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What?  MPI-3 Already?! 

•  MPI Forum passed MPI-3.0 last Friday, 
September 21, here in Vienna 
♦  MPI-2.2 released September, 2009 

•  Standard available www.mpi-forum.org/docs 
•  Bound version available  
•  Significant enhancement from MPI-2.2 
•  Mostly backward compatible 

♦  Some previously deprecated functions removed 

•  Major step positioning MPI-3 for multicore, 
extreme scale systems 
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Why Was MPI Successful? 
•  It address all of the following issues: 

♦  Portability 
♦  Performance 
♦  Simplicity and Symmetry 
♦  Modularity 
♦  Composability 
♦  Completeness 

•  For a more complete discussion, see “Learning 
from the Success of MPI”, 
http://www.cs.illinois.edu/~wgropp/bib/papers/
2001/mpi-lessons.pdf 

•  In addition, it has a precise definition (syntax and 
semantics), permitting applications that ran on the 
T3D to get the same answer on the Fujitsu K 
Computer.  
♦  See papers from U Utah,  U Delaware, and others on 

formal analysis of MPI programs 
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MPI Built on a Strong Base 

•  Standard practice, sensibly extended 
♦  Datatypes 
♦  Communicator and context 

•  Forward looking 
♦  Where parallel computing was going, not where it had 

been 
•  Measurements are about past systems 

•  Precise description 
♦  Semantics well defined 
♦  Not all parallel programming models so precise 

•  Strengths 
♦  Portability, Performance, Modularity and Composibility, 

Completeness 
•  Weaknesses 

♦  Specification as library prevents close integration with 
language 

♦  Lack of support for distributed data structures 
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Myths about MPI 

•  Some common myths: 
♦ MPI requires p2 buffers 
♦ MPI is not fault tolerant 
♦ MPI does not have scalable startup 
♦ MPI RMA has complex rules 
♦ MPI requires ordering of messages in the 

network 
•  Why discuss these? 

♦ They still confuse discussions about MPI 
♦ They reveal a error in thinking about MPI 
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MPI requires p2 buffers 

•  MPI allows any process to communicate with 
any other. Seems to require p (or p-1) buffers 
at each process to handle receipt of envelopes, 
eager data 

•  But this is an implementation decision 
•  Any scalable application will communicate with 

a fixed number (or log p if a weak scalability is 
used) of processes 

•  An implementation can trade (buffer) space 
for implementation complexity and (perhaps) 
time 
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MPI is not Fault-Tolerant 

•  Means “The standard (like virtually all other 
standards” does not mandate a specific 
behavior when certain kinds of faults occur 

•  Most who make this claim make it based on 
(a) the default error handler (a very good 
idea) and (b) the behavior of some 
implementations 

•  Challenge: Should the standard require a 
fault tolerant system or should an 
implementation be tolerant of certain 
classes of faults? 
♦  Which faults are important to you? 
♦  See “Fault Tolerance in MPI Programs”, G & Lusk, 

IJHPCA 18, #3, 363-372.  



8 

MPI does not have  
Scalable Startup 

•  Startup is not part of the MPI standard, so this 
statement makes no sense 

•  Typically based on examining how some MPI 
implementations start 
♦  No need to establish all possible connections at 

initialization time – MPICH never did, even in 1992 
♦  No need to start processes sequentially 
♦  No need to even use OS processes for MPI 

•  It is more difficult to build a scalable startup 
system 
♦  And you have to design it to be highly scalable, not 

just scalable-on-the-systems-that-are-available-now 
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MPI RMA has Complex Rules 

•  True but misleading 
•  MPI RMA is precisely defined – much more so that many 

other one-sided specifications 
♦  The result is, unfortunately, complexity 
♦  Also defined to allow and encourage hardware acceleration 

•  However, sufficient (but not necessary) rules exist 
♦  These are much simpler and adequate for most uses 

•  A standard should never be punished for getting hard 
things right 

•  One-sided memory update rules are more complicated 
than you think (-> see “MPI and Shared Memory” later 
in talk) 
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MPI Requires Ordering of 
Data in the Network 

•  Absolutely false.  
•  MPI requires apparent ordering of certain operations 

♦  Message “envelopes” within the same communicator 
♦  In MPI-3, certain RMA accumulate operations (by default, 

can be relaxed) 
•  Actual delivery, particularly of data, need not be 

ordered 
♦  Only need to know for certain when all data is available 

•  Advantageous for high-performance networks 
•  An example of specifying only as much as necessary 

♦  Order of delivery of data up to implementation – both 
hardware and software  
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A Common Mistake 

•  Measurements of an implementation used to 
compare programming models or ideas 
♦  Wrong to compare C and Fortran by using 

measurements with a mature, highly optimizing 
compilers (e.g., icc) and a less mature, less capable 
compiler (e.g., gfortran) on a machine or even many 
compilers on many machines 

♦  Equally wrong to compare MPI and X by using 
implementations of MPI and X 

•  You can gain some insight into what may be (not 
is) hard to implement well, but that’s not a 
comparison 

•  Action: As reviewers, require precision in 
titles and descriptions.  

•  Challenge: Balance quantitative thinking 
about the future with experiments that can 
be run today. 
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Challenges Facing MPI 

•  Why is now special? 
♦  End of Denard (frequency) scaling, related challenges of 

power consumption, heat dissipation, and reliability 
creating great architectural diversity 

♦  System scale exceeding that at which 
many current algorithms are effective, 
requiring new ideas and the  
programming models and ideas to  
support them  

•  Programming models are changing 
♦  Most popular parallel programming language in recent 

years… 
•  CUDA 

♦  New HPC languages, including OpenACC, Chapel, 
Habanero, Python, Liszt, many DSL proposals,… 

♦  Perhaps biggest change since vectorization over 30 years 
ago 
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Changes in Processor 
Architecture 

• MPI defined when a single 
processor often required multiple 
chips (including an attached 
floating point unit!) 

• Many different architectural 
directions today, including 
♦ Multicore, Manycore, GPU, FPGA, 

EMP/PIM 
♦ Intrachip interconnects, on chip 

interconnects, smart NICs 
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MPI Processes and 
Processors 

•  MPI remains a single process programming 
approach 
♦  Relies on Fortran and C (and until MPI-3, C++) as 

the base languages 
•  All very old, designed as single threaded; only now 

trying to retrofit thread safety and other forms of chip 
and node parallelism 

♦  MPI has relied on composition of programming 
models 

•  Strength – can exploit advances in compiler and 
language abilities 

•  Weakness – Unable to enlist help by compiler to 
optimize and detect user errors 

♦  Examples: Nonblocking operations and threads 
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Nonblocking Operations 

•  Necessary for correctness for complex 
communication patterns (because of difficulty 
in ordering sends and receives so that 
buffering limits cannot be exceeded) 
♦  Easy to order for regular grid communication 
♦  Hard for adaptive, irregular grid communication 

•  Express Communication/Computation Overlap 
♦  Both for overall time and moving operations to 

communication engines 
•  But dangerous for programmer – no clear 

correspondence in code to when a buffer is 
available 
♦  Very difficult for Fortran compiler to optimize code 

safely 
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Threads 

•  MPI-1 designed expecting threads to 
complement MPI 
♦  SMPs common (but multi-chip processors) 
♦  All nonblocking operations can be performed as a 

blocking operation in a separate thread 
•  As long as MPI blocking operations only block thread, 

not process; clarified in MPI-2.0 
•  Semantics inherited from thread model 

♦  Core communication operations considered too 
performance-critical 

•  MPI_Isend, MPI_Send_init/MPI_Start, etc. 
♦  Overhead of threads became clearer as thread-safe 

implementations of MPI, other applications, appeared 
•  Thread levels in MPI-2.0, e.g., MPI_THREAD_MULTIPLE 
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Best Laid Plans 

•  However, situation worse than appeared 
♦  Cost of providing threads encouraged at least one 

HPC vendor to restrict processes to one thread per 
core (for some definition of “core”) 

♦  Makes threads useless as a portable method to 
implement nonblocking communication and 
computation 

•  Led to large and inconsistent increase in the 
number of nonblocking routines in MPI-3 
♦  E.g., many algorithms can benefit from nonblocking 

collective routines 
♦  MPI-3 added nonblocking versions of many but not 

all collective routines 
•  So many that the concern was that too many were 

being added 
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Challenges 

•  Handle threads consistently 
♦ E.g., Assume threads (> number of cores) 

are present and efficient. Can be used to 
implement general nonblocking operations.  
Only core MPI 1 and 2 nonblocking routines 
are needed 
• MPI-3 decision: These sort of threads are not 

widespread enough, and will not be in the future, 
for MPI to depend upon 

♦ But some MPI operations, particularly RMA, 
require an “agent” to perform the operation 
• Many appear to assume that these can be done 

with a thread, but this is inconsistent with the 
design of MPI-3 
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MPI and Hybrid Models 

•  Challenge: How do runtimes of different 
programming model implementations 
negotiate shared resources? 
♦  E.g., how do MPI and OpenMP implementations 

agree to share cores, memory, interchip 
communication, and even threads? 

•  Challenge: Is the programmer’s help 
needed, or can this be solved without any 
explicit program interface? 

•  These must be solved for MPI to successfully 
exploit composition of programming models 
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RDMA 
•  Remote Direct Memory Access 

♦  Networks optimized for one-sided data transfers 
♦  “Easy” part is the put and get for large transfers 
♦  Hard part (for all one-sided models) includes local and remote 

completion of transfers 
•  Even published papers sometimes fail to properly ensure completion, 

depend on operations being “fast enough” 

•  Devil is in the details 
♦  Data delivery and ordering 
♦  Short operations critical for many algorithms, high productivity 

models 
•  Fine grain models, many algorithms, work with scalars or very short 

blocks of data.  Productivity lost when programmer must introduce 
artificial aggregation 

•  Challenge: What operations?  What atomicity?  What lengths? 
(e.g., known that CAS too limited – motivation for transactional 
memory) 

•  See compromise's in MPI-3 RMA design 
•  Challenge: Did we get these right?  Will hardware be able to 

exploit them 
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The Real RDMA Challenge 

•  Match RDMA hardware capabilities 
now and in the next 5-10 years to 
the MPI programming model and 
preserve performance 

•  The issues are not the speed of block 
transfers but the handling of local and 
remote completion of memory transfers 
and efficient synchronization within the 
programming model   
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MPI and Shared Memory 

•  Shared memory programming is harder than 
you think 
♦  “You don’t know Jack about Shared Variables or 

Memory Models”, CACM Vol 55#2, Feb 2012. 
•  Users want it to “just work” but without 

sacrificing performance 
•  Challenge: Define a programming model 

that permits exploitation of shared 
memory but remains safe for users 
♦  Data race-free programming one example 
♦  MPI-3 has made a good attempt by providing shared 

memory windows and the unified memory model, 
but whether this will be effective is yet to be seen 
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Issues at Scale 

• The end of frequency scaling has 
forced a rapid increase in 
concurrency  

• Systems now have 10,000 times 
as many processor cores as the 
“extreme scale” machines when 
MPI was first developed 



24 

Describing Collective 
Operations 

•  Many collective routines have O(p) arguments 
•  Challenge: Replace collective routines 

with more  scalable versions that match 
algorithm needs 
♦  “Neighbor” collectives in MPI-3 one step in this 

direction 
•  Challenge: Should non-scalable routines 

be deprecated (e.g., MPI_Alltoall)? 
♦  Should we force programmers to think more scalably 
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Physical and Virtual 
Topologies  

•  Important when MPI-1 defined 
♦  Hypercubes, meshes, trees, … 

•  MPI-1 attempted to define an abstraction for topologies with 
MPI_Cart_create/MPI_Graph_create.  MPI_Dims_create gives 
a specific decomposition.   
♦  None of these provide enough control to match needs 
♦  Attempts to both provide an abstraction and a specific behavior 

•  Result is not useful to anyone 

•  Today the situation is more complex 
♦  Multilevel nodes, more complex networks, routing methods 
♦  Performance irregularities common (compute resources unequally 

shared) 
•  Challenge: Define an effective means for programs to 

express their (dynamic) communication pattern and 
map that onto physical network resources 
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Faults and  
Programming Models  

•  “Give me what I want” 
♦  Add tension between “do what I want” and “have a well defined 

behavior for others” 
•  Note that it is provably impossible to reliably detect all kinds 

of faults 
♦  Node “down” may be node “really, really slow” 
♦  Some recent theory gets around this by defining a down node as one 

that doesn’t respond in time.  Problem then is in defining the threshold 
to quickly detect the truly failed but not abandon the merely slow. 

•  Hard to provide general solution that users like 
♦  Users like simplicity except when it gives them the wrong answer 

•  They tend to like simplicity until it gives them the wrong answer. 
♦  Users like models that are full of races and errors, as long as it doesn’t 

mess them up (as far as they can tell, and they often can’t in a 
scientific code, as errors are often proportional to Δt and reduce the 
accuracy of the computation) 

•  May be the wrong problem 
♦  Node “down” may be much less likely than “uncorrected but 

recoverable memory or data path error” 
♦  May not require the same corrective steps as node down 
♦  Programming model support for “node down” and “memory lost” likely 

very, very different 
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Faults and MPI 

•  Almost no standard interface required to 
survive unspecified problems 

•  What are the likely faults? 
♦  Note poor analysis of hardware / software faults in 

some studies – persistent faults can sometimes be 
identified, but transient faults (hardware upsets, 
timing/race issues in software) means source of 
many faults unknown 

•  Challenge: What are the likely faults and 
how will system software respond to 
them?  How should a programming model 
interact with the system?  How much 
should the programmer participate in 
managing different kinds of faults? 
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Library and Language 

•  No Library-based implementation is ever complete 
♦  You can always add routines, and give good reasons to do 

so 
♦  MPI-1, MPI-2 model 

•  Try for few concepts, provide all natural routines  
•  E.g., MPI_Issend 

♦  May be starting to lose the model 
•  MPI-3 Assumption: Threads are now and will be for the next 

5-10 years too inefficient to use in parallel programming 
-  Required to justify many new nonblocking routines, all of which 

could be implemented within a thread 
-  If only “now”, then not a valid justification to add something to a 

standard 
  But would be a justification to add something to a research 

platform 

•  It is too easy to add routines to a library 
♦  Costs: completeness, complexity, short term rather than 

long term 
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Library Challenges 

•  “Basic” Langauge datatypes 
♦  Used to be int, short, long, float, double, char 
♦  Now int32_t, wchar_t, …. Expected by programmers 

•  How can MPI keep up? 
♦  Nonblocking operations always an issue 

•  C’s pointers mostly keep compiler from optimizing away; 
Fortran actively exploits “knowing” about data lifetime 

•  There are language ideas to address this – e.g., Futures.  
How can these fit with MPI? 

•  C++ : What is the right level (this is the general 
“high level language” issue, and why MPI has succeeded 
by staying at a lower level) 
♦  Also adds inter-language issues.  What happens to a 

Fortran routine that calls a C++ routine that throws 
an exception? 
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Productivity 

•  Distributed Data Structures (DDS) essential 
for high productivity 
♦  Global Arrays one example 
♦  HPF, ZPL, …  

•  Challenge: Extend MPI to include 
elements of support to DDS  
♦  Sort of in datatypes – but too hard to use 

•  Challenge: Find better building blocks for 
distributed data structures 
♦  Why didn’t the support emerge? 
♦  Can libraries alone provide an effective solution? 
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Miscellaneous Comments 

•  Fatal mistake: Define semantics and then (tell 
someone to) make it fast 
♦  Performance requires choosing semantics that can 

be efficiently implemented 
♦  Good design matches performance requirements 

with usability (typically with compromises) 
•  Comparison: 

♦  Reference implementation: specification is precise 
enough to be implemented (with functionality but 
not necessarily with performance); identify 
inconsistencies between routines; 

•  Really good implementation can identify performance 
issues on the platform on which it is implemented 

♦  Paper implementation WRT expected future 
hardware capabilities: specification will permit access 
to performance features into the future 

•  Suitably careful paper implementation will ensure that the 
specification is precise enough to be implemented  
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Conclusions 

•  Careful design and consideration of the long 
term made MPI 1 and MPI 2 extraordinarily 
successful 

•  MPI started at about the same time as “attack 
of the killer micros”; enjoyed two decades of 
relative architectural stability 

•  The approaching end of CMOS has introduce 
great uncertainty and opportunity 

•  MPI can continue to evolve as parallel 
computing evolves, but only by being careful 
to take the long view and continue to exploit 
composition of programming models (hybrid 
programming) 


