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Performance, then 
Productivity 

•  Note the “then” – not “instead of” 
♦  For “easier” problems, it is correct to invert 

these 
•  For the very hardest problems, we must 

focus on getting the best performance 
possible 
♦  Rely on other approaches to manage the 

complexity of the codes 
♦  Performance can be understood and engineered 

(note I did not say predicted) 
•  We need to start now, to get practice 

♦  “Vector” instructions, GPUs, extreme scale 
networks 

♦  Because Exascale platforms will be even more 
complex and harder to use effectively 
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Exascale Directions 

•  Exascale systems are likely to have 
♦  Extreme power constraints, leading to 

•  Clock Rates similar to today’s systems 
•  A wide-diversity of simple computing elements (simple for 

hardware but complex for software) 
•  Memory per core and per FLOP will be much smaller 
•  Moving data anywhere will be expensive (time and power) 

♦  Faults that will need to be detected and managed 
•  Some detection may be the job of the programmer, as 

hardware detection takes power 
♦  Extreme scalability and performance irregularity 

•  Performance will require enormous concurrency 
•  Performance is likely to be variable 

�  Simple, static decompositions will not scale 
♦  A need for latency tolerant algorithms and 

programming 
•  Memory, processors will be 100s to 10000s of cycles away.  

Waiting for operations to complete will cripple performance 
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Using Extra Computation in 
Time Dependent Problems 

• Simple example that trades 
computation for a component of 
communication time 

• Mentioned because  
♦ Introduces some costs 
♦ Older than MPI  
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Trading Computation for 
Communication 

•  In explicit methods for time-dependent 
PDEs, the communication of ghost 
points can be a significant cost 

•  For a simple 2-d problem, the 
communication time is roughly 
♦ T = 4 (s + rn) 

(using the “diagonal trick” for 9-point 
stencils) 

♦  Introduces both a communication cost and 
a synchronization cost (more on that later) 

♦ Can we do better? 
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1-D Time Stepping 
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Analyzing the Cost of 
Redundant Computation 

•  Advantage of redundant computation: 
♦ Communication costs: 

•  K steps, 1 step at a time:  2k(s+w) 
•  K steps at once: 2(s+kw) 

♦ Redundant computation is roughly  
•  Ak2c, for A operations for each eval and time c for 

each operation 

•  Thus, redundant computation better 
(under this model) when 
♦ Ak2c < 2(k-1)s 

•  Since s on the order of 103c, significant 
savings are possible 
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Relationship to Implicit 
Methods    

•  A single time step, for a linear PDE, can be 
written as 
♦  uk+1 = Auk 

•  Similarly,  
♦  uK+2 = Auk+1 = Aauk = A2uk 

♦  And so on 

•  Thus, this approach can be used to efficiently 
compute 
♦  Ax, A2x, A3x, … 

•  In addition, this approach can provide better 
temporal locality and has been developed 
(several times) for cache-based systems 

•  Why don’t all applications do this? 
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Using Redundant Solvers 

•  AMG requires a solve on the coarse grid 
 
 
 
 
 

•  Rather than either solve in parallel (too 
little work for the communication) or 
solve in serial and distribute solution, 
solve redundantly (either in smaller 
parallel groups or serial, as in this 
illustration) 

Redundant Solution

At some level, gather the unknowns onto every process. That level and
coarser ones then require no communication:

serial AMG!
coarse solve!

all-gather!
at level l!

smooth,!
form residual!

restrict to!
level i+1!

prolong to!
level i-1!

smooth!

An analysis17 suggests that this can be of some benefit; we will examine
this further

17
W. Gropp, “Parallel Computing and Domain Decomposition,” 1992
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Redundant Solution 

• Replace communication at levels 
≥lred with Allgather 

• Every process now has complete 
information; no further 
communication needed 

• Performance analysis (based on 
Gropp & Keyes 1989) can guide 
selection of lred 
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Redundant Solves 
Redundant Solution

When applied to model problem on Hera, there is a speedup region like for
additive AMG:
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Diagonal pattern of speedup region, however, still persists. LLNL is
currently in the process of putting redundant solve/setup in hypre.
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•  Applied to Hera at LLNL, provides significant 
speedup 

•  Thanks to Hormozd Gahvari 
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Is it communication avoiding or 
minimum solution time? 

• Example: non minimum collective 
algorithms 

• Work of Paul Sack; see “Faster 
topology-aware collective 
algorithms through non-minimal 
communication”, Best Paper, 
PPoPP 2012 

• Lesson: minimum communication 
need not be optimal 
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Allgather 

1 2 3 4 

Input 

Output 
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Allgather: recursive doubling 
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Allgather: recursive doubling 
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Allgather: recursive doubling 
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 abcd
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Allgather: recursive doubling 
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Allgather: recursive doubling
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T=(lg P) α + n(P-1)β 
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Problem: Recursive-doubling 

• No congestion model:  
♦ T=(lgP)α + n(P-1)β 

• Congestion on torus:  
♦ T≈(lgP)α + (5/24)nP4/3β 

• Congestion on Clos network:  
♦ T≈(lgP)α + (nP/µ)β 

 
• Solution approach: move smallest 

amounts of data the longest distance 
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New problem: data 
misordered 

• Solution: shuffle input data 
♦ Could shuffle at end (redundant 

work; all processes shuffle) 
♦ Could use non-contiguous data 

moves 
♦ But best approach is often to shuffle 

data on network (see paper for 
details)  
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Evaluation: 
Intrepid BlueGene/P at ANL 

• 40k-node system 
♦ Each is 4 x 850 MHz PowerPC 450 

• 512+ nodes is 3d torus; fewer is 
3d mesh 

• XLC -O4 
• 375 MB/s delivered per link 

♦ 7% penalty using all 6 links both 
ways 

22 
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Allgather performance
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Notes on Allgather 

• Bucket algorithm (not described 
here) exploits multiple 
communication engines on BG 

• Analysis shows performance near 
optimal 

• Alternative to reorder data step is 
in-memory move; analysis shows 
similar performance and 
measurements show reorder step 
faster on tested systems 

24 

Synchronization and OS Noise 

•  “Characterizing the Influence of 
System Noise on Large-Scale 
Applications by Simulation,” 
Torsten Hoefler, Timo Schneider,  
Andrew Lumsdaine 
♦ Best Paper, SC10 

• Next 3 slides based on this talk… 
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A Noisy Example – 
Dissemination Barrier 

• Process 4 is delayed 
♦ Noise propagates “wildly” (of course 

deterministic) 
26 

LogGOPS Simulation 
Framework 

•  Detailed analytical modeling is hard! 
•  Model-based (LogGOPS) simulator 

♦  Available at: http://www.unixer.de/LogGOPSim 
♦  Discrete-event simulation of MPI traces (<2% error) or 

collective operations (<1% error) 
♦  > 106 events per second 

•  Allows for trace-based noise injection 
•  Validation 

♦  Simulations reproduce measurements by Beckman and 
Ferreira well 

• Details: Hoefler et al. LogGOPSim – Simulating Large-Scale Applications in the 
LogGOPS Model (Workshop on Large-Scale System and Application Performance, 
Best Paper) 
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Single Collective Operations 
and Noise 

• 1 Byte, Dissemination, regular noise, 
1000 Hz, 100 µs  

outliers 

deterministic 
Legend: 

2nd 
quartile 

3rd 
quartile 
median 

outliers 
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The problem is  
blocking operations 

•  Simple, data-parallel algorithms easy to 
reason about but inefficient 
♦  True for decades, but ignored (memory) 

•  One solution: fully asynchronous 
methods 
♦  Very attractive, yet efficiency is low and 

there are good reasons for that 
♦  Blocking can be due to fully collective (e.g., 

Allreduce) or neighbor communications 
(halo exchange) 

♦  Can we save methods that involve global, 
synchronizing operations? 
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Saving Allreduce  

•  One common suggestion is to avoid using 
Allreduce 
♦  But algorithms with dot products are among the best 

known 
♦  Can sometimes aggregate the data to reduce the 

number of separate Allreduce operations 
♦  But better is to reduce the impact of the 

synchronization by hiding the Allreduce behind other 
operations (in MPI, using  MPI_Iallreduce) 

•  We can adapt CG to nonblocking Allreduce 
with some added floating point (but perhaps 
little time cost) 
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The Conjugate Gradient 
Algorithm 

•  While (not converged)  
  niters += 1; 
  s     = A * p; 
  t     = p' *s; 
  alpha = gmma / t; 
  x     = x + alpha * p; 
  r     = r - alpha * s; 
  if rnorm2 < tol2 ; break ; end 
  z     = M * r; 
  gmmaNew = r' * z; 
  beta  = gmmaNew / gmma; 
  gmma = gmmaNew; 
  p     = z + beta * p; 
end 
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The Conjugate Gradient 
Algorithm 

•  While (not converged)  
  niters += 1; 
  s     = A * p; 
  t     = p' *s; 
  alpha = gmma / t; 
  x     = x + alpha * p; 
  r     = r - alpha * s; 
  if rnorm2 < tol2 ; break ; end 
  z     = M * r; 
  gmmaNew = r' * z; 
  beta  = gmmaNew / gmma; 
  gmma = gmmaNew; 
  p     = z + beta * p; 
end 
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CG Reconsidered 

•  By reordering operations, nonblocking 
dot products (MPI_Iallreduce in MPI-3) 
can be overlapped with other operations 

•  Trades extra local work for overlapped 
communication 
♦ On a pure floating point basis, the 

nonblocking version requires 2 more 
DAXPY operations 

♦ A closer analysis shows that some 
operations can be merged 

•  More work does not imply more time 
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Heterogeneity 

•  Already present in complex processor 
architecture (e.g., “vector” operations) 

•  Even “identical” functional units may 
have different performances 

•  Data structure + algorithm changes 
•  GPUs a local hack, but some features 

likely to persist (different memory 
model, latency hiding with “threads”, 
vector/stream operations) 
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How Good are Compilers at 
Vectorizing Codes? 
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S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing 
Compilers. PACT 2011 
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Processes and SMP nodes 

•  HPC users typically believe that their code 
“owns” all of the cores all of the time 
♦  The reality is that was never true, but they did have 

all of the cores the same fraction of time when there 
was one core /node 

•  We can use a simple performance model to 
check the assertion and then use 
measurements to identify the problem and 
suggest fixes. 

•  Based on this, we can tune a state-of-the-art 
LU factorization…. 
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Happy Medium Scheduling 

Page 34

Best performance of CALU on multicore architectures

•   Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling
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Best performance of CALU on multicore architectures

•   Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

S. Donfack, L .Grigori, V. 
Kale,  WG, IPDPS ‘12 
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Experiences 

•  Paraphrasing either Lincoln or PT Barnum: 
 
You own some of the cores all of the time and 
all of the cores some of the time, but you 
don’t own all of the cores all of the time 
 

•  Translation: a priori data decompositions that 
were effective on single core processors are no 
longer effective on multicore processors 

•  We see this in recommendations to “leave one 
core to the OS” 

♦  What about other users of cores, like … the runtime 
system? 
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What about faults? 

• Fault detection 
• Fault recovery 

♦  Are faults transient or permanent? 
• Both can be addressed by 

exploiting relationships between 
data, implicit in algorithm 
♦  Simplest is conservation: gives 

detection. 
♦  Stokes theorem, etc. (recover from 

average, ECC-like data) 
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Summary 

• Extreme scale architecture forces 
us to confront architectural 
realities 

• Even approximate (yet realistic) 
performance models can guide 
development 
♦  “All models are wrong; some are 

useful” 
• Opportunities abound 
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Implications (1) 

•  Restrict the use of separate computational 
and communication “phases” 
♦ Need more overlap of communication and 

computation to achieve latency tolerance (and 
energy reduction) 

♦ Adds pressure to be memory efficient 
•  May need to re-think entire solution stack 

♦ E.g., Nonlinear Schwarz instead of 
approximate Newton 

♦ Don’t reduce everything to Linear Algebra 
(sorry Gene!) 
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Implications (2) 

•  Use aggregates that match the hardware 
•  Limit scalars to limited, essential control 

♦ Data must be in a hierarchy of small to 
large  

•  Fully automatic fixes unlikely 
♦ No vendor compiles the simple code for 

DGEMM and uses that for benchmarks 
♦ No vendor compiles simple code for a 

shared memory barrier and uses that (e.g., 
in OpenMP) 

♦ Until they do, the best case is a human-
machine interaction, with the compiler 
helping 
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Implications (3) 

•  Use mathematics as the organizing principle 
♦  Continuous representations, possibly adaptive, 

memory-optimizing  representation, lossy (within 
accuracy limits) but preserves essential properties 
(e.g., conservation) 

•  Manage code by using abstract-data-structure-
specific languages (ADSL) to handle operations 
and vertical integration across components 
♦  So-called “domain specific languages” are really 

abstract-data-structure specific languages – they 
support more applications but fewer algorithms. 

♦  Difference is important because a “domain” almost 
certainly require flexibility with data structures and 
algorithms 
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Implications (4) 

•  Adaptive program models with a multi-
level approach 
♦  Lightweight, locality-optimized for fine grain 
♦ Within node/locality domain for medium 

grain 
♦ Regional/global for coarse grain 
♦ May be different programming models 

(hierarchies are ok!) but they must work 
well together 

•  Performance annotations to support a 
complex compilation environment 

•  Asynchronous and multilevel algorithms 
to match hardware 
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Conclusions 

•  Planning for extreme scale systems 
requires rethinking both algorithms and 
programming approaches 

•  Key requirements include 
♦ Minimizing memory motion at all levels 
♦ Avoiding unnecessary synchronization at all 

levels 
•  Decisions must be informed by 

performance modeling / understanding 
♦ Not necessarily performance estimates – 

the goal is to guide the decisions 
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Recommended Reading 

•  Bit reversal on uniprocessors (Alan Karp, SIAM 
Review, 1996) 

•  Achieving high sustained performance in an 
unstructured mesh CFD application (W. K. 
Anderson, W. D. Gropp, D. K. Kaushik, D. E. 
Keyes, B. F. Smith, Proceedings of 
Supercomputing, 1999) 

•  Experimental Analysis of Algorithms 
(Catherine McGeoch, Notices of the American 
Mathematical Society, March 2001) 

•  Reflections on the Memory Wall (Sally McKee, 
ACM Conference on Computing Frontiers, 
2004) 
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