
Simulation at Extreme Scale 

William Gropp 
www.cs.illinois.edu/~wgropp 



2 

Why Talk About Simulation?  

•  Big Data requires Big Computing 
•  Simulation both a consumer and producer of 

data 
•  Individual data objects may be huge  

♦  Really huge, as in Petabytes 

•  HPC systems are uniquely capable of 
processing huge data viewed as a single object 
♦  Compared even with large cluster systems 
♦  Key feature of HPC systems is very fast interconnect, 

making HPC system one big machine in a way that 
clouds are not. 
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HPC in 2011 

•  Sustained PF systems 
♦  K Computer (Fujitsu) at RIKEN, Kobe, Japan (2011) 
♦  “Sequoia” Blue Gene/Q at LLNL 
♦  NSF Track 1 “Blue Waters” at Illinois 
♦  Undoubtedly others (China, … ) 

•  Focus remains on FLOPS, even though systems are 
uniquely capable of handling big data 
♦  There has been a long history of ranking systems by 

FLOPS 
♦  Esp TOP500 but also HPCC, others, even Graph500 

•  NSF asked in 2006 for a sustained PetaFLOP system 
♦  Includes entire application, not just “the fast part” 
♦  Includes realistic I/O in time 
♦  Illinois won the award with “Blue Waters” 
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Molecular	  Science	   Weather	  &	  Climate	  Forecas5ng	  

Earth	  Science	  Astronomy	   Health	  

Astrophysics	  

Life	  Science	   Materials	  

Sustained Petascale computing will enable advances in a 
broad range of science and engineering disciplines 

Missing are true data-centric applications  
Have one? - http://www.nsf.gov/pubs/2008/nsf08529/nsf08529.htm 
or search for NSF PRAC (#1 with duckduckgo) 
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Blue Waters Science Team 
Characteristics 

Science Area Number 
of Teams 

Codes Structured 
Grids 

Unstructured 
Grids 

Dense 
Matrix 

Sparse 
Matrix 

N-
Body 

Monte 
Carlo 

FFT Significant 
I/O 

Climate and 
Weather 

3 CESM, GCRM, CM1, 
HOMME 

X X X X 

Plasmas/
Magnetosphere 

2 H3D(M), OSIRIS, Magtail/
UPIC 

X X X X 

Stellar 
Atmospheres and 
Supernovae 

2 PPM, MAESTRO, CASTRO, 
SEDONA 

X X X X 

Cosmology 2 Enzo, pGADGET X X X 

Combustion/
Turbulence 

1 PSDNS X X 

General Relativity 2 Cactus, Harm3D, LazEV X X 

Molecular Dynamics 4 AMBER, Gromacs, NAMD, 
LAMMPS 

X X X 

Quantum 
Chemistry 

2 SIAL, GAMESS, NWChem X X X X X 

Material Science 3 NEMOS, OMEN, GW, 
QMCPACK 

X X X X 

Earthquakes/
Seismology 

2 AWP-ODC, HERCULES, 
PLSQR, SPECFEM3D 

X X X X 

Quantum Chromo 
Dynamics 

1 Chroma, MILC, USQCD X X X X X 

Social Networks 1 EPISIMDEMICS 

Evolution 1 Eve 

Computer Science 1 X X X X X 

CUG - May 2, 2012 



6 

Heart of Blue Waters: Two New 
Chips 

AMD	  Interlagos	  
157	  GF	  peak	  performance	  

Features:	  
	  2.3-‐2.6	  GHz	  
	  8	  core	  modules,	  16	  threads	  
	  On-‐chip	  Caches	  
	   	  L1	  (I:8x64KB;	  D:16x16KB)	  
	   	  L2	  (8x2MB)	  
	  Memory	  Subsystem	  
	   	  Four	  memory	  channels	  
	   	  51.2	  GB/s	  bandwidth	  

NVIDIA	  Kepler	  
1,400	  GF	  peak	  performance	  

Features:	  
	  15	  Streaming	  multiprocessors	  (SMX)	  
	   	  SMX:	  192	  sp	  CUDA	  cores,	  64	  dp	   	  
	  units,	  32	  special	  function	  units	  
	   	  L1	  caches/shared	  mem	  (64KB,	  48KB)	  
	   	  L2	  cache	  (1536KB)	  
	  Memory	  subsystem	  
	  	   	  Six	  memory	  channels	  
	   	  180	  GB/s	  bandwidth	  	  
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Cray XE6 Nodes 

•  Dual-socket Node 
♦ Two AMD Interlagos 

chips 
•  16 core modules, 64 threads 
•  313 GFs peak performance 
•  64 GBs memory 
-  102 GB/sec memory 

bandwidth 

♦ Gemini Interconnect 
•  Router chip & network 

interface 
•  Injection Bandwidth (peak) 
-  9.6 GB/sec per direction 

HT3 
HT3 

Blue Waters contains 
22,640 Cray XE6 
compute nodes. 
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Cray XK7 Nodes 

•  Dual-socket Node 
♦ One AMD Interlagos chip 

•  32 GBs memory 
-  51.2 GB/s bandwidth 

♦ One NVIDIA Kepler chip 
•  1.4 TFs peak performance 
•  6 GBs GDDR5 memory 
-  180 GB/sec bandwidth 

♦ Gemini Interconnect 
•  Same as XE6 nodes	  

PCIe Gen2 

HT3 
HT3 

Blue Waters contains 
3,072 Cray XK7 
compute nodes. 
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Gemini Interconnect Network 
Blue Waters 

3D Torus Size 
23 x 24 x 24 

InfiniBand 

SMW GigE 

Login 
Servers 
Network(s) 

Boot Raid 
Fibre Channel 

Infiniband 

Compute Nodes 
Cray XE6 Compute 
Cray XK7 Accelerator 

Service Nodes 
Operating System 

Boot 
System Database 

Login Gateways 
Network 

Login/Network 

Lustre File System 
LNET Routers 

Y 

X 

Z 

Interconnect 
Network Lustre  

Service Nodes spread  
throughout the torus 
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Blue Waters Disk Subsystem 

•  Cray Sonexion 1600 
♦  Lustre file system 
♦  Reliable, Modular, Scalable 
♦  Fully integrated 

•  Servers 
•  Disk drives (Scalable Storage 

Units) 
•  QDR Infiniband switches 

♦  Hierarchical monitoring 

•  Blue Waters Disk Subsystem 
♦  Capacity: 34.6 PBs (raw), 25.9 

PBs (usable) 
♦  Bandwidth: >1 TB/s (sustained) 
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Blue Waters Archive System  

•  Spectra Logic T-Finity 
♦ Dual-arm robotic tape 

libraries 
♦ High availability and 

reliability, with built-in 
redundancy 

•  Blue Waters Archive 
♦ Capacity: 380 PBs 

(raw), 300 PBs (usable) 
♦ Bandwidth: 100 GB/sec 

(sustained) 
♦ RAIT for increased 

reliability 
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Blue Waters Computing System 

Sonexion: 26 PBs 

>1 TB/sec 

100 GB/sec 

10/40/100 Gb 
Ethernet Switch 

Spectra Logic: 300 PBs 

120+ Gb/sec 

WAN 

IB Switch 
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How Do We Make Effective 
Use of These Systems? 

•  Better use of our existing systems 
♦  Blue Waters will provide a sustained PF, but that 

typically requires ~10PF peak (BW over 11PF peak) 
•  Improve node performance 

♦  Make the compiler better 
♦  Give better code to the compiler 
♦  Match algorithms/data structures to real hardware 

•  Improve parallel performance/scalability 
•  Improve productivity of applications 

♦  Better tools and interoperable languages, not a (single) 
new programming language 

•  Improve algorithms wrt real hardware 
♦  Optimize for the real issues – data movement, power, 

resilience, …  
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Common Themes 

•  Multiple operations must be pending at any 
time 
♦  Asynchronous I/O, communication, even 

computation 
♦  “split” computations and communication 

•  Complex systems require adaptive approaches 
♦  “Autotuning” for likely choices, runtime optimization 

•  Operations must be on aggregates 
♦  CPU: “vectors” (GPU gangs/workers/vectors) 
♦  I/O: Collective, parallel I/O 

•  Example: Parallel collective I/O for a 
distributed data structure 
♦  mesh distributed across all nodes 
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Four Levels of Collective I/O 

15 

Fi
le

 S
pa

ce
 

Processes 3 2 1 0 

Level 0 

Level 1 

Level 2 

Level 3 
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Distributed Array Access: 
Write Bandwidth 

16 

128 procs 256 procs 256procs 128 procs 32 procs 

Array size: 512 x 512 x 512 

Thanks to Weikuan Yu, Wei-keng Liao, Bill Loewe, and Anthony Chan for these results. 

N
ot

e:
Lo

g 
S
ca

le
! 

1GB 
data 
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Better Algorithms and  
Data Structures 

•  Relying on compilers or other 
optimization tools (including autotuning) 
only offers the best performance with 
the given data structure and algorithm 
♦ That’s a big constraint 

•  Processors include hardware to address 
performance challenges 
♦  “Vector” function units 
♦ Memory latency hiding/prefetch 
♦ Atomic update features for shared memory 
♦ Etc.  
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Sparse Matrix-Vector Multiply 

Barriers to faster code 
•  “Standard” formats 

such as CSR do not 
meet requirements 
for prefetch or 
vectorization 

•  Modest changes to 
data structure 
enable both 
vectorization, 
prefetch, for 
20-80% 
improvement on P7  
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SCSR-
2 
SCSR-
4 
VSCSR
-2 
VSCSR
-4 

Prefetch results in Optimizing Sparse Data 
Structures for Matrix Vector Multiply  
http://hpc.sagepub.com/content/25/1/115 
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What Does This Mean For You? 

•  It is time to rethink data structures and 
algorithms to match the realities of memory 
architecture at all levels 
♦  Better match of algorithms to prefetch hardware is 

necessary to overcome memory performance 
barriers 

•  Similar issues come up with heterogeneous 
processing elements (someone needs to 
design for memory motion and concurrent and 
nonblocking data motion) and for file/data 
operations 
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Processes and SMP nodes 

•  HPC users typically believe that their code 
“owns” all of the cores all of the time 
♦  The reality is that was never true, but they did have 

all of the cores the same fraction of time when there 
was one core /node 

•  We can use a simple performance model to 
check the assertion and then use 
measurements to identify the problem and 
suggest fixes. 

•  Based on this, we can tune a state-of-the-art 
LU factorization…. 
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Happy Medium Scheduling 

Page 34

Best performance of CALU on multicore architectures

•   Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Page 34

Best performance of CALU on multicore architectures

•   Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Performance irregularities introduce load-
imbalance. 
Pure dynamic has significant overhead; pure 
static too much imbalance. 
Solution: combined static and dynamic 
scheduling 
 
Communication Avoiding LU factorization 
(CALU) algorithm, S. Donfack, L .Grigori, V. 
Kale, WG, IPDPS ‘12 

Scary Consequence: Static 
data decompositions will not 
work at scale. 
Corollary: programming 
models with static task 
models will not work at scale  
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Needs for Big Data and  
Extreme Scale Simulation 

•  Better use of existing resources 
♦  Performance-oriented programming 
♦  Dynamic management of resources at all levels 
♦  Embrace hybrid programming models (you have 

already if you use SSE/VSX/OpenMP/OpenAcc/…) 
•  Focus on results (end-to-end) 

♦  Adapt to available network bandwidth and latency 
♦  Exploit I/O capability (available space grew faster 

than processor performance!) 
•  Prepare for the future 

♦  Latency tolerant algorithms  
♦  Data-driven systems 
♦  Hybrid processor architectures 
♦  Fault tolerance 
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Thanks 
•  Torsten Hoefler 

♦  Performance modeling lead, 
Blue Waters; MPI datatype 

•  David Padua, Maria 
Garzaran, Saeed Maleki 
♦  Compiler vectorization 

•  Dahai Guo 
♦  Streamed format exploiting 

prefetch, vectorization, GPU 
•  Vivek Kale 

♦  SMP work partitioning 
•  Hormozd Gahvari 

♦  AMG application modeling 
•  Marc Snir and William 

Kramer 
♦  Performance model 

advocates 

•  Abhinav Bhatele 
♦  Process/node mapping 

•  Van Bui 
♦  Performance model-based 

evaluation of programming 
models 

•  Funding provided by: 
♦  Blue Waters project (State of 

Illinois and the University of 
Illinois) 

♦  Department of Energy, Office of 
Science 

♦  Sandia National Laboratories 
♦  National Science Foundation 
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