
MPI 3 and Beyond:
Why MPI is Successful and
What Challenges it Faces

William Gropp
www.cs.illinois.edu/~wgropp

2

What? MPI-3 Already?!

•  MPI Forum passed MPI-3.0 last Friday,
September 21, here in Vienna
♦  MPI-2.2 released September, 2009

•  Standard available www.mpi-forum.org/docs
•  Bound version available
•  Significant enhancement from MPI-2.2
•  Mostly backward compatible

♦  Some previously deprecated functions removed

•  Major step positioning MPI-3 for multicore,
extreme scale systems

3

Why Was MPI Successful?
•  It address all of the following issues:

♦  Portability
♦  Performance
♦  Simplicity and Symmetry
♦  Modularity
♦  Composability
♦  Completeness

•  For a more complete discussion, see “Learning
from the Success of MPI”,
http://www.cs.illinois.edu/~wgropp/bib/papers/
2001/mpi-lessons.pdf

•  In addition, it has a precise definition (syntax and
semantics), permitting applications that ran on the
T3D to get the same answer on the Fujitsu K
Computer.
♦  See papers from U Utah, U Delaware, and others on

formal analysis of MPI programs

4

MPI Built on a Strong Base

•  Standard practice, sensibly extended
♦  Datatypes
♦  Communicator and context

•  Forward looking
♦  Where parallel computing was going, not where it had

been
•  Measurements are about past systems

•  Precise description
♦  Semantics well defined
♦  Not all parallel programming models so precise

•  Strengths
♦  Portability, Performance, Modularity and Composibility,

Completeness
•  Weaknesses

♦  Specification as library prevents close integration with
language

♦  Lack of support for distributed data structures

5

Myths about MPI

•  Some common myths:
♦ MPI requires p2 buffers
♦ MPI is not fault tolerant
♦ MPI does not have scalable startup
♦ MPI RMA has complex rules
♦ MPI requires ordering of messages in the

network
•  Why discuss these?

♦ They still confuse discussions about MPI
♦ They reveal a error in thinking about MPI

6

MPI requires p2 buffers

•  MPI allows any process to communicate with
any other. Seems to require p (or p-1) buffers
at each process to handle receipt of envelopes,
eager data

•  But this is an implementation decision
•  Any scalable application will communicate with

a fixed number (or log p if a weak scalability is
used) of processes

•  An implementation can trade (buffer) space
for implementation complexity and (perhaps)
time

7

MPI is not Fault-Tolerant

•  Means “The standard (like virtually all other
standards” does not mandate a specific
behavior when certain kinds of faults occur

•  Most who make this claim make it based on
(a) the default error handler (a very good
idea) and (b) the behavior of some
implementations

•  Challenge: Should the standard require a
fault tolerant system or should an
implementation be tolerant of certain
classes of faults?
♦  Which faults are important to you?
♦  See “Fault Tolerance in MPI Programs”, G & Lusk,

IJHPCA 18, #3, 363-372.

8

MPI does not have
Scalable Startup

•  Startup is not part of the MPI standard, so this
statement makes no sense

•  Typically based on examining how some MPI
implementations start
♦  No need to establish all possible connections at

initialization time – MPICH never did, even in 1992
♦  No need to start processes sequentially
♦  No need to even use OS processes for MPI

•  It is more difficult to build a scalable startup
system
♦  And you have to design it to be highly scalable, not

just scalable-on-the-systems-that-are-available-now

9

MPI RMA has Complex Rules

•  True but misleading
•  MPI RMA is precisely defined – much more so that many

other one-sided specifications
♦  The result is, unfortunately, complexity
♦  Also defined to allow and encourage hardware acceleration

•  However, sufficient (but not necessary) rules exist
♦  These are much simpler and adequate for most uses

•  A standard should never be punished for getting hard
things right

•  One-sided memory update rules are more complicated
than you think (-> see “MPI and Shared Memory” later
in talk)

10

MPI Requires Ordering of
Data in the Network

•  Absolutely false.
•  MPI requires apparent ordering of certain operations

♦  Message “envelopes” within the same communicator
♦  In MPI-3, certain RMA accumulate operations (by default,

can be relaxed)
•  Actual delivery, particularly of data, need not be

ordered
♦  Only need to know for certain when all data is available

•  Advantageous for high-performance networks
•  An example of specifying only as much as necessary

♦  Order of delivery of data up to implementation – both
hardware and software

11

A Common Mistake

•  Measurements of an implementation used to
compare programming models or ideas
♦  Wrong to compare C and Fortran by using

measurements with a mature, highly optimizing
compilers (e.g., icc) and a less mature, less capable
compiler (e.g., gfortran) on a machine or even many
compilers on many machines

♦  Equally wrong to compare MPI and X by using
implementations of MPI and X

•  You can gain some insight into what may be (not
is) hard to implement well, but that’s not a
comparison

•  Action: As reviewers, require precision in
titles and descriptions.

•  Challenge: Balance quantitative thinking
about the future with experiments that can
be run today.

12

Challenges Facing MPI

•  Why is now special?
♦  End of Denard (frequency) scaling, related challenges of

power consumption, heat dissipation, and reliability
creating great architectural diversity

♦  System scale exceeding that at which
many current algorithms are effective,
requiring new ideas and the
programming models and ideas to
support them

•  Programming models are changing
♦  Most popular parallel programming language in recent

years…
•  CUDA

♦  New HPC languages, including OpenACC, Chapel,
Habanero, Python, Liszt, many DSL proposals,…

♦  Perhaps biggest change since vectorization over 30 years
ago

13

Changes in Processor
Architecture

• MPI defined when a single
processor often required multiple
chips (including an attached
floating point unit!)

• Many different architectural
directions today, including
♦ Multicore, Manycore, GPU, FPGA,

EMP/PIM
♦ Intrachip interconnects, on chip

interconnects, smart NICs

14

MPI Processes and
Processors

•  MPI remains a single process programming
approach
♦  Relies on Fortran and C (and until MPI-3, C++) as

the base languages
•  All very old, designed as single threaded; only now

trying to retrofit thread safety and other forms of chip
and node parallelism

♦  MPI has relied on composition of programming
models

•  Strength – can exploit advances in compiler and
language abilities

•  Weakness – Unable to enlist help by compiler to
optimize and detect user errors

♦  Examples: Nonblocking operations and threads

15

Nonblocking Operations

•  Necessary for correctness for complex
communication patterns (because of difficulty
in ordering sends and receives so that
buffering limits cannot be exceeded)
♦  Easy to order for regular grid communication
♦  Hard for adaptive, irregular grid communication

•  Express Communication/Computation Overlap
♦  Both for overall time and moving operations to

communication engines
•  But dangerous for programmer – no clear

correspondence in code to when a buffer is
available
♦  Very difficult for Fortran compiler to optimize code

safely

16

Threads

•  MPI-1 designed expecting threads to
complement MPI
♦  SMPs common (but multi-chip processors)
♦  All nonblocking operations can be performed as a

blocking operation in a separate thread
•  As long as MPI blocking operations only block thread,

not process; clarified in MPI-2.0
•  Semantics inherited from thread model

♦  Core communication operations considered too
performance-critical

•  MPI_Isend, MPI_Send_init/MPI_Start, etc.
♦  Overhead of threads became clearer as thread-safe

implementations of MPI, other applications, appeared
•  Thread levels in MPI-2.0, e.g., MPI_THREAD_MULTIPLE

17

Best Laid Plans

•  However, situation worse than appeared
♦  Cost of providing threads encouraged at least one

HPC vendor to restrict processes to one thread per
core (for some definition of “core”)

♦  Makes threads useless as a portable method to
implement nonblocking communication and
computation

•  Led to large and inconsistent increase in the
number of nonblocking routines in MPI-3
♦  E.g., many algorithms can benefit from nonblocking

collective routines
♦  MPI-3 added nonblocking versions of many but not

all collective routines
•  So many that the concern was that too many were

being added

18

Challenges

•  Handle threads consistently
♦ E.g., Assume threads (> number of cores)

are present and efficient. Can be used to
implement general nonblocking operations.
Only core MPI 1 and 2 nonblocking routines
are needed
• MPI-3 decision: These sort of threads are not

widespread enough, and will not be in the future,
for MPI to depend upon

♦ But some MPI operations, particularly RMA,
require an “agent” to perform the operation
• Many appear to assume that these can be done

with a thread, but this is inconsistent with the
design of MPI-3

19

MPI and Hybrid Models

•  Challenge: How do runtimes of different
programming model implementations
negotiate shared resources?
♦  E.g., how do MPI and OpenMP implementations

agree to share cores, memory, interchip
communication, and even threads?

•  Challenge: Is the programmer’s help
needed, or can this be solved without any
explicit program interface?

•  These must be solved for MPI to successfully
exploit composition of programming models

20

RDMA
•  Remote Direct Memory Access

♦  Networks optimized for one-sided data transfers
♦  “Easy” part is the put and get for large transfers
♦  Hard part (for all one-sided models) includes local and remote

completion of transfers
•  Even published papers sometimes fail to properly ensure completion,

depend on operations being “fast enough”

•  Devil is in the details
♦  Data delivery and ordering
♦  Short operations critical for many algorithms, high productivity

models
•  Fine grain models, many algorithms, work with scalars or very short

blocks of data. Productivity lost when programmer must introduce
artificial aggregation

•  Challenge: What operations? What atomicity? What lengths?
(e.g., known that CAS too limited – motivation for transactional
memory)

•  See compromise's in MPI-3 RMA design
•  Challenge: Did we get these right? Will hardware be able to

exploit them

21

The Real RDMA Challenge

•  Match RDMA hardware capabilities
now and in the next 5-10 years to
the MPI programming model and
preserve performance

•  The issues are not the speed of block
transfers but the handling of local and
remote completion of memory transfers
and efficient synchronization within the
programming model

22

MPI and Shared Memory

•  Shared memory programming is harder than
you think
♦  “You don’t know Jack about Shared Variables or

Memory Models”, CACM Vol 55#2, Feb 2012.
•  Users want it to “just work” but without

sacrificing performance
•  Challenge: Define a programming model

that permits exploitation of shared
memory but remains safe for users
♦  Data race-free programming one example
♦  MPI-3 has made a good attempt by providing shared

memory windows and the unified memory model,
but whether this will be effective is yet to be seen

23

Issues at Scale

• The end of frequency scaling has
forced a rapid increase in
concurrency

• Systems now have 10,000 times
as many processor cores as the
“extreme scale” machines when
MPI was first developed

24

Describing Collective
Operations

•  Many collective routines have O(p) arguments
•  Challenge: Replace collective routines

with more scalable versions that match
algorithm needs
♦  “Neighbor” collectives in MPI-3 one step in this

direction
•  Challenge: Should non-scalable routines

be deprecated (e.g., MPI_Alltoall)?
♦  Should we force programmers to think more scalably

25

Physical and Virtual
Topologies

•  Important when MPI-1 defined
♦  Hypercubes, meshes, trees, …

•  MPI-1 attempted to define an abstraction for topologies with
MPI_Cart_create/MPI_Graph_create. MPI_Dims_create gives
a specific decomposition.
♦  None of these provide enough control to match needs
♦  Attempts to both provide an abstraction and a specific behavior

•  Result is not useful to anyone

•  Today the situation is more complex
♦  Multilevel nodes, more complex networks, routing methods
♦  Performance irregularities common (compute resources unequally

shared)
•  Challenge: Define an effective means for programs to

express their (dynamic) communication pattern and
map that onto physical network resources

26

Faults and
Programming Models

•  “Give me what I want”
♦  Add tension between “do what I want” and “have a well defined

behavior for others”
•  Note that it is provably impossible to reliably detect all kinds

of faults
♦  Node “down” may be node “really, really slow”
♦  Some recent theory gets around this by defining a down node as one

that doesn’t respond in time. Problem then is in defining the threshold
to quickly detect the truly failed but not abandon the merely slow.

•  Hard to provide general solution that users like
♦  Users like simplicity except when it gives them the wrong answer

•  They tend to like simplicity until it gives them the wrong answer.
♦  Users like models that are full of races and errors, as long as it doesn’t

mess them up (as far as they can tell, and they often can’t in a
scientific code, as errors are often proportional to Δt and reduce the
accuracy of the computation)

•  May be the wrong problem
♦  Node “down” may be much less likely than “uncorrected but

recoverable memory or data path error”
♦  May not require the same corrective steps as node down
♦  Programming model support for “node down” and “memory lost” likely

very, very different

27

Faults and MPI

•  Almost no standard interface required to
survive unspecified problems

•  What are the likely faults?
♦  Note poor analysis of hardware / software faults in

some studies – persistent faults can sometimes be
identified, but transient faults (hardware upsets,
timing/race issues in software) means source of
many faults unknown

•  Challenge: What are the likely faults and
how will system software respond to
them? How should a programming model
interact with the system? How much
should the programmer participate in
managing different kinds of faults?

28

Library and Language

•  No Library-based implementation is ever complete
♦  You can always add routines, and give good reasons to do

so
♦  MPI-1, MPI-2 model

•  Try for few concepts, provide all natural routines
•  E.g., MPI_Issend

♦  May be starting to lose the model
•  MPI-3 Assumption: Threads are now and will be for the next

5-10 years too inefficient to use in parallel programming
-  Required to justify many new nonblocking routines, all of which

could be implemented within a thread
-  If only “now”, then not a valid justification to add something to a

standard
  But would be a justification to add something to a research

platform

•  It is too easy to add routines to a library
♦  Costs: completeness, complexity, short term rather than

long term

29

Library Challenges

•  “Basic” Langauge datatypes
♦  Used to be int, short, long, float, double, char
♦  Now int32_t, wchar_t, …. Expected by programmers

•  How can MPI keep up?
♦  Nonblocking operations always an issue

•  C’s pointers mostly keep compiler from optimizing away;
Fortran actively exploits “knowing” about data lifetime

•  There are language ideas to address this – e.g., Futures.
How can these fit with MPI?

•  C++ : What is the right level (this is the general
“high level language” issue, and why MPI has succeeded
by staying at a lower level)
♦  Also adds inter-language issues. What happens to a

Fortran routine that calls a C++ routine that throws
an exception?

30

Productivity

•  Distributed Data Structures (DDS) essential
for high productivity
♦  Global Arrays one example
♦  HPF, ZPL, …

•  Challenge: Extend MPI to include
elements of support to DDS
♦  Sort of in datatypes – but too hard to use

•  Challenge: Find better building blocks for
distributed data structures
♦  Why didn’t the support emerge?
♦  Can libraries alone provide an effective solution?

31

Miscellaneous Comments

•  Fatal mistake: Define semantics and then (tell
someone to) make it fast
♦  Performance requires choosing semantics that can

be efficiently implemented
♦  Good design matches performance requirements

with usability (typically with compromises)
•  Comparison:

♦  Reference implementation: specification is precise
enough to be implemented (with functionality but
not necessarily with performance); identify
inconsistencies between routines;

•  Really good implementation can identify performance
issues on the platform on which it is implemented

♦  Paper implementation WRT expected future
hardware capabilities: specification will permit access
to performance features into the future

•  Suitably careful paper implementation will ensure that the
specification is precise enough to be implemented

32

Conclusions

•  Careful design and consideration of the long
term made MPI 1 and MPI 2 extraordinarily
successful

•  MPI started at about the same time as “attack
of the killer micros”; enjoyed two decades of
relative architectural stability

•  The approaching end of CMOS has introduce
great uncertainty and opportunity

•  MPI can continue to evolve as parallel
computing evolves, but only by being careful
to take the long view and continue to exploit
composition of programming models (hybrid
programming)

