A	 sparse	 matrix	 (N	 =	 12,	 NNZ=	 29)

Design	 III

0

0

Streamed	 Compressed	 Sparse	 Row	 format
(S-‐CSR)	

2 2

0 4 6 9p tr

v a l in d
0	 	 	 4	 	 	 	 8	 	 	 11 2	 	 	 6	 	 	 10

2	 	 	 6	 	 10	 10	 	 	 4	 	 	 8	 	 	 3	 	 	 5	 	 	 	 9

1	 	 	 8	 	 	 8	 	 	 	 	 8	 	 	 6	 	 	 6	 	 	 	 1	 	 	 	 6	 	 10

4	 	 	 6	 	 	 6	 	 	 	 	 6	 	 	 8	 	 11	 	 	 0	 	 	 	 5	 	 11

22

Performance Ratio Compared to
CSR Format

•  S-CSR format is better than CSR format for all (on Power 5 and 6) or Most (on Power 4)
matrices

•  S-BCSR format is better than BCSR format for all (on Power 6) or Most (on Power 4 and
5) matrices

•  Blocked format performance from ½ to 3x CSR.

23

Combining With Other
Optimizations

•  We can further
modify the S-CSR
and S-BCSR to
match the
requirements for
vectorization

•  We can use OSKI
to optimize
“within the loops”

•  Guo and Gropp, submitted

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

Pe
rf
or
m
an
ce
	 R
at
io

stream_un2

BLK12-‐VSX

S-‐CSR-‐2

S-‐CSR-‐4

S-‐CSR-‐2-‐VSX

S-‐CSR-‐4-‐VSX

SpMV on	 	 BlueBiou

24

Processes and SMP nodes

•  HPC users typically believe that their code
“owns” all of the cores all of the time
♦  The reality is that was never true, but they did have

all of the cores the same fraction of time when there
was one core /node

•  We can use a simple performance model to
check the assertion and then use
measurements to identify the problem and
suggest fixes.

•  Consider a simple Jacobi sweep on a regular
mesh, with every core having the same
amount of work. How are run times
distributed?

25

Sharing an SMP

•  Having many cores available
makes everyone think that
they can use them to solve
other problems (“no one would
use all of them all of the time”)

•  However, compute-bound
scientific calculations are often
written as if all compute
resources are owned by the
application

•  Such static scheduling leads to
performance loss

•  Pure dynamic scheduling adds
overhead, but is better

•  Careful mixed strategies are
even better

•  Recent results give 10-16%
performance improvements on
large, scalable systems

•  Thanks to Vivek Kale
(EuroMPI’10)

26

Processes and the Network

•  How relevant is ping-pong
bandwidth and real systems?

•  What are the correct
parameters?
♦  Model the real system,

but abstractly
♦  For Blue Gene, must model

independent communication links
♦  Impacts choice of communication algorithm (many

benchmarks do not provide a relevant measurement)
•  Data copies and MPI datatypes

♦  How do you decide whether to even carry out the
experiment?

Four Neighbor Halo Exchange

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Log(message size in bytes)

ping pong
Bandwidth (one send)
Halo Exchange (4 nbrs)
Halo Exchange (phased)

27

Model-guided Optimization

•  Application is MILC, a lattice QCG code
•  Analytic model showed possible improvement of

12% by eliminating the pack before
communicating

•  Torsten Hoefler
implemented and
analyzed in EuroMPI’10
♦  Up to 18% faster!

•  Next bottleneck:
CG phase
♦  Investigating use of nonblocking collectives in a

modified CG
♦  Also model-driven (because involves more floating point

but same or less data motion)

28

AMG Performance Model

•  What if a model is
too difficult? We can
establish upper and
lower bounds and
compare
performance

•  Includes contention,
bandwidth,
multicore penalties

•  82% accuracy on
Hera, 98% on Zeus

•  Gahvari, Baker,
Schulz, Yang,
Jordan, Gropp
(ICS’11)

0 1 2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Hera, 128 processors

α−β Model

α−β−γ Model

β Penalty

α,β Penalties

β,γ Penalties

α,β,γ Penalties

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Hera, 1024 processors

α−β Model

α−β−γ Model

β Penalty

α,β Penalties

β,γ Penalties

α,β,γ Penalties

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Hera, 3456 processors

α−β Model

α−β−γ Model

β Penalty

α,β Penalties

β,γ Penalties

α,β,γ Penalties

0 1 2 3 4 5 6 7
10

−5

10
−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Zeus, 512 processors

α−β Model

α−β−γ Model

β Penalty

α,β Penalties

β,γ Penalties

α,β,γ Penalties

29

How often do you hear
 “MPI Communication is too Slow”
•  Often the real problem is

that some process is “late”
to a collective call or some
send or receive is issued
late

•  “Fix” (used in PETSc and
FPMPI2)
♦  Test using

•  MPI_Barrier(comm)
MPI_Allreduce(…,comm);

♦  If Barrier time is too
long (what’s that),
hypothesis is that there
is load imbalance

•  Same issue with thread programs – “cost” of barriers, locks,
…

30

Not Just Collectives

•  So why do people see slow communication with
regular mesh codes?

•  One common culprit is the mapping of process
topology to physical topology (network
interconnect)
♦  Note that this may be quite complex
♦  We have used modeling to determine that a certain kind

of random mapping is often preferable for Blue Waters
♦  Avoiding hot-spots on two-level direct networks, Abhinav

Bhatele, Nikhil Jain, William Gropp and Laxmikant V.
Kale, SC2011

•  One common case is a halo exchange…

31

Halo Exchange on
BG/P and Cray XT4

•  2048 doubles to each neighbor
•  Rate is MB/Sec (for all tables)

BG/P 4 Neighbors 8 Neighbors

Irecv/Send Irecv/Isend Irecv/Send Irecv/Isend

World 208 328 184 237

Even/Odd 219 327 172 243

Cart_create 301 581 242 410

Cray XT4 4 Neighbors 8 Neighbors

Irecv/Send Irecv/Isend Phased Irecv/Send Irecv/Isend

World 311 306 331 262 269

Even/Odd 257 247 279 212 206

Cart_create 265 275 266 236 232

32

Discovering Performance
Opportunities

•  Lets look at a single process sending to its neighbors.
•  Based on our performance model, we expect the rate to be

roughly twice that for the halo (since this test is only
sending, not sending and receiving)

System 4 neighbors 8 Neighbors

Periodic Periodic

BG/L 488 490 389 389

BG/L, VN 294 294 239 239

BG/P 1139 1136 892 892

BG/P, VN 468 468 600 601

XT3 1005 1007 1053 1045

XT4 1634 1620 1773 1770
XT4 SN 1701 1701 1811 1808

33

Discovering Performance
Opportunities

•  Ratios of a single sender to all processes sending (in rate)
•  Expect a factor of roughly 2 (since processes must also

receive)
System 4 neighbors 8 Neighbors

Periodic Periodic

BG/L 2.24 2.01

BG/L, VN 1.46 1.81

BG/P 3.8 2.2

BG/P, VN 2.6 5.5

XT3 7.5 8.1 9.08 9.41

XT4 10.7 10.7 13.0 13.7
XT4 SN 5.47 5.56 6.73 7.06

§  BG gives roughly double the halo rate. XTn is much higher
§  It should be possible to improve the halo exchange on the XT by scheduling the

communication
§  Or improving the MPI implementation

34

Summary

•  Isn’t this just a collection of tricks?
•  Yes and no

♦ Yes, a number of different approaches have
been applied

♦ No, the same quantitative approach, based
on getting performance estimates for the
resources under consideration and
emphasizing a simple model that estimates
bounds, is applied

♦ Quantitative Thinking
• … must be based on having a hypothesis

(model), not just measurements

35

Performance Models Provide Insight

•  SpMV, compiler vectorization
♦  Model identifies limits of achievable performance

•  Using prefetch in SpMV
♦  Abstract model based on hardwaree identifies opportunity,

led to new algorithm
•  Jitter and adapting to runtime

♦  Simple performance model identifies gap in achieved
performance, leading to new approaches

•  Using MPI Datatypes
♦  Simple model suggests benefit; results show either

success or problems in MPI implementation
•  Topology

♦  Simple model identifies performance gaps, even when
multiple communication links involves

36

Why is Performance Modeling
the Key to Extreme Scale?

•  Measuring yesterday’s applications, even with
today’s runtimes, is often irrelevant
♦  Look at some of the CPU/GPU comparison (see

Vuduc et al for good examples)
•  Focus on achievable performance at scale

♦  Architectures are changing rapidly
•  Further reduces value of measurements on existing

codes
♦  Models permit quantitative evaluation of different

approaches and a priori estimation of possible
benefit to a major change

♦  Only way to evaluate radical (and necessary!)
architectural changes!

37

Thanks
•  Torsten Hoefler

♦  Performance modeling lead,
Blue Waters; MPI datatype

•  David Padua, Maria Garzaran,
Saeed Maleki
♦  Compiler vectorization

•  Dahai Guo
♦  Streamed format exploiting

prefetch
•  Vivek Kale

♦  SMP work partitioning
•  Paul Sack

♦  Contention-reducing collectives

•  Hormozd Gahvari
♦  AMG application modeling

•  Marc Snir and William Kramer
♦  Performance model

advocates

•  Abhinav Bhatele
♦  Process/node mapping

•  Elena Caraba
♦  Nonblocking Allreduce in CG

•  Van Bui
♦  Performance model-based

evaluation of programming
models

•  Ankeeth Ved
♦  Model-based updates to NAS

benchmarks
•  Funding provided by:

♦  Blue Waters project (State of
Illinois and the University of
Illinois)

♦  Department of Energy, Office of
Science

♦  National Science Foundation

