Simulation at Extreme Scale

William Gropp <u>www.cs.illinois.edu/~wgropp</u>

Why Talk About Simulation?

- Big Data requires Big Computing
- Simulation both a consumer and producer of data
- Individual data objects may be huge
 - Really huge, as in Petabytes
- HPC systems are uniquely capable of processing huge data viewed as a single object
 - Compared even with large cluster systems
 - Key feature of HPC systems is very fast interconnect, making HPC system one big machine in a way that clouds are not.

HPC in 2012

- <u>Sustained</u> PF systems
 - K Computer (Fujitsu) at RIKEN, Kobe, Japan (2011)
 - "Sequoia" Blue Gene/Q at LLNL
 - NSF Track 1 "Blue Waters" at Illinois
 - Undoubtedly others (China, ...)
- Focus remains on FLOPS, even though systems are uniquely capable of handling big data
 - There has been a long history of ranking systems by FLOPS
 - Esp TOP500 but also HPCC, others, even Graph500
- NSF asked in 2006 for a *sustained* PetaFLOP system
 - Includes entire application, not just "the fast part"
 - Includes realistic I/O in time
 - Illinois won the award with "Blue Waters"

Sustained Petascale computing will enable advances in a broad range of science and engineering disciplines

Molecular Science

Weather & Climate Forecasting

Astrophysics

Missing are true data-centric applications Have one? - http://www.nsf.gov/pubs/2008/nsf08529/nsf08529.htm or search for NSF PRAC (#1 with duckduckgo) PARALLEL@ILLINOIS

Blue Waters Science Team Characteristics

Science Area	Number of Teams	Codes	Structured Grids	Unstructured Grids	Dense Matrix	Sparse Matrix	N- Body	Monte Carlo	FFT	S gnifica ti I/O	
Climate and Weather	3	CESM, GCRM, CM1, HOMME	x	x		X		X			
Plasmas/ Magnetosphere	2	H3D(M), OSIRIS, Magtail/ UPIC	x				X		x	х	
Stellar Atmospheres and Supernovae	2	PPM, MAESTRO, CASTRO, SEDONA	x			x		X		x	
Cosmology	2	Enzo, pGADGET	X			X	x				
Combustion/ Turbulence	1	PSDNS	x						X		
General Relativity	2	Cactus, Harm3D, LazEV	x			X					
Molecular Dynamics	4	AMBER, Gromacs, NAMD, LAMMPS			X		x		x		I
Quantum Chemistry	2	SIAL, GAMESS, NWChem			X	X	X	x		х	
Material Science	3	NEMOS, OMEN, GW, QMCPACK			X	X	X	X			
Earthquakes/ Seismology	2	AWP-ODC, HERCULES, PLSQR, SPECFEM3D	x	x			x			x	Γ
Quantum Chromo Dynamics	1	Chroma, MILC, USQCD	x		X	X	х		x		
Social Networks	1	EPISIMDEMICS									
Evolution	1	Eve									
Computer Science	1			X	x	x			X	x	
1867				-			PAR/	\ F (<u>all</u>		ς

Heart of Blue Waters: Two New Chips

AMD Interlagos 157 GF peak performance

Features:

2.3-2.6 GHz 8 core modules, 16 threads On-chip Caches L1 (I:8x64KB; D:16x16KB) L2 (8x2MB) Memory Subsystem Four memory channels 51.2 GB/s bandwidth

1,400 GF peak performance

Features:

15 Streaming multiprocessors (SMX) SMX: 192 sp CUDA cores, 64 dp
units, 32 special function units L1 caches/shared mem (64KB, 48KB) L2 cache (1536KB)
Memory subsystem Six memory channels 180 GB/s bandwidth

Cray XE6 Nodes

Blue Waters contains 22,640 Cray XE6 compute nodes.

- Dual-socket Node
 - Two AMD Interlagos chips
 - 16 core modules, 64 threads
 - 313 GFs peak performance
 - 64 GBs memory
 - 102 GB/sec memory bandwidth
 - ♦ Gemini Interconnect
 - Router chip & network interface
 - Injection Bandwidth (peak)
 - 9.6 GB/sec per direction

Cray XK7 Nodes

Blue Waters contains 3,072 Cray XK7 compute nodes.

Dual-socket Node

- One AMD Interlagos chip
 - 32 GBs memory
 - 51.2 GB/s bandwidth
- One NVIDIA Kepler chip
 - 1.4 TFs peak performance
 - 6 GBs GDDR5 memory
 - 180 GB/sec bandwidth
- Gemini Interconnect
 - Same as XE6 nodes

Gemini Interconnect Network

Blue Waters Disk Subsystem

- Cray Sonexion 1600
 - Lustre file system
 - Reliable, Modular, Scalable
 - Fully integrated
 - Servers
 - Disk drives (Scalable Storage Units)
 - QDR Infiniband switches
 - Hierarchical monitoring
- Blue Waters Disk Subsystem
 - Capacity: 34.6 PBs (raw), 25.9 PBs (usable)
 - Bandwidth: >1 TB/s (sustained)

Blue Waters Archive System

• Spectra Logic T-Finity

- Dual-arm robotic tape libraries
- High availability and reliability, with built-in redundancy

• Blue Waters Archive

- Capacity: 380 PBs (raw), 300 PBs (usable)
- Bandwidth: 100 GB/sec (sustained)

 RAIT for increased reliability

Blue Waters Computing System

How Do We Make Effective Use of These Systems?

- Better use of our existing systems
 - Blue Waters will provide a sustained PF, but that typically requires ~10PF peak (BW over 11PF peak)
- Improve node performance
 - Make the compiler better
 - Give better code to the compiler
 - Match algorithms/data structures to real hardware
- Improve parallel performance/scalability
- Improve productivity of applications
 - Better tools and interoperable languages, not a (single) new programming language
- Improve algorithms wrt real hardware
 - Optimize for the real issues data movement, power, resilience, ...
 PARALLEL@ILLINOIS

Common Themes

- Multiple operations must be pending at any time
 - Asynchronous I/O, communication, even computation
 - "split" computations and communication
- Complex systems require adaptive approaches

14

"Autotuning" for likely choices, runtime optimization

- Operations must be on aggregates
 - CPU: "vectors" (GPU gangs/workers/vectors)
 - ♦ I/O: Collective, parallel I/O
- Example: Parallel collective I/O for a distributed data structure
 - mesh distributed across all nodes

Four Levels of Collective I/O

Distributed Array Access: Write Bandwidth

Thanks to Weikuan Yu, Wei-keng Liao, Bill Loewe, and Anthony Chan for these results. 16 PARALLEL@ILLINÖIS

Better Algorithms and Data Structures

- Relying on compilers or other optimization tools (including autotuning) only offers the best performance with the given data structure and algorithm
 - That's a big constraint
- Processors include hardware to address performance challenges
 - "Vector" function units
 - Memory latency hiding/prefetch
 - Atomic update features for shared memory

• Etc.

Sparse Matrix-Vector Multiply

Barriers to faster code

- "Standard" formats such as CSR do not meet requirements for prefetch or vectorization
- Modest changes to data structure enable both vectorization, prefetch, for 20-80% improvement on P7

Prefetch results in *Optimizing Sparse Data Structures for Matrix Vector Multiply* http://hpc.sagepub.com/content/25/1/115 18 PARALLEL@ILLINOIS

What Does This Mean For You?

- It is time to rethink data structures and algorithms to match the realities of memory architecture at all levels
 - Better match of algorithms to prefetch hardware is necessary to overcome memory performance barriers
- Similar issues come up with heterogeneous processing elements (someone needs to *design* for memory motion and concurrent and nonblocking data motion) and for file/data operations

Processes and SMP nodes

- HPC users typically believe that their code "owns" all of the cores all of the time
 - The reality is that was never true, but they did have all of the cores the same fraction of time when there was one core /node
- We can use a simple performance model to check the assertion and then use measurements to identify the problem and suggest fixes.
- Based on this, we can tune a state-of-the-art LU factorization....

Happy Medium Scheduling

time Scary Consequence: Static data decompositions *will not work at scale.*

Corollary: programming models with static task models will not work at scale Performance irregularities introduce loadimbalance.

Pure dynamic has significant overhead; pure static too much imbalance. Solution: combined static and dynamic scheduling

Communication Avoiding LU factorization (CALU) algorithm, S. Donfack, L .Grigori, V. Kale, WG, IPDPS '12

Needs for Big Data and Extreme Scale Simulation

- Better use of existing resources
 - Performance-oriented programming
 - Dynamic management of resources at all levels
 - Embrace hybrid programming models (you have already if you use SSE/VSX/OpenMP/OpenAcc/...)
- Focus on results (end-to-end)
 - Adapt to available network bandwidth and latency
 - Exploit I/O capability (available space grew faster than processor performance!)
- Prepare for the future
 - Latency tolerant algorithms
 - Data-driven systems
 - Hybrid processor architectures
 - Fault tolerance

Thanks

- Torsten Hoefler
 - Performance modeling lead, Blue Waters; MPI datatype
- David Padua, Maria Garzaran, Saeed Maleki
 - Compiler vectorization
- Dahai Guo
 - Streamed format exploiting prefetch, vectorization, GPU
- Vivek Kale
 - SMP work partitioning
- Hormozd Gahvari
 - AMG application modeling
- Marc Snir and William Kramer
 - Performance model advocates

- Abhinav Bhatele
 - Process/node mapping
- Van Bui
 - Performance model-based evaluation of programming models
- Funding provided by:
 - Blue Waters project (State of Illinois and the University of Illinois)
 - Department of Energy, Office of Science
 - Sandia National Laboratories
 - National Science Foundation

November 10-16, 2012

SC13 Denver, 2013

ACM Special Interest Group on High Performance Computing

