
Simulation at Extreme Scale

William Gropp
www.cs.illinois.edu/~wgropp

2

Why Talk About Simulation?

•  Big Data requires Big Computing
•  Simulation both a consumer and producer of

data
•  Individual data objects may be huge

♦  Really huge, as in Petabytes

•  HPC systems are uniquely capable of
processing huge data viewed as a single object
♦  Compared even with large cluster systems
♦  Key feature of HPC systems is very fast interconnect,

making HPC system one big machine in a way that
clouds are not.

3

HPC in 2011

•  Sustained PF systems
♦  K Computer (Fujitsu) at RIKEN, Kobe, Japan (2011)
♦  “Sequoia” Blue Gene/Q at LLNL
♦  NSF Track 1 “Blue Waters” at Illinois
♦  Undoubtedly others (China, …)

•  Focus remains on FLOPS, even though systems are
uniquely capable of handling big data
♦  There has been a long history of ranking systems by

FLOPS
♦  Esp TOP500 but also HPCC, others, even Graph500

•  NSF asked in 2006 for a sustained PetaFLOP system
♦  Includes entire application, not just “the fast part”
♦  Includes realistic I/O in time
♦  Illinois won the award with “Blue Waters”

4

Molecular	 Science	 Weather	 &	 Climate	 Forecas5ng	

Earth	 Science	 Astronomy	 Health	

Astrophysics	

Life	 Science	 Materials	

Sustained Petascale computing will enable advances in a
broad range of science and engineering disciplines

Missing are true data-centric applications
Have one? - http://www.nsf.gov/pubs/2008/nsf08529/nsf08529.htm
or search for NSF PRAC (#1 with duckduckgo)

5

Blue Waters Science Team
Characteristics

Science Area Number
of Teams

Codes Structured
Grids

Unstructured
Grids

Dense
Matrix

Sparse
Matrix

N-
Body

Monte
Carlo

FFT Significant
I/O

Climate and
Weather

3 CESM, GCRM, CM1,
HOMME

X X X X

Plasmas/
Magnetosphere

2 H3D(M), OSIRIS, Magtail/
UPIC

X X X X

Stellar
Atmospheres and
Supernovae

2 PPM, MAESTRO, CASTRO,
SEDONA

X X X X

Cosmology 2 Enzo, pGADGET X X X

Combustion/
Turbulence

1 PSDNS X X

General Relativity 2 Cactus, Harm3D, LazEV X X

Molecular Dynamics 4 AMBER, Gromacs, NAMD,
LAMMPS

X X X

Quantum
Chemistry

2 SIAL, GAMESS, NWChem X X X X X

Material Science 3 NEMOS, OMEN, GW,
QMCPACK

X X X X

Earthquakes/
Seismology

2 AWP-ODC, HERCULES,
PLSQR, SPECFEM3D

X X X X

Quantum Chromo
Dynamics

1 Chroma, MILC, USQCD X X X X X

Social Networks 1 EPISIMDEMICS

Evolution 1 Eve

Computer Science 1 X X X X X

CUG - May 2, 2012

6

Heart of Blue Waters: Two New
Chips

AMD	 Interlagos	
157	 GF	 peak	 performance	

Features:	
	 2.3-‐2.6	 GHz	
	 8	 core	 modules,	 16	 threads	
	 On-‐chip	 Caches	
	 	 L1	 (I:8x64KB;	 D:16x16KB)	
	 	 L2	 (8x2MB)	
	 Memory	 Subsystem	
	 	 Four	 memory	 channels	
	 	 51.2	 GB/s	 bandwidth	

NVIDIA	 Kepler	
1,400	 GF	 peak	 performance	

Features:	
	 15	 Streaming	 multiprocessors	 (SMX)	
	 	 SMX:	 192	 sp	 CUDA	 cores,	 64	 dp	 	
	 units,	 32	 special	 function	 units	
	 	 L1	 caches/shared	 mem	 (64KB,	 48KB)	
	 	 L2	 cache	 (1536KB)	
	 Memory	 subsystem	
	 	 	 Six	 memory	 channels	
	 	 180	 GB/s	 bandwidth	 	

7

Cray XE6 Nodes

•  Dual-socket Node
♦ Two AMD Interlagos

chips
•  16 core modules, 64 threads
•  313 GFs peak performance
•  64 GBs memory
-  102 GB/sec memory

bandwidth

♦ Gemini Interconnect
•  Router chip & network

interface
•  Injection Bandwidth (peak)
-  9.6 GB/sec per direction

HT3
HT3

Blue Waters contains
22,640 Cray XE6
compute nodes.

8

Cray XK7 Nodes

•  Dual-socket Node
♦ One AMD Interlagos chip

•  32 GBs memory
-  51.2 GB/s bandwidth

♦ One NVIDIA Kepler chip
•  1.4 TFs peak performance
•  6 GBs GDDR5 memory
-  180 GB/sec bandwidth

♦ Gemini Interconnect
•  Same as XE6 nodes	

PCIe Gen2

HT3
HT3

Blue Waters contains
3,072 Cray XK7
compute nodes.

9

Gemini Interconnect Network
Blue Waters

3D Torus Size
23 x 24 x 24

InfiniBand

SMW GigE

Login
Servers
Network(s)

Boot Raid
Fibre Channel

Infiniband

Compute Nodes
Cray XE6 Compute
Cray XK7 Accelerator

Service Nodes
Operating System

Boot
System Database

Login Gateways
Network

Login/Network

Lustre File System
LNET Routers

Y

X

Z

Interconnect
Network Lustre

Service Nodes spread
throughout the torus

10

Blue Waters Disk Subsystem

•  Cray Sonexion 1600
♦  Lustre file system
♦  Reliable, Modular, Scalable
♦  Fully integrated

•  Servers
•  Disk drives (Scalable Storage

Units)
•  QDR Infiniband switches

♦  Hierarchical monitoring

•  Blue Waters Disk Subsystem
♦  Capacity: 34.6 PBs (raw), 25.9

PBs (usable)
♦  Bandwidth: >1 TB/s (sustained)

11

Blue Waters Archive System

•  Spectra Logic T-Finity
♦ Dual-arm robotic tape

libraries
♦ High availability and

reliability, with built-in
redundancy

•  Blue Waters Archive
♦ Capacity: 380 PBs

(raw), 300 PBs (usable)
♦ Bandwidth: 100 GB/sec

(sustained)
♦ RAIT for increased

reliability

12

Blue Waters Computing System

Sonexion: 26 PBs

>1 TB/sec

100 GB/sec

10/40/100 Gb
Ethernet Switch

Spectra Logic: 300 PBs

120+ Gb/sec

WAN

IB Switch

13

How Do We Make Effective
Use of These Systems?

•  Better use of our existing systems
♦  Blue Waters will provide a sustained PF, but that

typically requires ~10PF peak (BW over 11PF peak)
•  Improve node performance

♦  Make the compiler better
♦  Give better code to the compiler
♦  Match algorithms/data structures to real hardware

•  Improve parallel performance/scalability
•  Improve productivity of applications

♦  Better tools and interoperable languages, not a (single)
new programming language

•  Improve algorithms wrt real hardware
♦  Optimize for the real issues – data movement, power,

resilience, …

14

Common Themes

•  Multiple operations must be pending at any
time
♦  Asynchronous I/O, communication, even

computation
♦  “split” computations and communication

•  Complex systems require adaptive approaches
♦  “Autotuning” for likely choices, runtime optimization

•  Operations must be on aggregates
♦  CPU: “vectors” (GPU gangs/workers/vectors)
♦  I/O: Collective, parallel I/O

•  Example: Parallel collective I/O for a
distributed data structure
♦  mesh distributed across all nodes

15

Four Levels of Collective I/O

15

Fi
le

 S
pa

ce

Processes 3 2 1 0

Level 0

Level 1

Level 2

Level 3

16

Distributed Array Access:
Write Bandwidth

16

128 procs 256 procs 256procs 128 procs 32 procs

Array size: 512 x 512 x 512

Thanks to Weikuan Yu, Wei-keng Liao, Bill Loewe, and Anthony Chan for these results.

N
ot

e:
Lo

g
S
ca

le
!

1GB
data

17

Better Algorithms and
Data Structures

•  Relying on compilers or other
optimization tools (including autotuning)
only offers the best performance with
the given data structure and algorithm
♦ That’s a big constraint

•  Processors include hardware to address
performance challenges
♦  “Vector” function units
♦ Memory latency hiding/prefetch
♦ Atomic update features for shared memory
♦ Etc.

18

Sparse Matrix-Vector Multiply

Barriers to faster code
•  “Standard” formats

such as CSR do not
meet requirements
for prefetch or
vectorization

•  Modest changes to
data structure
enable both
vectorization,
prefetch, for
20-80%
improvement on P7

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Pe
rf

or
m

an
ce

 R
at

io

SCSR-
2
SCSR-
4
VSCSR
-2
VSCSR
-4

Prefetch results in Optimizing Sparse Data
Structures for Matrix Vector Multiply
http://hpc.sagepub.com/content/25/1/115

19

What Does This Mean For You?

•  It is time to rethink data structures and
algorithms to match the realities of memory
architecture at all levels
♦  Better match of algorithms to prefetch hardware is

necessary to overcome memory performance
barriers

•  Similar issues come up with heterogeneous
processing elements (someone needs to
design for memory motion and concurrent and
nonblocking data motion) and for file/data
operations

20

Processes and SMP nodes

•  HPC users typically believe that their code
“owns” all of the cores all of the time
♦  The reality is that was never true, but they did have

all of the cores the same fraction of time when there
was one core /node

•  We can use a simple performance model to
check the assertion and then use
measurements to identify the problem and
suggest fixes.

•  Based on this, we can tune a state-of-the-art
LU factorization….

21

Happy Medium Scheduling

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Performance irregularities introduce load-
imbalance.
Pure dynamic has significant overhead; pure
static too much imbalance.
Solution: combined static and dynamic
scheduling

Communication Avoiding LU factorization
(CALU) algorithm, S. Donfack, L .Grigori, V.
Kale, WG, IPDPS ‘12

Scary Consequence: Static
data decompositions will not
work at scale.
Corollary: programming
models with static task
models will not work at scale

22

Needs for Big Data and
Extreme Scale Simulation

•  Better use of existing resources
♦  Performance-oriented programming
♦  Dynamic management of resources at all levels
♦  Embrace hybrid programming models (you have

already if you use SSE/VSX/OpenMP/OpenAcc/…)
•  Focus on results (end-to-end)

♦  Adapt to available network bandwidth and latency
♦  Exploit I/O capability (available space grew faster

than processor performance!)
•  Prepare for the future

♦  Latency tolerant algorithms
♦  Data-driven systems
♦  Hybrid processor architectures
♦  Fault tolerance

23

Thanks
•  Torsten Hoefler

♦  Performance modeling lead,
Blue Waters; MPI datatype

•  David Padua, Maria
Garzaran, Saeed Maleki
♦  Compiler vectorization

•  Dahai Guo
♦  Streamed format exploiting

prefetch, vectorization, GPU
•  Vivek Kale

♦  SMP work partitioning
•  Hormozd Gahvari

♦  AMG application modeling
•  Marc Snir and William

Kramer
♦  Performance model

advocates

•  Abhinav Bhatele
♦  Process/node mapping

•  Van Bui
♦  Performance model-based

evaluation of programming
models

•  Funding provided by:
♦  Blue Waters project (State of

Illinois and the University of
Illinois)

♦  Department of Energy, Office of
Science

♦  Sandia National Laboratories
♦  National Science Foundation

24

