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Why Talk About Simulation?

e Big Data requires Big Computing
e Simulation both a consumer and producer of
data

e Individual data objects may be huge
¢ Really huge, as in Petabytes

e HPC systems are uniquely capable of
processing huge data viewed as a single object
¢ Compared even with large cluster systems

¢ Key feature of HPC systems is very fast interconnect,
making HPC system one big machine in a way that
clouds are not.
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HPC in 2012
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Sustained PF systems

¢ K Computer (Fujitsu) at RIKEN, Kobe, Japan (2011)
¢ “"Sequoia” Blue Gene/Q at LLNL
¢ NSF Track 1 "Blue Waters” at Illinois
¢ Undoubtedly others (China, ... )
Focus remains on FLOPS, even though systems are
uniquely capable of handling big data

¢ There has been a long history of ranking systems by
FLOPS

¢ Esp TOP500 but also HPCC, others, even Graph500
NSF asked in 2006 for a sustained PetaFLOP system
¢ Includes entire application, not just “the fast part”

¢ Includes realistic I/0O in time

¢ Illinois won the award with “"Blue Waters”
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Sustained Petascale computing will enable advances in a
broad range of science and engineering disciplines

Molecular Science Weather & Climate Forecasting Astrophysics

Matrals

Missing are true data-centric applications
Have one? - http://www.nsf.gov/pubs/2008/nsf08529/nsf08529.htm
or search for NSF PRAC (#1 wigh duckduckgo) PARALLEL@|LLINOIS




Blue Waters Science Team
Characteristics

Science Area

Climate and
Weather

Plasmas/
Magnetosphere

Stellar
Atmospheres and
Supernovae

Cosmology

Combustion/
Turbulence

General Relativity

Molecular Dynamics

Quantum
Chemistry

Material Science

Earthquakes/
Seismology

Quantum Chromo
Dynamics

Social Networks

Evolution

Computer Science
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Number

of Teams

Structured

Grids

CESM, GCRM, CM1, X
HOMME

H3D(M), OSIRIS, Magtail/ X
UPIC

PPM, MAESTRO, CASTRO, X
SEDONA

Enzo, pGADGET X
PSDNS X
Cactus, Harm3D, LazEV X

AMBER, Gromacs, NAMD,
LAMMPS

SIAL, GAMESS, NWChem
NEMOS, OMEN, GW,
QMCPACK

AWP-ODC, HERCULES, X
PLSQR, SPECFEM3D

Chroma, MILC, USQCD X

EPISIMDEMICS

Eve

Unstructured
Grids

Dense Sparse N- Monte
Matrix Matrix Body (of- 14 [)
X X

X

PARALLEL

Significaat
I/0
X X
X
X
X
X
X
X
X X

ILLINOIS



Heart of Blue Waters: Two New
Chips

AMD Interlagos NVIDIA Kepler
157 GF peak performance 1,400 GF peak performance
Features: Features:
2.3-2.6 GHz 15 Streaming multiprocessors (SMX)
8 core modules, 16 threads SMX: 192 sp CUDA cores, 64 dp
On-chip Caches units, 32 special function units
L1 (I:8x64KB; D:16x16KB) L1 caches/shared mem (64KB, 48KB)
L2 (8x2MB) L2 cache (1536KB)
Memory Subsystem Memory subsystem
Four memory channels Six memory channels
51.2 GB/s bandwidth 180 GB/s bandwidth
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Cray XE6 Nodes <=as
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 Dual-socket Node

¢ Two AMD Interlagos
chips

opteron 7 * 16 core modules, 64 threads

* 313 GFs peak performance

SEIN , 64 GBs memory

- 102 GB/sec memory
bandwidth

¢ Gemini Interconnect
* Router chip & network

Blue Waters contains interface
22,640 Cray XE6 e Injection Bandwidth (peak)
compute nodes. — 9.6 GB/sec per direction
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Optero)

Blue Waters contains
3,072 Cray XK7
compute nodes.

 Dual-socket Node

¢ One AMD Interlagos chip

* 32 GBs memory
— 51.2 GB/s bandwidth

¢ One NVIDIA Kepler chip

* 1.4 TFs peak performance

* 6 GBs GDDRS5 memory
— 180 GB/sec bandwidth

¢ Gemini Interconnect

e Same as XE6 nodes

PARALLEL@ILLINOIS



Gemini Interconnect Network
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Blue Waters Disk Subsystem

e Cray Sonexion 1600
¢ Lustre file system
¢ Reliable, Modular, Scalable

¢ Fully integrated
e Servers

e Disk drives (Scalable Storage
Units)

e QDR Infiniband switches
¢ Hierarchical monitoring

e Blue Waters Disk Subsystem

¢ Capacity: 34.6 PBs (raw), 25.9
PBs (usable)

¢ Bandwidth: >1 TB/s (sustained)
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Blue Waters Archive System

e Spectra Logic T-Finity
¢ Dual-arm robotic tape
libraries

¢ High availability and
reliability, with built-in
redundancy

e Blue Waters Archive

¢ Capacity: 380 PBs
(raw), 300 PBs (usable)

¢ Bandwidth: 100 GB/sec
(sustained)

J§ ¢ RAIT for increased
reliability " PARALLEL@|LLINOIS




Blue Waters Computing System
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Spectra Logic: 300 PBs Sonexion: 26 PBs
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How Do We Make Effective
Use of These Systems?

I
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Better use of our existing systems

¢ Blue Waters will provide a sustained PF, but that
typically requires ~10PF peak (BW over 11PF peak)

Improve node performance

¢ Make the compiler better
¢ Give better code to the compiler
¢ Match algorithms/data structures to real hardware

Improve parallel performance/scalability

Improve productivity of applications

¢ Better tools and interoperable languages, not a (single)
new programming language

Improve algorithms wrt real hardware
¢ Optimize for the real issues — data movement, power,

resilience, ... . PARALLEL@ILLINOIS



Common Themes

e Multiple operations must be pending at any
time
¢ Asynchronous I/O, communication, even
computation
¢ "split” computations and communication

e Complex systems require adaptive approaches
¢ “Autotuning” for likely choices, runtime optimization
e Operations must be on aggregates
¢ CPU: “vectors” (GPU gangs/workers/vectors)
¢ I/0O: Collective, parallel I/O
e Example: Parallel collective I/O for a
][ distributed data structure

¢ mesh distributed across all nodes
14 PARALLEL@ILLINOIS




Four Levels of Collective I/0

File Space
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Distributed Array Access:
Write Bandwidth

Array size: 512 x 512 x 512
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j Thanks to Weikuan Yu, Wei-keng Liao, Bill Loewe, and Anthony Chan for these results.
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Better Algorithms and
Data Structures

e Relying on compilers or other
optimization tools (including autotuning)
only offers the best performance with
the given data structure and algorithm

¢ That's a big constraint

e Processors include hardware to address
performance challenges
¢ “Vector” function units
¢ Memory latency hiding/prefetch
¢ Atomic update features for shared memory

][ ¢ Etc.
o PARALLEL@ILLINOIS



Sparse Matrix-Vector Multiply
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Barriers to faster code

e "Standard” formats
such as CSR do not
meet requirements
for prefetch or
vectorization

e Modest changes to
data structure
enable both
vectorization,
prefetch, for
20-80%
iImprovement on P/
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Prefetch results in Optimizing Sparse Data
Structures for Matrix Vector Multiply
http://hpc.sagepub.com/content/25/1/115
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What Does This Mean For You?

e It is time to rethink data structures and
algorithms to match the realities of memory
architecture at all levels

¢ Better match of algorithms to prefetch hardware is
necessary to overcome memory performance
barriers

e Similar issues come up with heterogeneous

processing elements (someone needs to

design for memory motion and concurrent and

nonblocking data motion) and for file/data

operations

" PARALLEL@ILLINOIS



Processes and SMP nodes

e HPC users typically believe that their code
“owns” all of the cores all of the time

¢ The reality is that was never true, but they did have
all of the cores the same fraction of time when there
was one core /node
e We can use a simple performance model to
check the assertion and then use
measurements to identify the problem and
suggest fixes.

e Based on this, we can tune a state-of-the-art
LU factorization....

% PARALLEL@ILLINOIS



Happy Medium Scheduling

Static scheduling

TREmI L Performance irregularities introduce load-
imbalance.

Pure dynamic has significant overhead; pure
static too much imbalance.

Solution: combined static and dynamic

scheduling

Communication Avoiding LU factorization
(CALU) algorithm, S. Donfack, L .Grigori, V.
Kale, WG, IPDPS ‘12

CALU performance on AMD 48 cores
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models will not work at scale . PARALLEL@ILLINOIS
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Needs for Big Data and
Extreme Scale Simulation

e Better use of existing resources
¢ Performance-oriented programming
¢ Dynamic management of resources at all levels
¢ Embrace hybrid programming models (you have
already if you use SSE/VSX/OpenMP/OpenAcc/...)
e Focus on results (end-to-end)
¢ Adapt to available network bandwidth and latency
¢ Exploit I/O capability (available space grew faster
than processor performance!)
e Prepare for the future
¢ Latency tolerant algorithms
¢ Data-driven systems
][ ¢ Hybrid processor architectures

1567 ¢ Fault tolerance ’ PARALLEL@ILLINOIS



Thanks

Torsten Hoefler e Abhinav Bhatele
¢ Performance modeling lead, ¢ Process/node mapping
Blue Waters; MPI datatype e Van Bui
David Padua, Maria ¢ Performance model-based
Garzaran, Saeed Maleki evaluation of programming
¢ Compiler vectorization models
Dahai Guo e Funding provided by:
¢ Streamed format exploiting ¢ Blue Waters project (State of
prefetch, vectorization, GPU Illlinois and the University of
. Illinois)
Vivek Kale :
L ¢ Department of Energy, Office of
¢ SMP work partitioning Science
Hormozd Gahvari ¢ Sandia National Laboratories
¢ AMG application modeling ¢ National Science Foundation
Marc Snir and William
Kramer
¢ Performance model
advocates
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Salt Lake City, Utah
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ACM Special Interest Group on High Performance Computing
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