
Algorithms and Software in
the Post-Petascale Era

William Gropp
www.cs.illinois.edu/~wgropp

2

Extrapolation is Risky

•  1989 – T – 23 years
♦  Intel introduces 486DX
♦ Eugene Brooks writes “Attack of the Killer

Micros”
♦ 4 years before TOP500
♦ Top systems at about 2 GF Peak

•  1999 – T – 13 years
♦ NVIDIA introduces its GPU (GeForce 256)

•  Programming GPUs still a challenge 13 years later

♦ Top system – ASCI Red, 9632 cores, 3.2 TF
Peak (about 3 GPUs in 2012)

♦ MPI is 7 years old

3

HPC Today

•  High(est)-End systems
♦  1 PF (1015 Ops/s) achieved on a few “peak friendly”

applications
♦  Much worry about scalability, how we’re going to get to an

ExaFLOPS
♦  Systems are all oversubscribed

•  DOE INCITE awarded almost 900M processor hours in 2009;
1600M-1700M hours in 2010-2012; (big jump planned in 2013
– over 5B hours)

•  NSF PRAC awards for Blue Waters similarly competitive

•  Widespread use of clusters, many with accelerators;
cloud computing services
♦  These are transforming the low and midrange

•  Laptops (far) more powerful than the supercomputers I
used as a graduate student

4

HPC in 2011
•  Sustained PF systems

♦  K Computer (Fujitsu) at RIKEN, Kobe, Japan (2011)
♦  “Sequoia” Blue Gene/Q at LLNL
♦  NSF Track 1 “Blue Waters” at Illinois
♦  Undoubtedly others (China, …)

•  Still programmed with MPI and MPI+other (e.g., MPI
+OpenMP or MPI+OpenCL/CUDA or MPI+OpenACC)
♦  But in many cases using toolkits, libraries, and other

approaches
•  And not so bad – applications will be able to run when the

system is turned on
♦  Replacing MPI will require some compromise – e.g.,

domain specific (higher-level but less general)
•  Lots of evidence that fully automatic solutions won’t work

5

End of an Era

•  IN THE LONG TERM (~2017 THROUGH 2024)
“While power consumption is an urgent
challenge, its leakage or static component will
become a major industry crisis in the long
term, threatening the survival of CMOS
technology itself, just as bipolar technology
was threatened and eventually disposed of
decades ago.” [ITRS 2009]

•  Unlike the situation at the end of the bipolar
era, no technology (i.e., CMOS) is waiting in
the wings.

6

The Post-Moore Era

•  Scaling is ending
♦  Voltage scaling ended in 2004 (leakage current)
♦  Feature scaling will end in 202x (not enough atoms)
♦  Scaling rate will slow down in the next few years
♦  Continued scaling in the next decade will need a

sequence of (small) miracles (new materials, new
structures, new manufacturing technologies)

☛ Compute Efficiency becomes a paramount
concern
♦  More computations per joule
♦  More computations per transistor

7

HPC in 2018-2020

•  Exascale systems are likely to have
♦  Extreme power constraints, leading to

•  Clock Rates similar to today’s systems
•  A wide-diversity of simple computing elements (simple for

hardware but complex for software)
•  Memory per core and per FLOP will be much smaller
•  Moving data anywhere will be expensive (time and power)

♦  Faults that will need to be detected and managed
•  Some detection may be the job of the programmer, as

hardware detection takes power
♦  Extreme scalability and performance irregularity

•  Performance will require enormous concurrency
•  Performance is likely to be variable

-  Simple, static decompositions will not scale
♦  A need for latency tolerant algorithms and

programming
•  Memory, processors will be 100s to 10000s of cycles away.

Waiting for operations to complete will cripple performance

2020-2023

8

Algorithms and Applications
Will Change

•  Applications need to become more
dynamic, more integrated

•  System software must work with
application:
♦ Code complexity (Autotuning)
♦ Dynamic resources (no simple PGAS)
♦  Latency hiding (Nonblocking algorithms,

interfaces (including futures))
♦ Resource sharing (more performance

information, performance asserts, runtime
coordination)

9

How Do We Make Effective
Use of These Systems?

•  Better use of our existing systems
♦  Blue Waters will provide a sustained PF, but that

typically requires ~10PF peak
•  Improve node performance

♦  Make the compiler better
♦  Give better code to the compiler
♦  Get realistic with algorithms/data structures

•  Improve parallel performance/scalability
•  Improve productivity of applications

♦  Better tools and interoperable languages, not a (single)
new programming language

•  Improve algorithms
♦  Optimize for the real issues – data movement, power,

resilience, …

10

Make the Compiler Better

•  It remains the case that most
compilers cannot compete with
hand-tuned or autotuned code on
simple code
♦ Just look at dense matrix-matrix

multiplication or matrix transpose
♦ Try it yourself!

• Matrix multiply on my laptop:
• N=100 (in cache): 1818 MF (1.1ms)
• N=1000 (not): 335 MF (6s)

11

How Good are Compilers at
Vectorizing Codes?

28

27

6

4

34

ICC

XLCXLC

GCC

1
3

Not Vectorizable

Auto Vectorized

1

3

Vectorizable

Vectorizable but none of the
compilers auto vectorized

21

7 18 5

Intel IBM

S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing
Compilers. PACT 2011.

12

Media Bench II Applications
Appl XLC

ICC

GCC

XLC

ICC

GCC

 Automatic Manual
JPEG Enc - 1.33 - 1.39 2.13 1.57
JEPG Dec - - - - 1.14 1.13
H263 Enc - - - 1.25 2.28 2.06
H263 Dec - - - 1.31 1.45 -
MPEG2 Enc - - - 1.06 1.96 2.43

MPEG2 Dec - - 1.15 1.37 1.45 1.55

MPEG4 Enc - - - 1.44 1.81 1.74

MPEG4 Dec - - - 1.12 - 1.18

Table shows whole program speedups measured
against unvectorized application

S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing Compilers. PACT 2011.

13

How Do We Change This?

•  Test compiler against “equivalent” code (e.g., best hand-tuned or
autotuned code that performs the same computation, under some
interpretation or “same”)
♦  In a perfect world, the compiler would provide the same, excellent

performance for all equivalent versions
•  As part of the Blue Waters project, Padua, Garzaran, Maleki have

developed a test suite that evaluates how the compiler does with such
equivalent code
♦  Working with vendors to improve the compiler
♦  Identify necessary transformations
♦  Identify opportunities for better interaction with the programmer to

facilitate manual intervention.
♦  Main focus has been on code generation for vector extensions
♦  Result is a compiler whose realized performance is less sensitive to different

expression of code and therefore closer to that of the best hand-tuned
code.

♦  Just by improving automatic vectorization, loop speedups of more than 5
have been observed on the Power 7.

•  But this is a long-term project
♦  What can we do in the meantime?

14

Give “Better” Code to the
Compiler

• Augmenting current programming
models and languages to exploit
advanced techniques for
performance optimization (i.e.,
autotuning)

• Not a new idea, and some tools
already do this.

• But how can these approaches
become part of the mainstream
development?

15

How Can Autotuning Tools Fit
Into Application Development?

•  In the short run, just need effective
mechanisms to replace user code with
tuned code
♦ Manual extraction of code, specification of

specific collections of code transformations
•  But this produces at least two versions

of the code (tuned (for a particular
architecture and problem choice) and
untuned). And there are other issues.

•  What does an application want (what is
the Dream)?

16

Application Needs Include

•  Code must be portable
•  Code must be persistent
•  Code must permit (and encourage)

experimentation
•  Code must be maintainable
•  Code must be correct
•  Code must be faster

17

Implications of These
Requirements

•  Portable - augment existing language. Either use pragmas/
comments or extremely portable precompiler
♦  Best if the tool that performs all of these steps looks like just like

the compiler, for integration with build process
•  Persistent

♦  Keep original and transformed code around: Golden Copy
•  Maintainable

♦  Let user work with original code and ensure changes automatically
update tuned code

•  Correct
♦  Do whatever the application developer needs to believe that the

tuned code is correct
•  In the end, this will require running some comparison tests

•  Faster
♦  Must be able to interchange tuning tools - pick the best tool for

each part of the code
♦  No captive interfaces
♦  Extensibility - a clean way to add new tools, transformations,

properties, …

18

Application-Relevant
Abstractions

•  Language for interfacing with autotuning must convey
concepts that are meaningful to the application
programmer

•  Wrong: unroll by 5
♦  Though could be ok for performance expert, and some

compilers already provide pragmas for specific
transformations

•  Right (maybe): Performance precious, typical loop
count between 100 and 10000, even, not power of 2

•  Middle ground: Apply unroll, align, SIMD
transformations and tune

•  We need work at developing higher-level, performance-
oriented languages or language extensions
♦  This would be the “good” future
♦  Early steps include TCE, Orio, Spiral, …

19

Better Algorithms and Data
Structures

•  Autotuning only offers the best
performance with the given data
structure and algorithm
♦ That’s a big constraint

•  Processors include hardware to address
performance challenges
♦  “Vector” function units
♦ Memory latency hiding/prefetch
♦ Atomic update features for shared memory
♦ Etc.

20

Sparse Matrix-Vector Multiply

Barriers to faster code
•  “Standard” formats

such as CSR do not
meet requirements
for prefetch or
vectorization

•  Modest changes to
data structure
enable both
vectorization,
prefetch, for
20-80%
improvement on P7

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Pe
rf

or
m

an
ce

 R
at

io

SCSR-
2
SCSR-
4
VSCSR
-2
VSCSR
-4

Prefetch results in Optimizing Sparse Data
Structures for Matrix Vector Multiply http://
hpc.sagepub.com/content/25/1/115

21

What Does This Mean For
You?

•  It is time to rethink data structures and
algorithms to match the realities of memory
architecture
♦  We have results for x86 where the benefit is smaller

but still significant
♦  Better match of algorithms to prefetch hardware is

necessary to overcome memory performance
barriers

•  Similar issues come up with heterogeneous
processing elements (someone needs to
design for memory motion and concurrent and
nonblocking data motion)

22

Is It Communication Avoiding Or
Minimum Solution Time?

• Example: non minimum collective
algorithms

• Work of Paul Sack; see “Faster
topology-aware collective
algorithms through non-minimal
communication”, PPoPP 2012

• Lesson: minimum communication
need not be optimal

23

Allgather

1 2 3 4

Input

Output

24

Problem: Recursive-doubling

• No congestion model:
♦ T=(lgP)α + n(P-1)β

• Congestion on torus:
♦ T≈(lgP)α + (5/24)nP4/3β

• Congestion on Clos network:
♦ T≈(lgP)α + (nP/µ)β

• Solution approach: move smallest

amounts of data the longest distance

25

Allgather: recursive halving

2
5

a b c d

e f g h

i j k l

m n o p

26

Allgather: recursive halving

ac bd ac bd

eg fh eg fh

ik jl ik jl

mo np mo np

27

Allgather: recursive halving

acik bdjl acik bdjl

egmo fhnp egmo fhnp

acik bdjl acik bdjl

egmo fhnp egmo fhnp

28

Allgather: recursive halving

acikbdjl acikbdjl acikbdjl acikbdjl

egmofhnp egmofhnp egmofhnp egmofhnp

acikbdjl acikbdjl acikbdjl acikbdjl

egmofhnp egmofhnp egmofhnp egmofhnp

29

Allgather: recursive halving

acikbdjl
egmofhnp

acikbdjl
egmofhnp

acikbdjl
egmofhnp

acikbdjl
egmofhnp

acikbdjl
egmofhnp

acikbdjl
egmofhnp

acikbdjl
egmofhnp

acikbdjl
egmofhnp

acikbdjl
egmofhnp

acikbdjl
egmofhnp

acikbdjl
egmofhnp

acikbdjl
egmofhnp

acikbdjl
egmofhnp

acikbdjl
egmofhnp

acikbdjl
egmofhnp

acikbdjl
egmofhnp

T=(lg P)α + (7/6)nPβ

30

New Problem: Data
Misordered

• Solution: shuffle input data
♦ Could shuffle at end (redundant

work; all processes shuffle)
♦ Could use non-contiguous data

moves
♦ Shuffle data on network…

31

Solution: Input shuffle

a b c d

e f g h

i j k l

m n o p

32

a e b f

i m j n

c g d h

k o l p

Solution: Input shuffle

33

Solution: Input shuffle

a e b f

i m j n

c g d h

k o l p

34

Solution: Input shuffle

ab ef ab ef

ij mn ij mn

cd gh cd gh

kl op kl op

35

Solution: Input shuffle

abcd efgh abcd efgh

ijkl mnop ijkl mnop

abcd efgh abcd efgh

ijkl mnop ijkl mnop

36

Solution: Input shuffle

abcdefgh abcdefgh abcdefgh abcdefgh

ijklmnop ijklmnop ijklmnop ijklmnop

abcdefgh abcdefgh abcdefgh abcdefgh

ijklmnop ijklmnop ijklmnop ijklmnop

T=(1+lgP) α + (7/6)nPβ
T≈(lgP)α + (7/6)nPβ

37

Evaluation:
Intrepid BlueGene/P at ANL

• 40k-node system
♦ Each is 4 x 850 MHz PowerPC 450

• 512+ nodes is 3d torus; fewer is
3d mesh

• xlc -O4
• 375 MB/s delivered per link

♦ 7% penalty using all 6 links both
ways

38

Allgather performance

39

Notes on Allgather

• Bucket algorithm (not described
here) exploits multiple
communication engines on BG

• Analysis shows performance near
optimal

• Alternative to reorder data step is
in memory move; analysis shows
similar performance and
measurements show reorder step
faster on tested systems

40

 Performance on a Node

• Nodes are SMPs
♦ You have this problem on anything

(even laptops)
• Tuning issues include the usual

♦ Getting good performance out of the
compiler (often means adapting to
the memory hierarchy)

• New (SMP) issues include
♦ Sharing the SMP with other processes
♦ Sharing the memory system

41

New (?) Wrinkle – Avoiding
Jitter

•  Jitter here means the variation in time
measured when running identical
computations
♦ Caused by other computations, e.g., an OS

interrupt to handle a network event or
runtime library servicing a communication
or I/O request

•  This problem is in some ways less
serious on HPC platform, as the OS and
runtime services are tuned to minimize
impact
♦ However, cannot be eliminated entirely

42

Sharing an SMP
•  Having many cores available

makes everyone think that
they can use them to solve
other problems (“no one
would use all of them all of
the time”)

•  However, compute-bound
scientific calculations are
often written as if all compute
resources are owned by the
application

•  Such static scheduling leads
to performance loss

•  Pure dynamic scheduling adds
overhead, but is better

•  Careful mixed strategies are
even better

•  Thanks to Vivek Kale

43

Happy Medium Scheduling

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Performance irregularities introduce load-
imbalance.
Pure dynamic has significant overhead; pure
static too much imbalance.
Solution: combined static and dynamic
scheduling

Communication Avoiding LU factorization
(CALU) algorithm, S. Donfack, L .Grigori, V.
Kale, WG, IPDPS ‘12

Scary Consequence: Static
data decompositions will not
work at scale.
Corollary: programming
models with static task
models will not work at scale

44

Synchronization and OS Noise

•  “Characterizing the Influence of
System Noise on Large-Scale
Applications by Simulation,”
Torsten Hoefler, Timo Schneider,
Andrew Lumsdaine
♦ Best Paper, SC10

• Next 3 slides based on this talk…

45

A Noisy Example –
Dissemination Barrier

• Process 4 is delayed
♦ Noise propagates “wildly” (of course

deterministic)

46

Single Collective Operations
and Noise

• 1 Byte, Dissemination, regular noise,
1000 Hz, 100 µs

outliers

deterministic
Legend:

2nd
quartile

3rd
quartile
median

outliers

47

The problem is
blocking operations

•  Simple, data-parallel algorithms easy to
reason about but inefficient
♦  True for decades, but ignored (memory)

•  One solution: fully asynchronous
methods
♦  Very attractive, yet efficiency is low and

there are good reasons for that
♦  Blocking can be due to fully collective (e.g.,

Allreduce) or neighbor communications
(halo exchange)

♦  Can we save methods that involve global,
synchronizing operations?

48

Saving Allreduce

•  One common suggestion is to avoid using
Allreduce
♦  But algorithms with dot products are among the best

known
♦  Can sometimes aggregate the data to reduce the

number of separate Allreduce operations
♦  But better is to reduce the impact of the

synchronization by hiding the Allreduce behind other
operations (in MPI, using MPI_Iallreduce)

•  We can adapt CG to nonblocking Allreduce
with some added floating point (but perhaps
little time cost)

49

The Conjugate Gradient
Algorithm

•  While (not converged)
 niters += 1;
 s = A * p;
 t = p' *s;
 alpha = gmma / t;
 x = x + alpha * p;
 r = r - alpha * s;
 if rnorm2 < tol2 ; break ; end
 z = M * r;
 gmmaNew = r' * z;
 beta = gmmaNew / gmma;
 gmma = gmmaNew;
 p = z + beta * p;
end

50

The Conjugate Gradient
Algorithm

•  While (not converged)
 niters += 1;
 s = A * p;
 t = p' *s;
 alpha = gmma / t;
 x = x + alpha * p;
 r = r - alpha * s;
 if rnorm2 < tol2 ; break ; end
 z = M * r;
 gmmaNew = r' * z;
 beta = gmmaNew / gmma;
 gmma = gmmaNew;
 p = z + beta * p;
end

51

CG Reconsidered

•  By reordering operations, nonblocking
dot products (MPI_Iallreduce in MPI-3)
can be overlapped with other operations

•  Trades extra local work for overlapped
communication
♦ On a pure floating point basis, the

nonblocking version requires 2 more
DAXPY operations

♦ A closer analysis shows that some
operations can be merged

•  More work does not imply more time

52

What’s Different at Peta/Exascale

•  Performance Focus
♦  Only a little – basically, the resource is expensive, so a

premium placed on making good use of resource
♦  Quite a bit – node is more complex, has more features

that must be exploited
•  Scalability

♦  Solutions that work at 100-1000 way often inefficient at
100,000-way

♦  Some algorithms scale well
•  Explicit time marching in 3D

♦  Some don’t
•  Direct implicit methods

♦  Some scale well for a while
•  FFTs (communication volume in Alltoall)

♦  Load balance, latency are critical issues
•  Fault Tolerance becoming important

♦  Now: Reduce time spent in checkpoints
♦  Soon: Lightweight recovery from transient errors

53

Preparing for the Next
Generation of HPC Systems

•  Better use of existing resources
♦  Performance-oriented programming
♦  Dynamic management of resources at all levels
♦  Embrace hybrid programming models (you have

already if you use SSE/VSX/OpenMP/…)
•  Focus on results

♦  Adapt to available network bandwidth and latency
♦  Exploit I/O capability (available space grew faster

than processor performance!)
•  Prepare for the future

♦  Fault tolerance
♦  Hybrid processor architectures
♦  Latency tolerant algorithms
♦  Data-driven systems

54

Recommended Reading

•  Bit reversal on uniprocessors (Alan Karp, SIAM
Review, 1996)

•  Achieving high sustained performance in an
unstructured mesh CFD application (W. K.
Anderson, W. D. Gropp, D. K. Kaushik, D. E.
Keyes, B. F. Smith, Proceedings of
Supercomputing, 1999)

•  Experimental Analysis of Algorithms
(Catherine McGeoch, Notices of the American
Mathematical Society, March 2001)

•  Reflections on the Memory Wall (Sally McKee,
ACM Conference on Computing Frontiers,
2004)

55

Thanks
•  Torsten Hoefler

♦  Performance modeling lead,
Blue Waters; MPI datatype

•  David Padua, Maria
Garzaran, Saeed Maleki
♦  Compiler vectorization

•  Dahai Guo
♦  Streamed format exploiting

prefetch, vectorization, GPU
•  Vivek Kale

♦  SMP work partitioning
•  Hormozd Gahvari

♦  AMG application modeling
•  Marc Snir and William

Kramer
♦  Performance model

advocates

•  Abhinav Bhatele
♦  Process/node mapping

•  Elena Caraba
♦  Nonblocking Allreduce in CG

•  Van Bui
♦  Performance model-based

evaluation of programming
models

•  Funding provided by:
♦  Blue Waters project (State of

Illinois and the University of
Illinois)

♦  Department of Energy, Office of
Science

♦  National Science Foundation

