the 19% European MPI Users’ Group Meeting

Adaptive Strategy for One-sided
Communication in MPICH2

Xin Zhao, Gopalakrishnan Santhanaraman, and William Gropp

[LLLINOIS

IIIIIIIIIIIIIIIIIIIIIIIIIII -CHAMPAIGN

Motivation

» MPI one-sided communication (RMA)
supported by MPI-2 since 1997

one process specifies all communication parameters

more convenient for some computations and has potential for
better performance

» When MPI RMA operations can be issued and completed is up to
the implementation

operations are queued and issued at end in current

implementation, reducing network transmissions
good for short updates, not for large updates

large updates should be issued as early as possible
provide maximum communication overlap

approach that adaptively handles both cases is necessary to get
good performance in both cases

Background

MPI-2 RMA Interface

» Window creation
expose target memory accessed by RMA operations

» Three types of one-sided operations

origin . target origin , target origin , target
process | i |
memor E\A \ E\A
' i i o+
1 1 1 —X+

PUT GET ACCUMULATE

MPI RMA Interface

» Three synchronizations

origin target origin target origin target
—_,—4‘ pOSt
— fence y======sess 1fence Iock? 5
PUT(y) PUT(y) Uty)
ACC(x) ACClx) ACc
completets.__ " :
~~~~~ (] g[ol=F EEEEE—
4 wait fence unlock T
Post-Start-Complete-Wait Fence Lock-Unlock
(Active Target) (Active Target) (Passive Target)

active: target participates in synchronization
passive: target does not participate in synchronization



I Design and Implementation




Lock-Unlock

» Basic implementation choice

eager approach: issue operations immediately

two synchronizations

access epoch —

ORIGIN
LOCK

PUT
issue op

GET
issue op

PUT
issue ops

UNLOCK

TARGR

—lock-request
E lock-granted -

T

— exposure epoch




Current Implementation in MPICH?2

» Lazy approach: do everything in UNLOCK

» Eliminate synchronization message at end
TARGRT

access epoch _|
(queue up ops)

ORIGIN
LOCK

PUT
GET

PUT

UNLOCK

issue ops

lock-request

B —

lock-granted

> -

—> !
last op + lock-releag;i

e

: — exposure epoch

" _J



Current Implementation in MPICH2

» Single operation optimization
eliminate synchronization messages at beginning
cannot be implemented in eager approach

ORIGIN TARGRT
LOCK
access epoch — PUT
(queue up ops)
UNLOCK
issue op lock-request + op

—> . exposure epoch




Our Strategy — Adaptive Approach

» Initially performs as LAZY mode

» When encounter large number of operations / large data
volume, switch from LAZY mode to EAGER mode

» Gain advantages from both LAZY and EAGER
support single operation optimization
eliminate the synchronization message at end (when get)
— always keep the current last operation



Fence

» Basic implementation choice
eager approach: issue operations immediately
two synchronizations: one at beginning and one at end

FENCE FENCE FENCE
sync sync
barrier =-===-=--- .y_ -------- barrier =====--- y‘ """"" barrier
PUT GET
issue op issue op
PUT
issue op GET B
issue op issue op
epoch —
PUT . o : it
T3 issue op Issue op
GET PUT
issue op issue op
FENCE FENCE FENCE

sync sync
barrier =====-=-- y‘ -------- barrier ===-=-=---- y_ _________ barrier




Current implementation in MPICH2

» Lazy approach

enqueue operations and issue at end; use reducescatter to
count number of RMA operations arriving

one synchronization

FENCE FENCE FENCE
PUT GET
PUT
GET GET
epoch —
(queue up ops) PUT PUT
PUT
GET PUT
FENCE sync FENCE sync FENCE
reduce-scatter ~T"""TTTTTTT reduce-scatter ====="======" reduce-scatter

issue ops issue ops issue ops




Our strategy

» Adaptive Fence
switch from lazy to eager in between
one or two synchronizations

FENCE FENCE FENCE

PUT GET

PUT GET GET

PUT PUT

— sync
epoch , reduce-scatter ------ me L reduce-scatter
(queue up —p ,/' issue op issue op
initially) o

"l GET PUT
03,\' issue op issue op
FENCE ./ FENCE FENCE

reduce-scatter *
issue ops

barrier ======-< SYNC_ e barrier ss=sel_SYNC et barrier




Comparison

» Lazy approach

not synchronize at first, queue up operations and issue
them at end

less synchronization, but no overlapping opportunity

» Eager approach
issue operations as they occur, synchronize at first and end

overlapping opportunity, no queuing cost, but more
synchronization

» Adaptive approach

perform as lazy initially, synchronize and switch to eager if
meet large operations/data

combines features of both lazy and eager



Evaluation




Experimental Setup

» Platforms
SMP machine with 4 cores and 8GB memory

“breadboard” cluster at ANL, each node has two quad-core
processors and 16GB memory, Ethernet interconnect

» Benchmarks
Ping-pong latency
overlap percentage
Graph500, halo exchange
» Comparison
eager / lazy / adaptive
» Switching threshold
Adop =10000 or Admsg sz = 400 bytes



Single Operation Latency

128 8192
64 | —lock-put (LAZY) 4096 | —lock-put (LAZY)
32  —lock-put (EAGER —lock-
e | ock-put ( ) 2048 | lock-put (EAGER)
S | Tlock-put (ADAPTIVE) 2 1024 | —lock-put (ADAPTIVE)
e
2 3 512
2 o
© T 256
128 |
. ——=—=
0.25 1 1 1 1 1 N 64 I I 1 1 N 2
1 8 64 512 4096 32768 262144 1 8 64 512 4096 32768 262144
Message Size (bytes) Message Size (bytes)
SMP Breadboard
(Lock-Unlock) (Lock-Unlock)

» lazy/adaptive are better at small message size, due to the
optimization for single short operation



Multiple Operations Latency

1400

1200
1000
800
600
400
200

Latency (us)

——lock-put (LAZY)
——lock-put (EAGER)
——lock-put (ADAPTIVE)

Latency (us)

40 60 80 100 120 140 160 180 200 220 240
Number of Operations (small)

20

(a) lock-unlock

——pscw-put (LAZY)
——pscw-put (EAGER)
——pscw-put (ADAPTIVE)

0 20 40 60 80 100120140 160 180 200 220 240
Number of Operations (small)

300000
250000 ——lock-put (LAZY)
| ——lock-put (EAGER)
’%T 200000 | ——lock-put (ADAPTIVE)
2 150000
5
& 100000
|
50000
o 1 1 1 1 1 1
10000 40000 70000 100000 130000 160000 190000

300000

250000 r

200000

100000

Latency (us)

50000 r

0

(b) PSCW

Number of Operations (large)

150000

——pscw-put (LAZY)
——pscw-put (EAGER)
- ——pscw-put (ADAPTIVE)

10000 40000 70000 100000 130000 160000 190000

Number of Operations (large)

breadboard
(Lock-Unlock and PSCW)

» for small operations, lazy/adaptive are better; for large
operations, eager/adaptive are better

18



Overlap Percentage

19

100

90 B |ock-put (ADAPTIVE)
— ] -
§ 80 pscw-put (ADAPTIVE)
) fence-put (ADAPTIVE)
Y, 70 [
S
c 60 —
[T
S 50 -
a
00 40 |
k=
o 30 - [
o
= 20 - —
3
o |0 T e

0 .

2710 2711 2712 27113 2714 2715 2716 2717
Message Size (bytes)

adaptive approach, breadboard

eager has similar results, while lazy has no overlapping
observed




Performance Benchmarks

Latency (us)

20

3
25 W LAZY mEAGER ™ ADAPTIVE

2
1.5

1
0.5

0

16 32 64 128
Number of Processes
(b) 210 nodes

breadboard

3
W LAZY MEAGER m ADAPTIVE
25
2 —
(%)
=)
1.5 g
(&)
c
1 ]
©
-
0.5
0
16 32 64 128
Number of Processes
(a) 2"5 nodes
Graph 500,
35000
30000 | ——pscw (LAZY)
——pscw (EAGER)
25000
%) ——pscw (ADAPTIVE)
220000 [
%)
Q15000
[0)
T 10000
-
5000
0 1 1
0 200 400
Message

600
Size (bytes)

800 1000

Halo exchange, breadboard

adaptive fence

adaptive PSCW



Conclusion and Future Work

» Conclusion

Lazy approach has less synchronization cost and provides
opportunities to aggregate or schedule operations

Eager approach issues operations early, eliminates cost of queuing,
and enables the overlap of communication and computation

Adaptive approach combines features of lazy and eager, introducing a
modest overhead

» Future Work

21

Experiments on other underlying transports (RDMA on InfiniBand,
Gemini, etc.) and on large-scale systems

Use nonblocking collectives (active target) or nonblocking
communication (passive) to continue while performing first sync

Support adaptive approach in new synchronization options in MPI-3
Fortunately, they are for passive target, where the extensions are natural



Thanks!




