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Performance, then 
Productivity 

•  Note the “then” – not “instead of” 
♦  For “easier” problems, it is correct to invert 

these 
•  For the very hardest problems, we must 

focus on getting the best performance 
possible 
♦  Rely on other approaches to manage the 

complexity of the codes 
♦  Performance can be understood and engineered 

(note I did not say predicted) 
•  We need to start now, to get practice 

♦  “Vector” instructions, GPUs, extreme scale 
networks 

♦  Because Exascale platforms will be even more 
complex and harder to use effectively 
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Exascale Directions 

•  Exascale systems are likely to have 
♦  Extreme power constraints, leading to 

•  Clock Rates similar to today’s systems 
•  A wide-diversity of simple computing elements (simple for 

hardware but complex for software) 
•  Memory per core and per FLOP will be much smaller 
•  Moving data anywhere will be expensive (time and power) 

♦  Faults that will need to be detected and managed 
•  Some detection may be the job of the programmer, as 

hardware detection takes power 
♦  Extreme scalability and performance irregularity 

•  Performance will require enormous concurrency 
•  Performance is likely to be variable 

-  Simple, static decompositions will not scale 
♦  A need for latency tolerant algorithms and 

programming 
•  Memory, processors will be 100s to 10000s of cycles away.  

Waiting for operations to complete will cripple performance 
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IBM PERCS: Two New Chips 

Power7	
  Chip	
  
Up	
  to	
  256	
  GF	
  peak	
  performance	
  
3.5–4.0	
  GHz	
  
Up	
  to	
  8	
  cores,	
  32	
  SMT	
  threads	
  
Caches	
  
	
  L1	
  (2x64	
  KB),	
  L2	
  (256	
  KB),	
  
	
  L3	
  (32	
  MB,	
  complex	
  policy)	
  

Memory	
  Subsystem	
  
	
  Two	
  memory	
  controllers	
  
	
  128	
  GB/s	
  memory	
  bandwidth	
  

PERCS	
  Hub	
  Chip	
  
1.128	
  TB/s	
  total	
  bandwidth	
  

Connections:	
  
	
  192	
   	
  GB/s	
  QCM	
  connection	
  
	
  896	
   	
  GB/s	
  to	
  other	
  QCMs	
  
	
  	
  	
  40	
   	
  GB/s	
  general	
  purpose	
  I/O	
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Two-level (L, D) Direct-connect 
Network 

Each Supernode = 32 QCMs 
(4 Drawers x 8 SMPs/Drawer) 

Fully Interconnected with 
Llocal and Lremote Links 
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Blue Waters = 320 Supernodes 
(40 BBs x 8 SNs/BB) 

Fully Interconnected with 
D Links Result:  Very low 

hardware latency 
 Very high bandwidth 

But complex, nonuniform 
network 
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Another Example System 

•  128 node GPU Cluster 
•  #3 on Green500 
•  Each node has  

♦  One Core i3 530 2.93 GHz dual-
core CPU 

♦  One Tesla C2050 GPU per node 
•  33.62 TFLOPS on HPL 
•  934 MFLOPS/Watt 
•  How can we engineer codes for 

performance on these complex 
systems? 

•  And an exercise for the viewer: 
what do performance models 
tell you about the CPU/GPU 
comparisons you see? 



1 EFlop/s “Clean Sheet of Paper” 
Strawman 

•  4 FPUs+RegFiles/Core (=6 GF 
@1.5GHz) 
•  1 Chip = 742 Cores (=4.5TF/s) 

•  213MB of L1I&D; 93MB of L2 
•  1 Node = 1 Proc Chip + 16 DRAMs 
(16GB) 
•  1 Group = 12 Nodes + 12 Routers 
(=54TF/s) 
•  1 Rack = 32 Groups (=1.7 PF/s) 

•  384 nodes / rack 
•  3.6EB of Disk Storage included  
•  1 System = 583 Racks (=1 EF/s) 

•  166 MILLION cores 
•  680 MILLION FPUs 
•  3.6PB = 0.0036 bytes/flops 
•  68 MW w’aggressive  
assumptions 

Sizing done by “balancing” power budgets with achievable capabilities 

Largely due to Bill Dally, Stanford 

Thanks to Peter Kogge for this slide, based on the DARPA report  
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An Even More Radical System 
•  Rack Scale 

♦  Processing:128 Nodes, 1 (+) PF/s 
♦  Memory: 

•  128 TB DRAM 
•  0.4 PB/s Aggregate Bandwidth 

♦  NV Memory 
•  1 PB Phase Change Memory 

(addressable) 
•  Additional 128 for Redundancy/RAID 

♦  Network 
•  0.13 PB/sec Injection, 0.06 PB/s 

Bisection 

Thanks to Richard Murphy for this slide 
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Need for Adaptivity 

•  Uniform meshes rarely optimal 
♦  More work than necessary 
♦  Note that minimizing floating-point operations 

will not minimize running time – perfect irregular 
mesh is also not optimal 

•  Once adaptive meshing/model approximations 
used, need to address load balance, avoid the 
use of synchronizing operations 
♦  No barriers 
♦  Nothing that looks like a barrier (MPI_Allreduce) 

•  See MPI_Iallreduce, likely to appear in MPI 3 
♦  Care with operations that are weakly 

synchronizing– e.g., neighbor communication (it 
synchronizes, just not as tightly) 

•  Using MPI_Send synchronizes  
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Consequences of Unnecessary 
Synchronization 

•  How relevant is ping-pong  
bandwidth and real systems? 

•  What are the correct  
parameters? 
♦  Model the real system,  

but abstractly 
♦  For Blue Gene, must model  

independent communication links 
♦  Impacts choice of communication algorithm (many 

benchmarks do not provide a relevant measurement) 
•  Using one MPI_Send at a time prevents use of 

concurrent communication 
♦  Similar effects even if there is one communication path 

out of node, but contention in the network.  Performance 
can suffer 2x or more slow down 

♦  Unnecessary in many cases 
♦  Benchmarks that sue MPI_Send are not “fair” 
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Processes and SMP nodes 

•  HPC users typically believe that their code “owns” 
all of the cores all of the time 
♦  The reality is that was never true, but they did have all 

of the cores the same fraction of time when there was 
one core /node 

♦  Given this belief, load balancing is unnecessary for 
regular grid codes 

♦  Is this true? 
•  We can use a simple performance model to check 

the assertion and then use measurements to 
identify the problem and suggest fixes. 

•  Consider a simple Jacobi sweep on a regular mesh, 
with every core having the same amount of work.  
How are run times distributed? 
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Sharing an SMP 

•  Having many cores available 
makes everyone think that 
they can use them to solve 
other problems (“no one would 
use all of them all of the time”) 

•  However, compute-bound 
scientific calculations are often 
written as if all compute 
resources are owned by the 
application 

•  Such static scheduling leads to 
performance loss 

•  Pure dynamic scheduling adds 
overhead, but is better 

•  Careful mixed strategies are 
even better 

•  Recent results give 10-16% 
performance improvements on 
large, scalable systems  

•  Thanks to Vivek Kale 
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Need for Aggregation 

•  Functional units are cheap  
♦  Small amount of area, relatively small amount of 

power 
♦  Memory motion is expensive 
♦  Easy to arrange many floating point units, in 

different patterns 
•  Classic vectors (Cray, NEC SX) 
•  Commodity vectors (2 or 4 elements) 
•  Streams 
•  GPU 

♦  All have different requirements on both the 
algorithms (e.g., work with full vectors) and 
programming (e.g., satisfy alignment rules) 

♦  Compilers will be able to help but will not solve the 
problem 

•  The following compares three compilers success at 
producing good commodity vector code from loops in 
applications 
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Utilizing the Processor 

•  Note rapidly growing numbers of functional units – 
Power7 has 2 multiply-add units per core; x86 
increasingly long; accessed through “vector” 
instructions 

•  How do we know how well we are doing? 
•  How do we know how well the compiler is doing? 
•  We can model the expected performance, including 

vectorization! 
•  Using the model, we can also identify where manually 

applying well-known transformations will help 
•  Also identifies where extra constraints, such as 

alignment restrictions, may inhibit use of vectorization 



15 

How Good are Compilers at 
Vectorizing Codes? 

28

27

6

4

34

ICC

XLCXLC

GCC

1
3

Not Vectorizable

Auto Vectorized

1

3

Vectorizable

Vectorizable but none of the 
compilers auto vectorized

21

7 18 5

Intel IBM

 
S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing 
Compilers. In preparation. 2011. 
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Media Bench II Applications 
Appl XLC 

 
ICC 
 

GCC 
 

XLC 
 

ICC 
 

GCC 
 

                   Automatic                     Manual  
JPEG Enc - 1.33 - 1.39 2.13 1.57 
JEPG Dec - - - - 1.14 1.13 
H263 Enc - - - 1.25 2.28 2.06 
H263 Dec - - - 1.31 1.45 - 
MPEG2 Enc - - - 1.06 1.96 2.43 

MPEG2 Dec - - 1.15 1.37 1.45 1.55 

MPEG4 Enc - - - 1.44 1.81 1.74 

MPEG4 Dec - - - 1.12 - 1.18 

Table shows whole program speedups measured against 
unvectorized application  

S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing Compilers. In 
preparation. 2011. 
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Need for Appropriate Data 
Structures 

• Choice of data structure strongly 
affects ability of the system to 
provide good performance (duh!) 
♦ Key is to work with the hardware 

provided for improving memory 
system performance, rather than 
using it as a crutch 

♦ This choice often requires a large 
scale view of the problem and is not 
susceptible to typical autotuning 
approaches 
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Processes and Memory 

•  For many computations, sustained memory 
performance is the limiting resource 
♦  As in sparse matrix-vector multiply 

•  What is the appropriate sustained rate? 
♦  Memory bus bandwidth is nearly irrelevant – it is the 

sustained rate that is usually important 
♦  What about other ways to increase effective 

sustained performance, such as prefetch? 
•  Prefetch hardware can detect regular accesses 

and prefetch data, making use of otherwise 
idle memory bus time. 
♦  However, the hardware must be presented with 

enough independent data streams 
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Streamed Compressed Sparse 
Row (S-CSR) format 

•  S-CSR format partitions the sparse matrix into blocks along rows with size of 
bs. Zeros are added in to keep the number of elements the same in each row 
of a blockThe first rows of all blocks are stored first, then second, third … and 
bs-th rows.  

•  For the sample matrix in the following Figure, NNZ =  29. Using a block size 
of bs = 4, it generates four equal length streams R, G, B and P.  This new 
design only adds 7 zeros every 4 rows. 

0

0 0

0 0

•Partition	
  the	
  sparse	
  matrix	
  into	
  blocks	
  along	
  rows	
  with	
  size	
  of	
  bs.	
  Add	
  in	
  ZEROs	
  to	
  keep	
  the	
  amount	
  of	
  stored	
  values	
  is	
  
the	
  same	
  for	
  every	
  row	
  in	
  each	
  block.	
  Store	
  the	
  first	
  rows	
  of	
  all	
  blocks	
  	
  first,	
  then	
  second,	
  third	
  	
  …	
  and	
  bs-­‐th rows.	
  

•using	
  bs =4	
  block	
  for	
  example,	
  it	
  will	
  generate	
  R,	
  G,	
  B	
  and	
  P	
  four	
  equal	
  length	
  streams.	
  In	
  the	
  above	
  matrix,	
  NNZ	
  =	
  	
  29.	
  
Design	
  III	
  only	
  adds	
  in	
  7	
  zeros.	
  However,	
  if	
  4x4	
  block	
  is	
  employed,	
  144-­‐29	
  =	
  115	
  zeros	
  have	
  to	
  be	
  included.

•This	
  format	
  adds	
  in	
  	
  the	
  same	
  	
  or	
  less	
  amount	
  	
  of	
  ZEROs	
  	
  than	
  blocking	
  format,	
  but	
  more	
  index	
  for	
  vector	
  X	
  than	
  the	
  
traditional	
  CSR	
  format.	
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Performance Ratio Compared to 
CSR Format  

•  S-CSR format is better than CSR format for all (on Power 5 and 6) or Most (on Power 4) 
matrices 

•  S-BCSR format is better than BCSR format for all (on Power 6) or Most (on Power 4 and 
5) matrices 

•  Blocked format performance from ½ to 3x CSR. 
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Combining With Other 
Optimizations 

•  We can further 
modify the S-CSR 
and S-BCSR to 
match the 
requirements for 
vectorization 

•  We can use OSKI 
to optimize 
“within the loops” 
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SpMV on	
  	
  BlueBiou
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Implications 

• Vertically integrated (all modules 
within same “locality domain”) 
♦ Not horizontally in processor blocks 
♦ Adapt for load balance 

• Challenges 
- Minimize memory motion 
- Work within limited memory 

♦ Likely approach: interleave 
components in regions (nodes, if 
nodes have 1000’s of cores) 
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Locality Domains 

•  In hardware, 
the memory is 
in a hierarchy – 
core, memory 
stick, chip, 
node, module, 
rack, .. 

•  Algorithm/
implementation 
needs to 
respect this 
hierarchy 
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Implications 2 

• Restrict the use of separate 
computational and communication 
“phases” 
♦ Need more overlap of communication 

and computation to achieve latency 
tolerance (and energy reduction) 

♦ Adds pressure to be memory efficient 
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Implications 3 

•  Use aggregates that match the hardware 
•  Limit scalars to limited, essential control 

♦ Data must be in a hierarchy of small to 
large  

•  Fully automatic fixes unlikely 
♦ No vendor compiles the simple code for 

DGEMM and uses that for benchmarks 
♦ No vendor compiles simple code for a 

shared memory barrier and uses that (e.g., 
in OpenMP) 

♦ Until they do, the best case is a human-
machine interaction, with the compiler 
helping 
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Possible Solution Directions 

•  Use mathematics as the organizing principle 
♦  Continuous representations, possibly adaptive, 

memory-optimizing  representation, lossy (within 
accuracy limits) but preserves essential properties 
(e.g., conservation) 

•  Manage code by using data-structure-specific 
languages to handle operations and vertical 
integration across components 
♦  So-called “domain specific languages” are really 

data-structure specific languages – they support 
more applications but fewer algorithms. 

♦  Difference is important because a “domain” almost 
certainly require flexibility with data structures and 
algorithms 
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Possible Solution Directions 

•  Adaptive program models with a multi-level 
approach 
♦  Lightweight, locality-optimized for fine grain 
♦  Within node/locality domain for medium grain 
♦  Regional/global for coarse grain 
♦  May be different programming models 

(hierarchies are ok!) but they must work well 
together 

•  Performance annotations to support a 
complex compilation environment 

•  Asynchronous algorithms 
•  Integrated Development Environment (IDE) 

to ease vertical code development, 
maintenance, and refactoring 
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Conclusions 

•  Planning for extreme scale systems 
requires rethinking both algorithms and 
programming approaches (duh!) 

•  Key requirements include 
♦ Minimizing memory motion at all levels 
♦ Avoiding unnecessary synchronization at all 

levels 
•  Decisions must be informed by 

performance modeling / understanding 
♦ Not necessarily performance estimates – 

the goal is to guide the decisions 
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Conclusions 

•  Practical issues require separating 
algorithm, data structure, and 
implementation 
♦  Libraries will need to be supplemented by 

generated code  
♦ They may be data-structure-specific 

languages or annotations 
• Most proposals are not for domain specific, as 

they make assumptions about data structure and 
algorithm 

• Matlab is, after all, not domain specific – it is 
primarily data structure specific 
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