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Motivation

» MPI one-sided communication (RMA)
supported by MPI-2 since 1997

one process specifies all communication parameters

more convenient for some computations and has potential for
better performance

» When MPI RMA operations can be issued and completed is up to
the implementation

operations are queued and issued at end in current

implementation, reducing network transmissions
good for short updates, not for large updates

large updates should be issued as early as possible
provide maximum communication overlap

approach that adaptively handles both cases is necessary to get
good performance in both cases



Background




MPI-2 RMA Interface

» Window creation
expose target memory accessed by RMA operations

» Three types of one-sided operations
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MPI RMA Interface

» Three synchronizations
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I Design and Implementation




Lock-Unlock

» Basic implementation choice

eager approach: issue operations immediately

two synchronizations
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Current Implementation in MPICH?2

» Lazy approach: do everything in UNLOCK

» Eliminate synchronization message at end
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Current Implementation in MPICH2

» Single operation optimization
eliminate synchronization messages at beginning
cannot be implemented in eager approach
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Our Strategy — Adaptive Approach

» Initially performs as LAZY mode

» When encounter large number of operations / large data
volume, switch from LAZY mode to EAGER mode

» Gain advantages from both LAZY and EAGER
support single operation optimization
eliminate the synchronization message at end (when get)
— always keep the current last operation



Fence

» Basic implementation choice
eager approach: issue operations immediately
two synchronizations: one at beginning and one at end
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Current implementation in MPICH2

» Lazy approach

enqueue operations and issue at end; use reducescatter to
count number of RMA operations arriving

one synchronization
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Our strategy

» Adaptive Fence
switch from lazy to eager in between
one or two synchronizations
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Comparison

» Lazy approach

not synchronize at first, queue up operations and issue
them at end

less synchronization, but no overlapping opportunity

» Eager approach
issue operations as they occur, synchronize at first and end

overlapping opportunity, no queuing cost, but more
synchronization

» Adaptive approach

perform as lazy initially, synchronize and switch to eager if
meet large operations/data

combines features of both lazy and eager



Evaluation




Experimental Setup

» Platforms
SMP machine with 4 cores and 8GB memory

“breadboard” cluster at ANL, each node has two quad-core
processors and 16GB memory, Ethernet interconnect

» Benchmarks
Ping-pong latency
overlap percentage
Graph500, halo exchange
» Comparison
eager / lazy / adaptive
» Switching threshold
Adop =10000 or Admsg sz = 400 bytes



Single Operation Latency

128 8192
64 | —lock-put (LAZY) 4096 | —lock-put (LAZY)
32  —lock-put (EAGER —lock-
e | ock-put ( ) 2048 | lock-put (EAGER)
S | Tlock-put (ADAPTIVE) 2 1024 | —lock-put (ADAPTIVE)
e
2 3 512
2 o
© T 256
128 |
. ——=—=
0.25 1 1 1 1 1 N 64 I I 1 1 N 2
1 8 64 512 4096 32768 262144 1 8 64 512 4096 32768 262144
Message Size (bytes) Message Size (bytes)
SMP Breadboard
(Lock-Unlock) (Lock-Unlock)

» lazy/adaptive are better at small message size, due to the
optimization for single short operation



Multiple Operations Latency

1400

1200
1000
800
600
400
200

Latency (us)

——lock-put (LAZY)
——lock-put (EAGER)
——lock-put (ADAPTIVE)

Latency (us)

40 60 80 100 120 140 160 180 200 220 240
Number of Operations (small)

20

(a) lock-unlock

——pscw-put (LAZY)
——pscw-put (EAGER)
——pscw-put (ADAPTIVE)

0 20 40 60 80 100120140 160 180 200 220 240
Number of Operations (small)

300000
250000 ——lock-put (LAZY)
| ——lock-put (EAGER)
’%T 200000 | ——lock-put (ADAPTIVE)
2 150000
5
& 100000
|
50000
o 1 1 1 1 1 1
10000 40000 70000 100000 130000 160000 190000

300000

250000 r

200000

100000

Latency (us)

50000 r

0

(b) PSCW

Number of Operations (large)

150000

——pscw-put (LAZY)
——pscw-put (EAGER)
- ——pscw-put (ADAPTIVE)

10000 40000 70000 100000 130000 160000 190000

Number of Operations (large)

breadboard
(Lock-Unlock and PSCW)

» for small operations, lazy/adaptive are better; for large
operations, eager/adaptive are better
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Overlap Percentage
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eager has similar results, while lazy has no overlapping
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Performance Benchmarks
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Conclusion and Future Work

» Conclusion

Lazy approach has less synchronization cost and provides
opportunities to aggregate or schedule operations

Eager approach issues operations early, eliminates cost of queuing,
and enables the overlap of communication and computation

Adaptive approach combines features of lazy and eager, introducing a
modest overhead

» Future Work
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Experiments on other underlying transports (RDMA on InfiniBand,
Gemini, etc.) and on large-scale systems

Use nonblocking collectives (active target) or nonblocking
communication (passive) to continue while performing first sync

Support adaptive approach in new synchronization options in MPI-3
Fortunately, they are for passive target, where the extensions are natural
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