
Rethinking Solvers for
Extreme Scale Architectures

William Gropp
www.cs.illinois.edu/~wgropp

parallel.illinois.edu

2

Performance, then
Productivity

•  Note the “then” – not “instead of”
♦  For “easier” problems, it is correct to invert

these
•  For the very hardest problems, we must

focus on getting the best performance
possible
♦  Rely on other approaches to manage the

complexity of the codes
♦  Performance can be understood and engineered

(note I did not say predicted)
•  We need to start now, to get practice

♦  “Vector” instructions, GPUs, extreme scale
networks

♦  Because Exascale platforms will be even more
complex and harder to use effectively

3

Exascale Directions

•  Exascale systems are likely to have
♦  Extreme power constraints, leading to

•  Clock Rates similar to today’s systems
•  A wide-diversity of simple computing elements (simple for

hardware but complex for software)
•  Memory per core and per FLOP will be much smaller
•  Moving data anywhere will be expensive (time and power)

♦  Faults that will need to be detected and managed
•  Some detection may be the job of the programmer, as

hardware detection takes power
♦  Extreme scalability and performance irregularity

•  Performance will require enormous concurrency
•  Performance is likely to be variable

�  Simple, static decompositions will not scale
♦  A need for latency tolerant algorithms and

programming
•  Memory, processors will be 100s to 10000s of cycles away.

Waiting for operations to complete will cripple performance

4

Using Extra Computation in
Time Dependent Problems

• Simple example that trades
computation for a component of
communication time

• Mentioned because
♦ Introduces some costs
♦ Older than MPI

5

Trading Computation for
Communication

•  In explicit methods for time-dependent
PDEs, the communication of ghost
points can be a significant cost

•  For a simple 2-d problem, the
communication time is roughly
♦ T = 4 (s + rn)

(using the “diagonal trick” for 9-point
stencils)

♦  Introduces both a communication cost and
a synchronization cost (more on that later)

♦ Can we do better?

6

1-D Time Stepping

7

Analyzing the Cost of
Redundant Computation

•  Advantage of redundant computation:
♦ Communication costs:

•  K steps, 1 step at a time: 2k(s+w)
•  K steps at once: 2(s+kw)

♦ Redundant computation is roughly
•  Ak2c, for A operations for each eval and time c for

each operation

•  Thus, redundant computation better
(under this model) when
♦ Ak2c < 2(k-1)s

•  Since s on the order of 103c, significant
savings are possible

8

Relationship to Implicit
Methods

•  A single time step, for a linear PDE, can be
written as
♦  uk+1 = Auk

•  Similarly,
♦  uK+2 = Auk+1 = Aauk = A2uk

♦  And so on

•  Thus, this approach can be used to efficiently
compute
♦  Ax, A2x, A3x, …

•  In addition, this approach can provide better
temporal locality and has been developed
(several times) for cache-based systems

•  Why don’t all applications do this?

9

Using Redundant Solvers

•  AMG requires a solve on the coarse grid

•  Rather than either solve in parallel (too
little work for the communication) or
solve in serial and distribute solution,
solve redundantly (either in smaller
parallel groups or serial, as in this
illustration)

Redundant Solution

At some level, gather the unknowns onto every process. That level and
coarser ones then require no communication:

serial AMG!
coarse solve!

all-gather!
at level l!

smooth,!
form residual!

restrict to!
level i+1!

prolong to!
level i-1!

smooth!

An analysis17 suggests that this can be of some benefit; we will examine
this further

17
W. Gropp, “Parallel Computing and Domain Decomposition,” 1992

Gahvari (University of Illinois) Scaling AMG November 3, 2011 22 / 54

10

Redundant Solution

• Replace communication at levels
≥lred with Allgather

• Every process now has complete
information; no further
communication needed

• Performance analysis (based on
Gropp & Keyes 1989) can guide
selection of lred

11

Redundant Solves
Redundant Solution

When applied to model problem on Hera, there is a speedup region like for
additive AMG:

 128 1024 3456

8

7

6

5

4

3

2

Processes

R
e

d
u

n
d

a
n

t
L

e
ve

l

Modeled Speedups for Redundant AMG on Hera

0.13

1.31

1.90

1.40

1.03

1.00

0.02

0.12

1.54

1.60

1.07

1.00

1.00

0.01

0.03

0.31

1.40

1.07

1.01

1.00

0.0

0.5

1.0

1.5

2.0

 128 1024 3456

8

7

6

5

4

3

2

Processes

R
e

d
u

n
d

a
n

t
L

e
ve

l

Actual Speedups for Redundant AMG on Hera

1.18

1.62

1.25

1.40

1.42

1.07

0.25

1.27

1.04

0.0

0.5

1.0

1.5

2.0

Diagonal pattern of speedup region, however, still persists. LLNL is
currently in the process of putting redundant solve/setup in hypre.

Gahvari (University of Illinois) Scaling AMG November 3, 2011 42 / 54

•  Applied to Hera at LLNL, provides significant
speedup

•  Thanks to Hormozd Gahvari

12

Is it communication avoiding or
minimum solution time?

• Example: non minimum collective
algorithms

• Work of Paul Sack; see “Faster
topology-aware collective
algorithms through non-minimal
communication”, Best Paper,
PPoPP 2012

• Lesson: minimum communication
need not be optimal

13

Allgather

1 2 3 4

Input

Output

14

Allgather: recursive doubling

a
 b
 c
 d

e
 f
 g
 h

i
 j
 k
 l

m
 n
 o
 p

15

Allgather: recursive doubling

ab
 ab
 cd
 cd

ef
 ef
 gh
 gh

ij
 ij
 kl
 kl

mn
 mn
 op
 op

16

Allgather: recursive doubling

abcd
 abcd
 abcd
 abcd

efgh
 efgh
 efgh
 efgh

ijkl
 ijkl
 ijkl
 ijkl

mnop
 mnop
 mnop
 mnop

17

Allgather: recursive doubling

abcdefgh
 abcdefgh
 abcdefgh
 abcdefgh

abcdefgh
 abcdefgh
 abcdefgh
 abcdefgh

ijklmnop
 ijklmnop
 ijklmnop
 ijklmnop

ijklmnop
 ijklmnop
 ijklmnop
 ijklmnop

18

Allgather: recursive doubling

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

T=(lg P) α + n(P-1)β

19

Problem: Recursive-doubling

• No congestion model:
♦ T=(lgP)α + n(P-1)β

• Congestion on torus:
♦ T≈(lgP)α + (5/24)nP4/3β

• Congestion on Clos network:
♦ T≈(lgP)α + (nP/µ)β

• Solution approach: move smallest

amounts of data the longest distance
20

New problem: data
misordered

• Solution: shuffle input data
♦ Could shuffle at end (redundant

work; all processes shuffle)
♦ Could use non-contiguous data

moves
♦ But best approach is often to shuffle

data on network (see paper for
details)

21

Evaluation:
Intrepid BlueGene/P at ANL

• 40k-node system
♦ Each is 4 x 850 MHz PowerPC 450

• 512+ nodes is 3d torus; fewer is
3d mesh

• XLC -O4
• 375 MB/s delivered per link

♦ 7% penalty using all 6 links both
ways

22
2
2

Allgather performance

23

Notes on Allgather

• Bucket algorithm (not described
here) exploits multiple
communication engines on BG

• Analysis shows performance near
optimal

• Alternative to reorder data step is
in-memory move; analysis shows
similar performance and
measurements show reorder step
faster on tested systems

24

Synchronization and OS Noise

•  “Characterizing the Influence of
System Noise on Large-Scale
Applications by Simulation,”
Torsten Hoefler, Timo Schneider,
Andrew Lumsdaine
♦ Best Paper, SC10

• Next 3 slides based on this talk…

25

A Noisy Example –
Dissemination Barrier

• Process 4 is delayed
♦ Noise propagates “wildly” (of course

deterministic)
26

LogGOPS Simulation
Framework

•  Detailed analytical modeling is hard!
•  Model-based (LogGOPS) simulator

♦  Available at: http://www.unixer.de/LogGOPSim
♦  Discrete-event simulation of MPI traces (<2% error) or

collective operations (<1% error)
♦  > 106 events per second

•  Allows for trace-based noise injection
•  Validation

♦  Simulations reproduce measurements by Beckman and
Ferreira well

• Details: Hoefler et al. LogGOPSim – Simulating Large-Scale Applications in the
LogGOPS Model (Workshop on Large-Scale System and Application Performance,
Best Paper)

27

Single Collective Operations
and Noise

• 1 Byte, Dissemination, regular noise,
1000 Hz, 100 µs

outliers

deterministic
Legend:

2nd
quartile

3rd
quartile
median

outliers

28

The problem is
blocking operations

•  Simple, data-parallel algorithms easy to
reason about but inefficient
♦  True for decades, but ignored (memory)

•  One solution: fully asynchronous
methods
♦  Very attractive, yet efficiency is low and

there are good reasons for that
♦  Blocking can be due to fully collective (e.g.,

Allreduce) or neighbor communications
(halo exchange)

♦  Can we save methods that involve global,
synchronizing operations?

29

Saving Allreduce

•  One common suggestion is to avoid using
Allreduce
♦  But algorithms with dot products are among the best

known
♦  Can sometimes aggregate the data to reduce the

number of separate Allreduce operations
♦  But better is to reduce the impact of the

synchronization by hiding the Allreduce behind other
operations (in MPI, using MPI_Iallreduce)

•  We can adapt CG to nonblocking Allreduce
with some added floating point (but perhaps
little time cost)

30

The Conjugate Gradient
Algorithm

•  While (not converged)
 niters += 1;
 s = A * p;
 t = p' *s;
 alpha = gmma / t;
 x = x + alpha * p;
 r = r - alpha * s;
 if rnorm2 < tol2 ; break ; end
 z = M * r;
 gmmaNew = r' * z;
 beta = gmmaNew / gmma;
 gmma = gmmaNew;
 p = z + beta * p;
end

31

The Conjugate Gradient
Algorithm

•  While (not converged)
 niters += 1;
 s = A * p;
 t = p' *s;
 alpha = gmma / t;
 x = x + alpha * p;
 r = r - alpha * s;
 if rnorm2 < tol2 ; break ; end
 z = M * r;
 gmmaNew = r' * z;
 beta = gmmaNew / gmma;
 gmma = gmmaNew;
 p = z + beta * p;
end

32

CG Reconsidered

•  By reordering operations, nonblocking
dot products (MPI_Iallreduce in MPI-3)
can be overlapped with other operations

•  Trades extra local work for overlapped
communication
♦ On a pure floating point basis, the

nonblocking version requires 2 more
DAXPY operations

♦ A closer analysis shows that some
operations can be merged

•  More work does not imply more time

33

Heterogeneity

•  Already present in complex processor
architecture (e.g., “vector” operations)

•  Even “identical” functional units may
have different performances

•  Data structure + algorithm changes
•  GPUs a local hack, but some features

likely to persist (different memory
model, latency hiding with “threads”,
vector/stream operations)

34

How Good are Compilers at
Vectorizing Codes?

28

27

6

4

34

ICC

XLCXLC

GCC

1
3

Not Vectorizable

Auto Vectorized

1

3

Vectorizable

Vectorizable but none of the
compilers auto vectorized21

7 18 5

Intel IBM

S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing
Compilers. PACT 2011

35

Processes and SMP nodes

•  HPC users typically believe that their code
“owns” all of the cores all of the time
♦  The reality is that was never true, but they did have

all of the cores the same fraction of time when there
was one core /node

•  We can use a simple performance model to
check the assertion and then use
measurements to identify the problem and
suggest fixes.

•  Based on this, we can tune a state-of-the-art
LU factorization….

36

Happy Medium Scheduling

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

S. Donfack, L .Grigori, V.
Kale, WG, IPDPS ‘12

37

Experiences

•  Paraphrasing either Lincoln or PT Barnum:

You own some of the cores all of the time and
all of the cores some of the time, but you
don’t own all of the cores all of the time

•  Translation: a priori data decompositions that
were effective on single core processors are no
longer effective on multicore processors

•  We see this in recommendations to “leave one
core to the OS”

♦  What about other users of cores, like … the runtime
system?

38

What about faults?

• Fault detection
• Fault recovery

♦  Are faults transient or permanent?
• Both can be addressed by

exploiting relationships between
data, implicit in algorithm
♦  Simplest is conservation: gives

detection.
♦  Stokes theorem, etc. (recover from

average, ECC-like data)

39

Summary

• Extreme scale architecture forces
us to confront architectural
realities

• Even approximate (yet realistic)
performance models can guide
development
♦  “All models are wrong; some are

useful”
• Opportunities abound

40

Implications (1)

•  Restrict the use of separate computational
and communication “phases”
♦ Need more overlap of communication and

computation to achieve latency tolerance (and
energy reduction)

♦ Adds pressure to be memory efficient
•  May need to re-think entire solution stack

♦ E.g., Nonlinear Schwarz instead of
approximate Newton

♦ Don’t reduce everything to Linear Algebra
(sorry Gene!)

41

Implications (2)

•  Use aggregates that match the hardware
•  Limit scalars to limited, essential control

♦ Data must be in a hierarchy of small to
large

•  Fully automatic fixes unlikely
♦ No vendor compiles the simple code for

DGEMM and uses that for benchmarks
♦ No vendor compiles simple code for a

shared memory barrier and uses that (e.g.,
in OpenMP)

♦ Until they do, the best case is a human-
machine interaction, with the compiler
helping

42

Implications (3)

•  Use mathematics as the organizing principle
♦  Continuous representations, possibly adaptive,

memory-optimizing representation, lossy (within
accuracy limits) but preserves essential properties
(e.g., conservation)

•  Manage code by using abstract-data-structure-
specific languages (ADSL) to handle operations
and vertical integration across components
♦  So-called “domain specific languages” are really

abstract-data-structure specific languages – they
support more applications but fewer algorithms.

♦  Difference is important because a “domain” almost
certainly require flexibility with data structures and
algorithms

43

Implications (4)

•  Adaptive program models with a multi-
level approach
♦  Lightweight, locality-optimized for fine grain
♦ Within node/locality domain for medium

grain
♦ Regional/global for coarse grain
♦ May be different programming models

(hierarchies are ok!) but they must work
well together

•  Performance annotations to support a
complex compilation environment

•  Asynchronous and multilevel algorithms
to match hardware

44

Conclusions

•  Planning for extreme scale systems
requires rethinking both algorithms and
programming approaches

•  Key requirements include
♦ Minimizing memory motion at all levels
♦ Avoiding unnecessary synchronization at all

levels
•  Decisions must be informed by

performance modeling / understanding
♦ Not necessarily performance estimates –

the goal is to guide the decisions

45

Recommended Reading

•  Bit reversal on uniprocessors (Alan Karp, SIAM
Review, 1996)

•  Achieving high sustained performance in an
unstructured mesh CFD application (W. K.
Anderson, W. D. Gropp, D. K. Kaushik, D. E.
Keyes, B. F. Smith, Proceedings of
Supercomputing, 1999)

•  Experimental Analysis of Algorithms
(Catherine McGeoch, Notices of the American
Mathematical Society, March 2001)

•  Reflections on the Memory Wall (Sally McKee,
ACM Conference on Computing Frontiers,
2004)

46

Thanks
•  Torsten Hoefler

♦  Performance modeling lead,
Blue Waters; MPI datatype

•  David Padua, Maria
Garzaran, Saeed Maleki
♦  Compiler vectorization

•  Dahai Guo
♦  Streamed format exploiting

prefetch
•  Vivek Kale

♦  SMP work partitioning
•  Hormozd Gahvari

♦  AMG application modeling
•  Marc Snir and William

Kramer
♦  Performance model

advocates

•  Abhinav Bhatele
♦  Process/node mapping

•  Elena Caraba
♦  Nonblocking Allreduce in CG

•  Van Bui
♦  Performance model-based

evaluation of programming
models

•  Ankeeth Ved
♦  Model-based updates to NAS

benchmarks
•  Funding provided by:

♦  Blue Waters project (State of
Illinois and the University of
Illinois)

♦  Department of Energy, Office of
Science

♦  National Science Foundation

