
Engineering Performance for
Multiphysics Applications

William Gropp
www.cs.illinois.edu/~wgropp

2

Performance, then
Productivity

•  Note the “then” – not “instead of”
♦  For “easier” problems, it is correct to invert

these
•  For the very hardest problems, we must

focus on getting the best performance
possible
♦  Rely on other approaches to manage the

complexity of the codes
♦  Performance can be understood and engineered

(note I did not say predicted)
•  We need to start now, to get practice

♦  “Vector” instructions, GPUs, extreme scale
networks

♦  Because Exascale platforms will be even more
complex and harder to use effectively

3

Exascale Directions

•  Exascale systems are likely to have
♦  Extreme power constraints, leading to

•  Clock Rates similar to today’s systems
•  A wide-diversity of simple computing elements (simple for

hardware but complex for software)
•  Memory per core and per FLOP will be much smaller
•  Moving data anywhere will be expensive (time and power)

♦  Faults that will need to be detected and managed
•  Some detection may be the job of the programmer, as

hardware detection takes power
♦  Extreme scalability and performance irregularity

•  Performance will require enormous concurrency
•  Performance is likely to be variable

-  Simple, static decompositions will not scale
♦  A need for latency tolerant algorithms and

programming
•  Memory, processors will be 100s to 10000s of cycles away.

Waiting for operations to complete will cripple performance

4

IBM PERCS: Two New Chips

Power7	
 Chip	

Up	
 to	
 256	
 GF	
 peak	
 performance	

3.5–4.0	
 GHz	

Up	
 to	
 8	
 cores,	
 32	
 SMT	
 threads	

Caches	

	
 L1	
 (2x64	
 KB),	
 L2	
 (256	
 KB),	

	
 L3	
 (32	
 MB,	
 complex	
 policy)	

Memory	
 Subsystem	

	
 Two	
 memory	
 controllers	

	
 128	
 GB/s	
 memory	
 bandwidth	

PERCS	
 Hub	
 Chip	

1.128	
 TB/s	
 total	
 bandwidth	

Connections:	

	
 192	
 	
 GB/s	
 QCM	
 connection	

	
 896	
 	
 GB/s	
 to	
 other	
 QCMs	

	
 	
 	
 40	
 	
 GB/s	
 general	
 purpose	
 I/O	

5

Two-level (L, D) Direct-connect
Network

Each Supernode = 32 QCMs
(4 Drawers x 8 SMPs/Drawer)

Fully Interconnected with
Llocal and Lremote Links

QCM	
 QCM	

QCM	

Q
CM

	

Q
CM

	

Q
CM

	

Q
CM

	

…

Supernode	
 Supernode	

Supernode	

Su
pe

rn
od

e	

Su
pe

rn
od

e	

Supernode	

Supernode	

…

Blue Waters = 320 Supernodes
(40 BBs x 8 SNs/BB)

Fully Interconnected with
D Links Result: Very low

hardware latency
 Very high bandwidth

But complex, nonuniform
network

6

Another Example System

•  128 node GPU Cluster
•  #3 on Green500
•  Each node has

♦  One Core i3 530 2.93 GHz dual-
core CPU

♦  One Tesla C2050 GPU per node
•  33.62 TFLOPS on HPL
•  934 MFLOPS/Watt
•  How can we engineer codes for

performance on these complex
systems?

•  And an exercise for the viewer:
what do performance models
tell you about the CPU/GPU
comparisons you see?

1 EFlop/s “Clean Sheet of Paper”
Strawman

•  4 FPUs+RegFiles/Core (=6 GF
@1.5GHz)
•  1 Chip = 742 Cores (=4.5TF/s)

•  213MB of L1I&D; 93MB of L2
•  1 Node = 1 Proc Chip + 16 DRAMs
(16GB)
•  1 Group = 12 Nodes + 12 Routers
(=54TF/s)
•  1 Rack = 32 Groups (=1.7 PF/s)

•  384 nodes / rack
•  3.6EB of Disk Storage included
•  1 System = 583 Racks (=1 EF/s)

•  166 MILLION cores
•  680 MILLION FPUs
•  3.6PB = 0.0036 bytes/flops
•  68 MW w’aggressive
assumptions

Sizing done by “balancing” power budgets with achievable capabilities

Largely due to Bill Dally, Stanford

Thanks to Peter Kogge for this slide, based on the DARPA report

8

An Even More Radical System
•  Rack Scale

♦  Processing:128 Nodes, 1 (+) PF/s
♦  Memory:

•  128 TB DRAM
•  0.4 PB/s Aggregate Bandwidth

♦  NV Memory
•  1 PB Phase Change Memory

(addressable)
•  Additional 128 for Redundancy/RAID

♦  Network
•  0.13 PB/sec Injection, 0.06 PB/s

Bisection

Thanks to Richard Murphy for this slide

9

Need for Adaptivity

•  Uniform meshes rarely optimal
♦  More work than necessary
♦  Note that minimizing floating-point operations

will not minimize running time – perfect irregular
mesh is also not optimal

•  Once adaptive meshing/model approximations
used, need to address load balance, avoid the
use of synchronizing operations
♦  No barriers
♦  Nothing that looks like a barrier (MPI_Allreduce)

•  See MPI_Iallreduce, likely to appear in MPI 3
♦  Care with operations that are weakly

synchronizing– e.g., neighbor communication (it
synchronizes, just not as tightly)

•  Using MPI_Send synchronizes

10

Consequences of Unnecessary
Synchronization

•  How relevant is ping-pong
bandwidth and real systems?

•  What are the correct
parameters?
♦  Model the real system,

but abstractly
♦  For Blue Gene, must model

independent communication links
♦  Impacts choice of communication algorithm (many

benchmarks do not provide a relevant measurement)
•  Using one MPI_Send at a time prevents use of

concurrent communication
♦  Similar effects even if there is one communication path

out of node, but contention in the network. Performance
can suffer 2x or more slow down

♦  Unnecessary in many cases
♦  Benchmarks that sue MPI_Send are not “fair”

11

Processes and SMP nodes

•  HPC users typically believe that their code “owns”
all of the cores all of the time
♦  The reality is that was never true, but they did have all

of the cores the same fraction of time when there was
one core /node

♦  Given this belief, load balancing is unnecessary for
regular grid codes

♦  Is this true?
•  We can use a simple performance model to check

the assertion and then use measurements to
identify the problem and suggest fixes.

•  Consider a simple Jacobi sweep on a regular mesh,
with every core having the same amount of work.
How are run times distributed?

12

Sharing an SMP

•  Having many cores available
makes everyone think that
they can use them to solve
other problems (“no one would
use all of them all of the time”)

•  However, compute-bound
scientific calculations are often
written as if all compute
resources are owned by the
application

•  Such static scheduling leads to
performance loss

•  Pure dynamic scheduling adds
overhead, but is better

•  Careful mixed strategies are
even better

•  Recent results give 10-16%
performance improvements on
large, scalable systems

•  Thanks to Vivek Kale

13

Need for Aggregation

•  Functional units are cheap
♦  Small amount of area, relatively small amount of

power
♦  Memory motion is expensive
♦  Easy to arrange many floating point units, in

different patterns
•  Classic vectors (Cray, NEC SX)
•  Commodity vectors (2 or 4 elements)
•  Streams
•  GPU

♦  All have different requirements on both the
algorithms (e.g., work with full vectors) and
programming (e.g., satisfy alignment rules)

♦  Compilers will be able to help but will not solve the
problem

•  The following compares three compilers success at
producing good commodity vector code from loops in
applications

14

Utilizing the Processor

•  Note rapidly growing numbers of functional units –
Power7 has 2 multiply-add units per core; x86
increasingly long; accessed through “vector”
instructions

•  How do we know how well we are doing?
•  How do we know how well the compiler is doing?
•  We can model the expected performance, including

vectorization!
•  Using the model, we can also identify where manually

applying well-known transformations will help
•  Also identifies where extra constraints, such as

alignment restrictions, may inhibit use of vectorization

15

How Good are Compilers at
Vectorizing Codes?

28

27

6

4

34

ICC

XLCXLC

GCC

1
3

Not Vectorizable

Auto Vectorized

1

3

Vectorizable

Vectorizable but none of the
compilers auto vectorized

21

7 18 5

Intel IBM

S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing
Compilers. In preparation. 2011.

16

Media Bench II Applications
Appl XLC

ICC

GCC

XLC

ICC

GCC

 Automatic Manual
JPEG Enc - 1.33 - 1.39 2.13 1.57
JEPG Dec - - - - 1.14 1.13
H263 Enc - - - 1.25 2.28 2.06
H263 Dec - - - 1.31 1.45 -
MPEG2 Enc - - - 1.06 1.96 2.43

MPEG2 Dec - - 1.15 1.37 1.45 1.55

MPEG4 Enc - - - 1.44 1.81 1.74

MPEG4 Dec - - - 1.12 - 1.18

Table shows whole program speedups measured against
unvectorized application

S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing Compilers. In
preparation. 2011.

17

Need for Appropriate Data
Structures

• Choice of data structure strongly
affects ability of the system to
provide good performance (duh!)
♦ Key is to work with the hardware

provided for improving memory
system performance, rather than
using it as a crutch

♦ This choice often requires a large
scale view of the problem and is not
susceptible to typical autotuning
approaches

18

Processes and Memory

•  For many computations, sustained memory
performance is the limiting resource
♦  As in sparse matrix-vector multiply

•  What is the appropriate sustained rate?
♦  Memory bus bandwidth is nearly irrelevant – it is the

sustained rate that is usually important
♦  What about other ways to increase effective

sustained performance, such as prefetch?
•  Prefetch hardware can detect regular accesses

and prefetch data, making use of otherwise
idle memory bus time.
♦  However, the hardware must be presented with

enough independent data streams

19

Streamed Compressed Sparse
Row (S-CSR) format

•  S-CSR format partitions the sparse matrix into blocks along rows with size of
bs. Zeros are added in to keep the number of elements the same in each row
of a blockThe first rows of all blocks are stored first, then second, third … and
bs-th rows.

•  For the sample matrix in the following Figure, NNZ = 29. Using a block size
of bs = 4, it generates four equal length streams R, G, B and P. This new
design only adds 7 zeros every 4 rows.

0

0 0

0 0

•Partition	
 the	
 sparse	
 matrix	
 into	
 blocks	
 along	
 rows	
 with	
 size	
 of	
 bs.	
 Add	
 in	
 ZEROs	
 to	
 keep	
 the	
 amount	
 of	
 stored	
 values	
 is	

the	
 same	
 for	
 every	
 row	
 in	
 each	
 block.	
 Store	
 the	
 first	
 rows	
 of	
 all	
 blocks	
 	
 first,	
 then	
 second,	
 third	
 	
 …	
 and	
 bs-­‐th rows.	

•using	
 bs =4	
 block	
 for	
 example,	
 it	
 will	
 generate	
 R,	
 G,	
 B	
 and	
 P	
 four	
 equal	
 length	
 streams.	
 In	
 the	
 above	
 matrix,	
 NNZ	
 =	
 	
 29.	

Design	
 III	
 only	
 adds	
 in	
 7	
 zeros.	
 However,	
 if	
 4x4	
 block	
 is	
 employed,	
 144-­‐29	
 =	
 115	
 zeros	
 have	
 to	
 be	
 included.

•This	
 format	
 adds	
 in	
 	
 the	
 same	
 	
 or	
 less	
 amount	
 	
 of	
 ZEROs	
 	
 than	
 blocking	
 format,	
 but	
 more	
 index	
 for	
 vector	
 X	
 than	
 the	

traditional	
 CSR	
 format.	

R

G

B

P

A	
 sparse	
 matrix	
 (N	
 =	
 12,	
 NNZ=	
 29)

Design	
 III

0

0

Streamed	
 Compressed	
 Sparse	
 Row	
 format
(S-­‐CSR)	

2 2

0 4 6 9p tr

v a l in d
0	
 	
 	
 4	
 	
 	
 	
 8	
 	
 	
 11 2	
 	
 	
 6	
 	
 	
 10

2	
 	
 	
 6	
 	
 10	
 10	
 	
 	
 4	
 	
 	
 8	
 	
 	
 3	
 	
 	
 5	
 	
 	
 	
 9

1	
 	
 	
 8	
 	
 	
 8	
 	
 	
 	
 	
 8	
 	
 	
 6	
 	
 	
 6	
 	
 	
 	
 1	
 	
 	
 	
 6	
 	
 10

4	
 	
 	
 6	
 	
 	
 6	
 	
 	
 	
 	
 6	
 	
 	
 8	
 	
 11	
 	
 	
 0	
 	
 	
 	
 5	
 	
 11

20

Performance Ratio Compared to
CSR Format

•  S-CSR format is better than CSR format for all (on Power 5 and 6) or Most (on Power 4)
matrices

•  S-BCSR format is better than BCSR format for all (on Power 6) or Most (on Power 4 and
5) matrices

•  Blocked format performance from ½ to 3x CSR.

21

Combining With Other
Optimizations

•  We can further
modify the S-CSR
and S-BCSR to
match the
requirements for
vectorization

•  We can use OSKI
to optimize
“within the loops”

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

Pe
rf
or
m
an
ce
	
 R
at
io

stream_un2

BLK12-­‐VSX

S-­‐CSR-­‐2

S-­‐CSR-­‐4

S-­‐CSR-­‐2-­‐VSX

S-­‐CSR-­‐4-­‐VSX

SpMV on	
 	
 BlueBiou

22

Implications

• Vertically integrated (all modules
within same “locality domain”)
♦ Not horizontally in processor blocks
♦ Adapt for load balance

• Challenges
- Minimize memory motion
- Work within limited memory

♦ Likely approach: interleave
components in regions (nodes, if
nodes have 1000’s of cores)

23

Locality Domains

•  In hardware,
the memory is
in a hierarchy –
core, memory
stick, chip,
node, module,
rack, ..

•  Algorithm/
implementation
needs to
respect this
hierarchy

24

Implications 2

• Restrict the use of separate
computational and communication
“phases”
♦ Need more overlap of communication

and computation to achieve latency
tolerance (and energy reduction)

♦ Adds pressure to be memory efficient

25

Implications 3

•  Use aggregates that match the hardware
•  Limit scalars to limited, essential control

♦ Data must be in a hierarchy of small to
large

•  Fully automatic fixes unlikely
♦ No vendor compiles the simple code for

DGEMM and uses that for benchmarks
♦ No vendor compiles simple code for a

shared memory barrier and uses that (e.g.,
in OpenMP)

♦ Until they do, the best case is a human-
machine interaction, with the compiler
helping

26

Possible Solution Directions

•  Use mathematics as the organizing principle
♦  Continuous representations, possibly adaptive,

memory-optimizing representation, lossy (within
accuracy limits) but preserves essential properties
(e.g., conservation)

•  Manage code by using data-structure-specific
languages to handle operations and vertical
integration across components
♦  So-called “domain specific languages” are really

data-structure specific languages – they support
more applications but fewer algorithms.

♦  Difference is important because a “domain” almost
certainly require flexibility with data structures and
algorithms

27

Possible Solution Directions

•  Adaptive program models with a multi-level
approach
♦  Lightweight, locality-optimized for fine grain
♦  Within node/locality domain for medium grain
♦  Regional/global for coarse grain
♦  May be different programming models

(hierarchies are ok!) but they must work well
together

•  Performance annotations to support a
complex compilation environment

•  Asynchronous algorithms
•  Integrated Development Environment (IDE)

to ease vertical code development,
maintenance, and refactoring

28

Conclusions

•  Planning for extreme scale systems
requires rethinking both algorithms and
programming approaches (duh!)

•  Key requirements include
♦ Minimizing memory motion at all levels
♦ Avoiding unnecessary synchronization at all

levels
•  Decisions must be informed by

performance modeling / understanding
♦ Not necessarily performance estimates –

the goal is to guide the decisions

29

Conclusions

•  Practical issues require separating
algorithm, data structure, and
implementation
♦  Libraries will need to be supplemented by

generated code
♦ They may be data-structure-specific

languages or annotations
• Most proposals are not for domain specific, as

they make assumptions about data structure and
algorithm

• Matlab is, after all, not domain specific – it is
primarily data structure specific

30

Thanks
•  Torsten Hoefler

♦  Performance modeling lead,
Blue Waters; MPI datatype

•  David Padua, Maria
Garzaran, Saeed Maleki
♦  Compiler vectorization

•  Dahai Guo
♦  Streamed format exploiting

prefetch
•  Vivek Kale

♦  SMP work partitioning
•  Hormozd Gahvari

♦  AMG application modeling
•  Marc Snir and William

Kramer
♦  Performance model

advocates

•  Abhinav Bhatele
♦  Process/node mapping

•  Elena Caraba
♦  Nonblocking Allreduce in CG

•  Van Bui
♦  Performance model-based

evaluation of programming
models

•  Ankeeth Ved
♦  Model-based updates to NAS

benchmarks
•  Funding provided by:

♦  Blue Waters project (State of
Illinois and the University of
Illinois)

♦  Department of Energy, Office of
Science

♦  National Science Foundation

