
The Next Generation of High
Performance Computing

William Gropp
www.cs.illinois.edu/~wgropp

2

Extrapolation is Risky

•  1989 – T – 23 years
♦  Intel introduces 486DX
♦ Eugene Brooks writes “Attack of the Killer

Micros”
♦ 4 years before TOP500
♦ Top systems at about 2 GF Peak

•  1999 – T – 13 years
♦ NVIDIA introduces its GPU (GeForce 256)

•  Programming GPUs still a challenge 13 years later

♦ Top system – ASCI Red, 9632 cores, 3.2 TF
Peak (about 3 GPUs in 2012)

♦ MPI is 7 years old

3

HPC Today

•  High(est)-End systems
♦  1 PF (1015 Ops/s) achieved on a few “peak friendly”

applications
♦  Much worry about scalability, how we’re going to get to an

ExaFLOPS
♦  Systems are all oversubscribed

•  DOE INCITE awarded almost 900M processor hours in 2009;
1600M-1700M hours in 2010-2012; (big jump planned in 2013
– over 5B hours)

•  NSF PRAC awards for Blue Waters similarly competitive

•  Widespread use of clusters, many with accelerators;
cloud computing services
♦  These are transforming the low and midrange

•  Laptops (far) more powerful than the supercomputers I
used as a graduate student

4

HPC in 2011

•  Sustained PF systems
♦  K Computer (Fujitsu) at RIKEN, Kobe, Japan (2011)
♦  “Sequoia” Blue Gene/Q at LLNL
♦  NSF Track 1 “Blue Waters” at Illinois
♦  Undoubtedly others (China, …)

•  Still programmed with MPI and MPI+other
(e.g., MPI+OpenMP or MPI+OpenCL/CUDA)
♦  But in many cases using toolkits, libraries, and other

approaches
•  And not so bad – applications will be able to run when the

system is turned on

♦  Replacing MPI will require some compromise – e.g.,
domain specific (higher-level but less general)

•  Lots of evidence that fully automatic solutions won’t work

5

HPC in 2018-2020

•  Exascale systems are likely to have
♦  Extreme power constraints, leading to

•  Clock Rates similar to today’s systems
•  A wide-diversity of simple computing elements (simple for

hardware but complex for software)
•  Memory per core and per FLOP will be much smaller
•  Moving data anywhere will be expensive (time and power)

♦  Faults that will need to be detected and managed
•  Some detection may be the job of the programmer, as

hardware detection takes power
♦  Extreme scalability and performance irregularity

•  Performance will require enormous concurrency
•  Performance is likely to be variable

-  Simple, static decompositions will not scale
♦  A need for latency tolerant algorithms and

programming
•  Memory, processors will be 100s to 10000s of cycles away.

Waiting for operations to complete will cripple performance

2020-2023

6

What Do Current Systems
Tell Us?

•  Examples of trends
♦ Supercomputers: Blue Waters
♦ Exploiting Commodity Computing: GPU

Clusters
♦ Post GPU: Radical architectures

•  Parallelism is about getting performance
♦ Productivity is important, but only if

performance is achieved
♦ All systems already “heterogeneous”

•  “Vector” instructions really a separate unit

♦ Sustained performance is the goal

7

Focus on Sustained Performance

•  Blue Water’s and NSF are focusing on sustained
performance in a way few have been before.

•  Sustained is the computer’s performance on a broad range of
applications that scientists and engineers use every day.
♦  Time to solution is the metric – not Ops/s
♦  Tests include time to read data and write the results

•  NSF’s call emphasized sustained performance, demonstrated on a
collection of application benchmarks (application + problem set)
♦  Not just simplistic metrics (e.g. HP Linpack)
♦  Applications include both Petascale applications (effectively use the full

machine, solving scalability problems for both compute and I/O) and
applications that use a fraction of the system

•  Blue Waters project focus is on delivering sustained PetaFLOPS
performance to all applications
♦  Develop tools, techniques, samples, that exploit all parts of the system
♦  Explore new tools, programming models, and libraries to help

applications get the most from the system

8

Blue Waters Science Team
Characteristics

Science Area Number
of Teams

Codes Structured
Grids

Unstructured
Grids

Dense
Matrix

Sparse
Matrix

N-
Body

Monte
Carlo

FFT Significant
I/O

Climate and
Weather

3 CESM, GCRM, CM1,
HOMME

X X X X

Plasmas/
Magnetosphere

2 H3D(M), OSIRIS, Magtail/
UPIC

X X X X

Stellar
Atmospheres and
Supernovae

2 PPM, MAESTRO, CASTRO,
SEDONA

X X X X

Cosmology 2 Enzo, pGADGET X X X

Combustion/
Turbulence

1 PSDNS X X

General Relativity 2 Cactus, Harm3D, LazEV X X

Molecular Dynamics 4 AMBER, Gromacs, NAMD,
LAMMPS

X X X

Quantum
Chemistry

2 SIAL, GAMESS, NWChem X X X X X

Material Science 3 NEMOS, OMEN, GW,
QMCPACK

X X X X

Earthquakes/
Seismology

2 AWP-ODC, HERCULES,
PLSQR, SPECFEM3D

X X X X

Quantum Chromo
Dynamics

1 Chroma, MILC, USQCD X X X X X

Social Networks 1 EPISIMDEMICS

Evolution 1 Eve

Computer Science 1 X X X X X

CUG - May 2, 2012

9

Heart of Blue Waters: Two New
Chips

AMD	 Interlagos	
157	 GF	 peak	 performance	

Features:	
	 2.3-‐2.6	 GHz	
	 8	 core	 modules,	 16	 threads	
	 On-‐chip	 Caches	
	 	 L1	 (I:8x64KB;	 D:16x16KB)	
	 	 L2	 (8x2MB)	
	 Memory	 Subsystem	
	 	 Four	 memory	 channels	
	 	 51.2	 GB/s	 bandwidth	

NVIDIA	 Kepler	
1,400	 GF	 peak	 performance	

Features:	
	 15	 Streaming	 multiprocessors	 (SMX)	
	 	 SMX:	 192	 sp	 CUDA	 cores,	 64	 dp	 	
	 units,	 32	 special	 function	 units	
	 	 L1	 caches/shared	 mem	 (64KB,	 48KB)	
	 	 L2	 cache	 (1536KB)	
	 Memory	 subsystem	
	 	 	 Six	 memory	 channels	
	 	 180	 GB/s	 bandwidth	 	

10

Cray XE6 Nodes

•  Dual-socket Node
♦ Two AMD Interlagos

chips
•  16 core modules, 64 threads
•  313 GFs peak performance
•  64 GBs memory
-  102 GB/sec memory

bandwidth

♦ Gemini Interconnect
•  Router chip & network

interface
•  Injection Bandwidth (peak)
-  9.6 GB/sec per direction

HT3
HT3

Blue Waters contains
22,640 Cray XE6
compute nodes.

11

Cray XK7 Nodes

•  Dual-socket Node
♦ One AMD Interlagos chip

•  32 GBs memory
-  51.2 GB/s bandwidth

♦ One NVIDIA Kepler chip
•  1.4 TFs peak performance
•  6 GBs GDDR5 memory
-  180 GB/sec bandwidth

♦ Gemini Interconnect
•  Same as XE6 nodes	

PCIe Gen2

HT3
HT3

Blue Waters contains
3,072 Cray XK7
compute nodes.

12

Gemini Interconnect Network
Blue Waters

3D Torus Size
23 x 24 x 24

InfiniBand

SMW GigE

Login
Servers
Network(s)

Boot Raid
Fibre Channel

Infiniband

Compute Nodes
Cray XE6 Compute
Cray XK7 Accelerator

Service Nodes
Operating System

Boot
System Database

Login Gateways
Network

Login/Network

Lustre File System
LNET Routers

Y

X

Z

Interconnect
Network Lustre

Service Nodes spread
throughout the torus

13

Blue Waters Disk Subsystem

•  Cray Sonexion 1600
♦  Lustre file system
♦  Reliable, Modular, Scalable
♦  Fully integrated

•  Servers
•  Disk drives (Scalable Storage

Units)
•  QDR Infiniband switches

♦  Hierarchical monitoring

•  Blue Waters Disk Subsystem
♦  Capacity: 34.6 PBs (raw), 25.9

PBs (usable)
♦  Bandwidth: >1 TB/s (sustained)

14

Blue Waters Archive System

•  Spectra Logic T-Finity
♦ Dual-arm robotic tape

libraries
♦ High availability and

reliability, with built-in
redundancy

•  Blue Waters Archive
♦ Capacity: 380 PBs

(raw), 300 PBs (usable)
♦ Bandwidth: 100 GB/sec

(sustained)
♦ RAIT for increased

reliability

15

Blue Waters Computing System

Sonexion: 26 PBs

>1 TB/sec

100 GB/sec

10/40/100 Gb
Ethernet Switch

Spectra Logic: 300 PBs

120+ Gb/sec

WAN

IB Switch

16

Blue Waters and Titan
Computing Systems

 NCSA ORNL
System Attribute Blue Waters Titan
Vendors Cray/AMD/NVIDIA Cray/AMD/NVIDIA
Processors Interlagos/Kepler Interlagos/Kepler

Total Peak Performance (PF) 11.9 >20
 Total Peak Performance (CPU/GPU) 7.6/4.3 3/17
Number of CPU Chips 48,576 18,688
Number of GPU Chips 3,072 14,592
Amount of CPU Memory (TB) 1,510 688

Interconnect 3D Torus 3D Torus

Amount of On-line Disk Storage (PB) 26 20(?)
Sustained Disk Transfer (TB/sec) >1 0.4-0.7
Amount of Archival Storage 300 15-30
Sustained Tape Transfer (GB/sec) 100 7

17

Blue Waters and Kei
Computing Systems

 NCSA RIKEN
System Attribute Blue Waters Kei
Vendors Cray/AMD/NVIDIA Fujitsu
Processors Interlagos/Kepler SPARC64 VIIIfx

Total Peak Performance (PF) 11.9 11.3
 Total Peak Performance (CPU/GPU) 7.6/4.3 11.3/0.0
Number of CPU Chips 48,576 88,128
Number of GPU Chips 3,072 0
Amount of CPU Memory (TB) 1,510 1,410

Interconnect 3D Torus 6D Torus

Amount of On-line Disk Storage (PB) 26 11/30
Sustained Disk Transfer (TB/sec) >1 ?
Amount of Archival Storage 300 ?
Sustained Tape Transfer (GB/sec) 100 ?

18

Blue Waters and Sequoia
Computing Systems

 NCSA LLNL
System Attribute Blue Waters Sequoia
Vendor(s) Cray/AMD/NVIDIA IBM
Processors Interlagos/Kepler PowerPCA2 variant

Total Peak Performance (PF) 11.9 20.1
 Total Peak Performance (CPU/GPU) 7.6/4.3 20.1/0.0
Number of CPU Chips (8, 16 cores/chip) 48,576 98,304
Number of GPU Chips 3,072 0
Amount of CPU Memory (TB) 1,510 1,572

Interconnect 3D Torus 5D Torus

Amount of On-line Disk Storage (PB) 26 50(?)
Sustained Disk Transfer (TB/sec) >1 0.5-1.0
Amount of Archival Storage 300 ?
Sustained Tape Transfer (GB/sec) 100 ?

19

Petascale Computing Facility

Partners
 EYP MCF/
 Gensler
 IBM
 Yahoo!

•  Modern Data Center
•  90,000+ ft2 total
•  30,000 ft2 raised floor

 20,000 ft2 machine room gallery

•  Energy Efficiency
•  LEED certified Gold
•  Power Utilization Efficiency

= 1.1–1.2

20

Another Example System

•  128 node GPU Cluster
•  #3 on Green500 in 2010
•  Each node has

♦  One Core i3 530 2.93 GHz
dual-core CPU

♦  One Tesla C2050 GPU per
node

•  33.62 TFLOPS on HPL
(10x ASCI Red)

•  934 MFLOPS/Watt
•  But how do you program

it?

21

An Even More Radical System
•  Rack Scale

♦  Processing:128 Nodes, 1 (+) PF/s
♦  Memory:

•  128 TB DRAM
•  0.4 PB/s Aggregate Bandwidth

♦  NV Memory
•  1 PB Phase Change Memory (addressable)
•  Additional 128 for Redundancy/RAID

♦  Network
•  0.13 PB/sec Injection, 0.06 PB/s Bisection

22

How Do We Make Effective
Use of These Systems?

•  Better use of our existing systems
♦  Blue Waters will provide a sustained PF, but that

typically requires ~10PF peak
•  Improve node performance

♦  Make the compiler better
♦  Give better code to the compiler
♦  Get realistic with algorithms/data structures

•  Improve parallel performance/scalability
•  Improve productivity of applications

♦  Better tools and interoperable languages, not a (single)
new programming language

•  Improve algorithms
♦  Optimize for the real issues – data movement, power,

resilience, …

23

Make the Compiler Better

•  It remains the case that most
compilers cannot compete with
hand-tuned or autotuned code on
simple code
♦ Just look at dense matrix-matrix

multiplication or matrix transpose
♦ Try it yourself!

• Matrix multiply on my laptop:
• N=100 (in cache): 1818 MF (1.1ms)
• N=1000 (not): 335 MF (6s)

24

How Good are Compilers at
Vectorizing Codes?

28

27

6

4

34

ICC

XLCXLC

GCC

1
3

Not Vectorizable

Auto Vectorized

1

3

Vectorizable

Vectorizable but none of the
compilers auto vectorized

21

7 18 5

Intel IBM

S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing
Compilers. PACT 2011.

25

Media Bench II Applications
Appl XLC

ICC

GCC

XLC

ICC

GCC

 Automatic Manual
JPEG Enc - 1.33 - 1.39 2.13 1.57
JEPG Dec - - - - 1.14 1.13
H263 Enc - - - 1.25 2.28 2.06
H263 Dec - - - 1.31 1.45 -
MPEG2 Enc - - - 1.06 1.96 2.43

MPEG2 Dec - - 1.15 1.37 1.45 1.55

MPEG4 Enc - - - 1.44 1.81 1.74

MPEG4 Dec - - - 1.12 - 1.18

Table shows whole program speedups measured against
unvectorized application

S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing Compilers. PACT 2011.

26

How Do We Change This?

•  Test compiler against “equivalent” code (e.g., best hand-tuned or
autotuned code that performs the same computation, under some
interpretation or “same”)
♦  In a perfect world, the compiler would provide the same, excellent

performance for all equivalent versions
•  As part of the Blue Waters project, Padua, Garzaran, Maleki are

developing a test suite that evaluates how the compiler does with
such equivalent code
♦  Working with vendors to improve the compiler
♦  Identify necessary transformations
♦  Identify opportunities for better interaction with the programmer to

facilitate manual intervention.
♦  Main focus has been on code generation for vector extensions
♦  Result is a compiler whose realized performance is less sensitive to different

expression of code and therefore closer to that of the best hand-tuned
code.

♦  Just by improving automatic vectorization, loop speedups of more than 5
have been observed on the Power 7.

•  But this is a long-term project
♦  What can we do in the meantime?

27

Give “Better” Code to the
Compiler

• Augmenting current programming
models and languages to exploit
advanced techniques for
performance optimization (i.e.,
autotuning)

• Not a new idea, and some tools
already do this.

• But how can these approaches
become part of the mainstream
development?

28

How Can Autotuning Tools Fit
Into Application Development?

•  In the short run, just need effective
mechanisms to replace user code with
tuned code
♦ Manual extraction of code, specification of

specific collections of code transformations
•  But this produces at least two versions

of the code (tuned (for a particular
architecture and problem choice) and
untuned). And there are other issues.

•  What does an application want (what is
the Dream)?

29

Application Needs Include

•  Code must be portable
•  Code must be persistent
•  Code must permit (and encourage)

experimentation
•  Code must be maintainable
•  Code must be correct
•  Code must be faster

30

Implications of These
Requirements

•  Portable - augment existing language. Either use pragmas/
comments or extremely portable precompiler
♦  Best if the tool that performs all of these steps looks like just like

the compiler, for integration with build process
•  Persistent

♦  Keep original and transformed code around: Golden Copy
•  Maintainable

♦  Let user work with original code and ensure changes automatically
update tuned code

•  Correct
♦  Do whatever the application developer needs to believe that the

tuned code is correct
•  In the end, this will require running some comparison tests

•  Faster
♦  Must be able to interchange tuning tools - pick the best tool for

each part of the code
♦  No captive interfaces
♦  Extensibility - a clean way to add new tools, transformations,

properties, …

31

Application-Relevant
Abstractions

•  Language for interfacing with autotuning must
convey concepts that are meaningful to the
application programmer

•  Wrong: unroll by 5
♦  Though could be ok for performance expert, and

some compilers already provide pragmas for specific
transformations

•  Right (maybe): Performance precious, typical
loop count between 100 and 10000, even, not
power of 2

•  We need work at developing higher-level,
performance-oriented languages or language
extensions
♦  This would be the “good” future

32

Better Algorithms and Data
Structures

•  Autotuning only offers the best
performance with the given data
structure and algorithm
♦ That’s a big constraint

•  Processors include hardware to address
performance challenges
♦  “Vector” function units
♦ Memory latency hiding/prefetch
♦ Atomic update features for shared memory
♦ Etc.

33

Sparse Matrix-Vector Multiply

Barriers to faster code
•  “Standard” formats

such as CSR do not
meet requirements
for prefetch or
vectorization

•  Modest changes to
data structure
enable both
vectorization,
prefetch, for
20-80%
improvement on P7

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Pe
rf

or
m

an
ce

 R
at

io

SCSR-
2
SCSR-
4
VSCSR
-2
VSCSR
-4

Prefetch results in Optimizing Sparse Data
Structures for Matrix Vector Multiply http://
hpc.sagepub.com/content/25/1/115

34

What Does This Mean For
You?

•  It is time to rethink data structures and
algorithms to match the realities of memory
architecture
♦  We have results for x86 where the benefit is smaller

but still significant
♦  Better match of algorithms to prefetch hardware is

necessary to overcome memory performance
barriers

•  Similar issues come up with heterogeneous
processing elements (someone needs to
design for memory motion and concurrent and
nonblocking data motion)

35

 Performance on a Node

• Nodes are SMPs
♦ You have this problem on anything

(even laptops)
• Tuning issues include the usual

♦ Getting good performance out of the
compiler (often means adapting to
the memory hierarchy)

• New (SMP) issues include
♦ Sharing the SMP with other processes
♦ Sharing the memory system

36

New (?) Wrinkle – Avoiding
Jitter

•  Jitter here means the variation in time
measured when running identical
computations
♦ Caused by other computations, e.g., an OS

interrupt to handle a network event or
runtime library servicing a communication
or I/O request

•  This problem is in some ways less
serious on HPC platform, as the OS and
runtime services are tuned to minimize
impact
♦ However, cannot be eliminated entirely

37

Sharing an SMP
•  Having many cores available

makes everyone think that
they can use them to solve
other problems (“no one
would use all of them all of
the time”)

•  However, compute-bound
scientific calculations are
often written as if all compute
resources are owned by the
application

•  Such static scheduling leads
to performance loss

•  Pure dynamic scheduling adds
overhead, but is better

•  Careful mixed strategies are
even better

•  Thanks to Vivek Kale

38

Happy Medium Scheduling

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Communication Avoiding LU
factorization (CALU) algorithm

S. Donfack, L .Grigori, V. Kale,
WG, IPDPS ‘12

39

Synchronization and OS Noise

•  “Characterizing the Influence of
System Noise on Large-Scale
Applications by Simulation,”
Torsten Hoefler, Timo Schneider,
Andrew Lumsdaine
♦ Best Paper, SC10

• Next 3 slides based on this talk…

40

A Noisy Example –
Dissemination Barrier

• Process 4 is delayed
♦ Noise propagates “wildly” (of course

deterministic)

41

Single Collective Operations
and Noise

• 1 Byte, Dissemination, regular noise,
1000 Hz, 100 µs

outliers

deterministic
Legend:

2nd
quartile

3rd
quartile
median

outliers

42

The problem is
blocking operations

•  Simple, data-parallel algorithms easy to
reason about but inefficient
♦  True for decades, but ignored (memory)

•  One solution: fully asynchronous
methods
♦  Very attractive, yet efficiency is low and

there are good reasons for that
♦  Blocking can be due to fully collective (e.g.,

Allreduce) or neighbor communications
(halo exchange)

♦  Can we save methods that involve global,
synchronizing operations?

43

Saving Allreduce

•  One common suggestion is to avoid using
Allreduce
♦  But algorithms with dot products are among the best

known
♦  Can sometimes aggregate the data to reduce the

number of separate Allreduce operations
♦  But better is to reduce the impact of the

synchronization by hiding the Allreduce behind other
operations (in MPI, using MPI_Iallreduce)

•  We can adapt CG to nonblocking Allreduce
with some added floating point (but perhaps
little time cost)

44

The Conjugate Gradient
Algorithm

•  While (not converged)
 niters += 1;
 s = A * p;
 t = p' *s;
 alpha = gmma / t;
 x = x + alpha * p;
 r = r - alpha * s;
 if rnorm2 < tol2 ; break ; end
 z = M * r;
 gmmaNew = r' * z;
 beta = gmmaNew / gmma;
 gmma = gmmaNew;
 p = z + beta * p;
end

45

The Conjugate Gradient
Algorithm

•  While (not converged)
 niters += 1;
 s = A * p;
 t = p' *s;
 alpha = gmma / t;
 x = x + alpha * p;
 r = r - alpha * s;
 if rnorm2 < tol2 ; break ; end
 z = M * r;
 gmmaNew = r' * z;
 beta = gmmaNew / gmma;
 gmma = gmmaNew;
 p = z + beta * p;
end

46

CG Reconsidered

•  By reordering operations, nonblocking
dot products (MPI_Iallreduce in MPI-3)
can be overlapped with other operations

•  Trades extra local work for overlapped
communication
♦ On a pure floating point basis, the

nonblocking version requires 2 more
DAXPY operations

♦ A closer analysis shows that some
operations can be merged

•  More work does not imply more time

47

What’s Different at Peta/Exascale

•  Performance Focus
♦  Only a little – basically, the resource is expensive, so a

premium placed on making good use of resource
♦  Quite a bit – node is more complex, has more features

that must be exploited
•  Scalability

♦  Solutions that work at 100-1000 way often inefficient at
100,000-way

♦  Some algorithms scale well
•  Explicit time marching in 3D

♦  Some don’t
•  Direct implicit methods

♦  Some scale well for a while
•  FFTs (communication volume in Alltoall)

♦  Load balance, latency are critical issues
•  Fault Tolerance becoming important

♦  Now: Reduce time spent in checkpoints
♦  Soon: Lightweight recovery from transient errors

48

Preparing for the Next
Generation of HPC Systems

•  Better use of existing resources
♦  Performance-oriented programming
♦  Dynamic management of resources at all levels
♦  Embrace hybrid programming models (you have

already if you use SSE/VSX/OpenMP/…)
•  Focus on results

♦  Adapt to available network bandwidth and latency
♦  Exploit I/O capability (available space crew faster

than processor performance!)
•  Prepare for the future

♦  Fault tolerance
♦  Hybrid processor architectures
♦  Latency tolerant algorithms
♦  Data-driven systems

49

Recommended Reading

•  Bit reversal on uniprocessors (Alan Karp, SIAM
Review, 1996)

•  Achieving high sustained performance in an
unstructured mesh CFD application (W. K.
Anderson, W. D. Gropp, D. K. Kaushik, D. E.
Keyes, B. F. Smith, Proceedings of
Supercomputing, 1999)

•  Experimental Analysis of Algorithms
(Catherine McGeoch, Notices of the American
Mathematical Society, March 2001)

•  Reflections on the Memory Wall (Sally McKee,
ACM Conference on Computing Frontiers,
2004)

50

Thanks
•  Torsten Hoefler

♦  Performance modeling lead,
Blue Waters; MPI datatype

•  David Padua, Maria
Garzaran, Saeed Maleki
♦  Compiler vectorization

•  Dahai Guo
♦  Streamed format exploiting

prefetch, vectorization, GPU
•  Vivek Kale

♦  SMP work partitioning
•  Hormozd Gahvari

♦  AMG application modeling
•  Marc Snir and William

Kramer
♦  Performance model

advocates

•  Abhinav Bhatele
♦  Process/node mapping

•  Elena Caraba
♦  Nonblocking Allreduce in CG

•  Van Bui
♦  Performance model-based

evaluation of programming
models

•  Funding provided by:
♦  Blue Waters project (State of

Illinois and the University of
Illinois)

♦  Department of Energy, Office of
Science

♦  National Science Foundation

