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Extrapolation is Risky 

•  1989 – T – 23 years 
♦  Intel introduces 486DX 
♦ Eugene Brooks writes “Attack of the Killer 

Micros” 
♦ 4 years before TOP500 
♦ Top systems at about 2 GF Peak 

•  1999 – T – 13 years 
♦ NVIDIA introduces its GPU (GeForce 256) 

•  Programming GPUs still a challenge 13 years later 

♦ Top system – ASCI Red, 9632 cores, 3.2 TF 
Peak (about 3 GPUs in 2012) 

♦ MPI is 7 years old 
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HPC Today 

•  High(est)-End systems 
♦  1 PF (1015 Ops/s) achieved on a few “peak friendly” 

applications 
♦  Much worry about scalability, how we’re going to get to an 

ExaFLOPS 
♦  Systems are all oversubscribed 

•  DOE INCITE awarded almost 900M processor hours in 2009; 
1600M-1700M hours in 2010-2012; (big jump planned in 2013 
– over 5B hours) 

•  NSF PRAC awards for Blue Waters similarly competitive 

•  Widespread use of clusters, many with accelerators; 
cloud computing services 
♦  These are transforming the low and midrange 

•  Laptops (far) more powerful than the supercomputers I 
used as a graduate student  
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HPC in 2011 
•  Sustained PF systems 

♦  K Computer (Fujitsu) at RIKEN, Kobe, Japan (2011) 
♦  “Sequoia” Blue Gene/Q at LLNL 
♦  NSF Track 1 “Blue Waters” at Illinois 
♦  Undoubtedly others (China, … ) 

•  Still programmed with MPI and MPI+other (e.g., MPI
+OpenMP or MPI+OpenCL/CUDA or MPI+OpenACC) 
♦  But in many cases using toolkits, libraries, and other 

approaches 
•  And not so bad – applications will be able to run when the 

system is turned on 
♦  Replacing MPI will require some compromise – e.g., 

domain specific (higher-level but less general) 
•  Lots of evidence that fully automatic solutions won’t work 
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End of an Era 

•  IN THE LONG TERM (~2017 THROUGH 2024) 
“While power consumption is an urgent 
challenge, its leakage or static component will 
become a major industry crisis in the long 
term, threatening the survival of CMOS 
technology itself, just as bipolar technology 
was threatened and eventually disposed of 
decades ago.”  [ITRS 2009] 

•  Unlike the situation at the end of the bipolar 
era, no technology (i.e., CMOS) is waiting in 
the wings. 
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The Post-Moore Era 

•  Scaling is ending 
♦  Voltage scaling ended in 2004 (leakage current) 
♦  Feature scaling will end in 202x (not enough atoms) 
♦  Scaling rate will slow down in the next few years 
♦  Continued scaling in the next decade will need a 

sequence of (small) miracles (new materials, new 
structures, new manufacturing technologies) 

☛ Compute Efficiency becomes a paramount 
concern 
♦  More computations per joule 
♦  More computations per transistor 
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HPC in 2018-2020 

•  Exascale systems are likely to have 
♦  Extreme power constraints, leading to 

•  Clock Rates similar to today’s systems 
•  A wide-diversity of simple computing elements (simple for 

hardware but complex for software) 
•  Memory per core and per FLOP will be much smaller 
•  Moving data anywhere will be expensive (time and power) 

♦  Faults that will need to be detected and managed 
•  Some detection may be the job of the programmer, as 

hardware detection takes power 
♦  Extreme scalability and performance irregularity 

•  Performance will require enormous concurrency 
•  Performance is likely to be variable 

-  Simple, static decompositions will not scale 
♦  A need for latency tolerant algorithms and 

programming 
•  Memory, processors will be 100s to 10000s of cycles away.  

Waiting for operations to complete will cripple performance 

2020-2023 



8 

Algorithms and Applications 
Will Change 

•  Applications need to become more 
dynamic, more integrated 

•  System software must work with 
application: 
♦ Code complexity (Autotuning) 
♦ Dynamic resources (no simple PGAS) 
♦  Latency hiding (Nonblocking algorithms, 

interfaces (including futures)) 
♦ Resource sharing (more performance 

information, performance asserts, runtime 
coordination) 
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How Do We Make Effective 
Use of These Systems? 

•  Better use of our existing systems 
♦  Blue Waters will provide a sustained PF, but that 

typically requires ~10PF peak 
•  Improve node performance 

♦  Make the compiler better 
♦  Give better code to the compiler 
♦  Get realistic with algorithms/data structures 

•  Improve parallel performance/scalability 
•  Improve productivity of applications 

♦  Better tools and interoperable languages, not a (single) 
new programming language 

•  Improve algorithms 
♦  Optimize for the real issues – data movement, power, 

resilience, …  
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Make the Compiler Better 

•  It remains the case that most 
compilers cannot compete with 
hand-tuned or autotuned code on 
simple code 
♦ Just look at dense matrix-matrix  

multiplication or matrix transpose 
♦ Try it yourself! 

• Matrix multiply on my laptop: 
• N=100 (in cache): 1818 MF (1.1ms) 
• N=1000 (not): 335 MF (6s) 
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How Good are Compilers at 
Vectorizing Codes? 
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S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing 
Compilers. PACT 2011. 
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Media Bench II Applications 
Appl XLC 

 
ICC 
 

GCC 
 

XLC 
 

ICC 
 

GCC 
 

                   Automatic                     Manual  
JPEG Enc - 1.33 - 1.39 2.13 1.57 
JEPG Dec - - - - 1.14 1.13 
H263 Enc - - - 1.25 2.28 2.06 
H263 Dec - - - 1.31 1.45 - 
MPEG2 Enc - - - 1.06 1.96 2.43 

MPEG2 Dec - - 1.15 1.37 1.45 1.55 

MPEG4 Enc - - - 1.44 1.81 1.74 

MPEG4 Dec - - - 1.12 - 1.18 

Table shows whole program speedups measured 
against unvectorized application  

S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing Compilers. PACT 2011. 
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How Do We Change This? 

•  Test compiler against “equivalent” code (e.g., best hand-tuned or 
autotuned code that performs the same computation, under some 
interpretation or “same”) 
♦  In a perfect world, the compiler would provide the same, excellent 

performance for all equivalent versions 
•  As part of the Blue Waters project, Padua, Garzaran, Maleki have 

developed a test suite that evaluates how the compiler does with such 
equivalent code 
♦  Working with vendors to improve the compiler 
♦  Identify necessary transformations 
♦  Identify opportunities for better interaction with the programmer to 

facilitate manual intervention. 
♦  Main focus has been on code generation for vector extensions 
♦  Result is a compiler whose realized performance is less sensitive to different 

expression of code and therefore closer to that of the best hand-tuned 
code. 

♦  Just by improving automatic vectorization, loop speedups of more than 5 
have been observed on the Power 7. 

•  But this is a long-term project 
♦  What can we do in the meantime? 
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Give “Better” Code to the 
Compiler 

• Augmenting current programming 
models and languages to exploit 
advanced techniques for 
performance optimization (i.e., 
autotuning) 

• Not a new idea, and some tools 
already do this.   

• But how can these approaches 
become part of the mainstream 
development? 
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How Can Autotuning Tools Fit 
Into Application Development? 

•  In the short run, just need effective 
mechanisms to replace user code with 
tuned code 
♦ Manual extraction of code, specification of 

specific collections of code transformations 
•  But this produces at least two versions 

of the code (tuned (for a particular 
architecture and problem choice) and 
untuned).  And there are other issues. 

•  What does an application want (what is 
the Dream)? 
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Application Needs Include 

•  Code must be portable 
•  Code must be persistent 
•  Code must permit (and encourage) 

experimentation 
•  Code must be maintainable 
•  Code must be correct 
•  Code must be faster 
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Implications of These 
Requirements 

•  Portable - augment existing language.  Either use pragmas/
comments or extremely portable precompiler 
♦  Best if the tool that performs all of these steps looks like just like 

the compiler, for integration with build process 
•  Persistent 

♦  Keep original and transformed code around: Golden Copy 
•  Maintainable 

♦  Let user work with original code and ensure changes automatically 
update tuned code 

•  Correct 
♦  Do whatever the application developer needs to believe that the 

tuned code is correct 
•  In the end, this will require running some comparison tests 

•  Faster 
♦  Must be able to interchange tuning tools - pick the best tool for 

each part of the code 
♦  No captive interfaces 
♦  Extensibility - a clean way to add new tools, transformations, 

properties, … 
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Application-Relevant 
Abstractions 

•  Language for interfacing with autotuning must convey 
concepts that are meaningful to the application 
programmer 

•  Wrong: unroll by 5 
♦  Though could be ok for performance expert, and some 

compilers already provide pragmas for specific 
transformations 

•  Right (maybe): Performance precious, typical loop 
count between 100 and 10000, even, not power of 2 

•  Middle ground: Apply unroll, align, SIMD 
transformations and tune 

•  We need work at developing higher-level, performance-
oriented languages or language extensions 
♦  This would be the “good” future 
♦  Early steps include TCE, Orio, Spiral, … 
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Better Algorithms and Data 
Structures 

•  Autotuning only offers the best 
performance with the given data 
structure and algorithm 
♦ That’s a big constraint 

•  Processors include hardware to address 
performance challenges 
♦  “Vector” function units 
♦ Memory latency hiding/prefetch 
♦ Atomic update features for shared memory 
♦ Etc.  
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Sparse Matrix-Vector Multiply 

Barriers to faster code 
•  “Standard” formats 

such as CSR do not 
meet requirements 
for prefetch or 
vectorization 

•  Modest changes to 
data structure 
enable both 
vectorization, 
prefetch, for 
20-80% 
improvement on P7  
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Prefetch results in Optimizing Sparse Data 
Structures for Matrix Vector Multiply http://
hpc.sagepub.com/content/25/1/115 
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What Does This Mean For 
You? 

•  It is time to rethink data structures and 
algorithms to match the realities of memory 
architecture 
♦  We have results for x86 where the benefit is smaller 

but still significant 
♦  Better match of algorithms to prefetch hardware is 

necessary to overcome memory performance 
barriers 

•  Similar issues come up with heterogeneous 
processing elements (someone needs to 
design for memory motion and concurrent and 
nonblocking data motion) 
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Is It Communication Avoiding Or 
Minimum Solution Time? 

• Example: non minimum collective 
algorithms 

• Work of Paul Sack; see “Faster 
topology-aware collective 
algorithms through non-minimal 
communication”, PPoPP 2012 

• Lesson: minimum communication 
need not be optimal 
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Allgather 

1 2 3 4 

Input 

Output 
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Problem: Recursive-doubling 

• No congestion model:  
♦ T=(lgP)α + n(P-1)β 

• Congestion on torus:  
♦ T≈(lgP)α + (5/24)nP4/3β 

• Congestion on Clos network:  
♦ T≈(lgP)α + (nP/µ)β 

 
• Solution approach: move smallest 

amounts of data the longest distance 
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Allgather: recursive halving 

2
5

a b c d

e f g h

i j k l

m n o p
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Allgather: recursive halving 

ac bd ac bd

eg fh eg fh

ik jl ik jl

mo np mo np
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Allgather: recursive halving 

acik bdjl acik bdjl

egmo fhnp egmo fhnp

acik bdjl acik bdjl

egmo fhnp egmo fhnp
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Allgather: recursive halving 

acikbdjl acikbdjl acikbdjl acikbdjl

egmofhnp egmofhnp egmofhnp egmofhnp

acikbdjl acikbdjl acikbdjl acikbdjl

egmofhnp egmofhnp egmofhnp egmofhnp
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Allgather: recursive halving 

acikbdjl
egmofhnp

acikbdjl
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T=(lg P)α + (7/6)nPβ 
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New Problem: Data 
Misordered 

• Solution: shuffle input data 
♦ Could shuffle at end (redundant 

work; all processes shuffle) 
♦ Could use non-contiguous data 

moves 
♦ Shuffle data on network…  
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Solution: Input shuffle 

a b c d

e f g h

i j k l

m n o p
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a e b f

i m j n

c g d h

k o l p

Solution: Input shuffle 
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Solution: Input shuffle

a e b f

i m j n

c g d h

k o l p
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Solution: Input shuffle

ab ef ab ef

ij mn ij mn

cd gh cd gh

kl op kl op
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Solution: Input shuffle 

abcd efgh abcd efgh

ijkl mnop ijkl mnop

abcd efgh abcd efgh

ijkl mnop ijkl mnop
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Solution: Input shuffle 

abcdefgh abcdefgh abcdefgh abcdefgh

ijklmnop ijklmnop ijklmnop ijklmnop

abcdefgh abcdefgh abcdefgh abcdefgh

ijklmnop ijklmnop ijklmnop ijklmnop

T=(1+lgP) α + (7/6)nPβ 
T≈(lgP)α + (7/6)nPβ 



37 

Evaluation: 
Intrepid BlueGene/P at ANL 

• 40k-node system 
♦ Each is 4 x 850 MHz PowerPC 450 

• 512+ nodes is 3d torus; fewer is 
3d mesh 

• xlc -O4 
• 375 MB/s delivered per link 

♦ 7% penalty using all 6 links both 
ways 
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Allgather performance 
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Notes on Allgather 

• Bucket algorithm (not described 
here) exploits multiple 
communication engines on BG 

• Analysis shows performance near 
optimal 

• Alternative to reorder data step is 
in memory move; analysis shows 
similar performance and 
measurements show reorder step 
faster on tested systems 
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 Performance on a Node 

• Nodes are SMPs 
♦ You have this problem on anything 

(even laptops) 
• Tuning issues include the usual 

♦ Getting good performance out of the 
compiler (often means adapting to 
the memory hierarchy) 

• New (SMP) issues include 
♦ Sharing the SMP with other processes 
♦ Sharing the memory system 
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New (?) Wrinkle – Avoiding 
Jitter 

•  Jitter here means the variation in time 
measured when running identical 
computations 
♦ Caused by other computations, e.g., an OS 

interrupt to handle a network event or 
runtime library servicing a communication 
or I/O request 

•  This problem is in some ways less 
serious on HPC platform, as the OS and 
runtime services are tuned to minimize 
impact 
♦ However, cannot be eliminated entirely 
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Sharing an SMP 
•  Having many cores available 

makes everyone think that 
they can use them to solve 
other problems (“no one 
would use all of them all of 
the time”) 

•  However, compute-bound 
scientific calculations are 
often written as if all compute 
resources are owned by the 
application 

•  Such static scheduling leads 
to performance loss 

•  Pure dynamic scheduling adds 
overhead, but is better 

•  Careful mixed strategies are 
even better 

•  Thanks to Vivek Kale 



43 

Happy Medium Scheduling 

Page 34

Best performance of CALU on multicore architectures

•   Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Page 34

Best performance of CALU on multicore architectures

•   Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Performance irregularities introduce load-
imbalance. 
Pure dynamic has significant overhead; pure 
static too much imbalance. 
Solution: combined static and dynamic 
scheduling 
 
Communication Avoiding LU factorization 
(CALU) algorithm, S. Donfack, L .Grigori, V. 
Kale, WG, IPDPS ‘12 

Scary Consequence: Static 
data decompositions will not 
work at scale. 
Corollary: programming 
models with static task 
models will not work at scale  
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Synchronization and OS Noise 

•  “Characterizing the Influence of 
System Noise on Large-Scale 
Applications by Simulation,” 
Torsten Hoefler, Timo Schneider,  
Andrew Lumsdaine 
♦ Best Paper, SC10 

• Next 3 slides based on this talk… 
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A Noisy Example – 
Dissemination Barrier 

• Process 4 is delayed 
♦ Noise propagates “wildly” (of course 

deterministic) 
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Single Collective Operations 
and Noise 

• 1 Byte, Dissemination, regular noise, 
1000 Hz, 100 µs  

outliers 

deterministic 
Legend: 

2nd 
quartile 

3rd 
quartile 
median 

outliers 
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The problem is  
blocking operations 

•  Simple, data-parallel algorithms easy to 
reason about but inefficient 
♦  True for decades, but ignored (memory) 

•  One solution: fully asynchronous 
methods 
♦  Very attractive, yet efficiency is low and 

there are good reasons for that 
♦  Blocking can be due to fully collective (e.g., 

Allreduce) or neighbor communications 
(halo exchange) 

♦  Can we save methods that involve global, 
synchronizing operations? 
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Saving Allreduce  

•  One common suggestion is to avoid using 
Allreduce 
♦  But algorithms with dot products are among the best 

known 
♦  Can sometimes aggregate the data to reduce the 

number of separate Allreduce operations 
♦  But better is to reduce the impact of the 

synchronization by hiding the Allreduce behind other 
operations (in MPI, using  MPI_Iallreduce) 

•  We can adapt CG to nonblocking Allreduce 
with some added floating point (but perhaps 
little time cost) 
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The Conjugate Gradient 
Algorithm 

•  While (not converged)  
  niters += 1; 
  s     = A * p; 
  t     = p' *s; 
  alpha = gmma / t; 
  x     = x + alpha * p; 
  r     = r - alpha * s; 
  if rnorm2 < tol2 ; break ; end 
  z     = M * r; 
  gmmaNew = r' * z; 
  beta  = gmmaNew / gmma; 
  gmma = gmmaNew; 
  p     = z + beta * p; 
end 
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The Conjugate Gradient 
Algorithm 

•  While (not converged)  
  niters += 1; 
  s     = A * p; 
  t     = p' *s; 
  alpha = gmma / t; 
  x     = x + alpha * p; 
  r     = r - alpha * s; 
  if rnorm2 < tol2 ; break ; end 
  z     = M * r; 
  gmmaNew = r' * z; 
  beta  = gmmaNew / gmma; 
  gmma = gmmaNew; 
  p     = z + beta * p; 
end 
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CG Reconsidered 

•  By reordering operations, nonblocking 
dot products (MPI_Iallreduce in MPI-3) 
can be overlapped with other operations 

•  Trades extra local work for overlapped 
communication 
♦ On a pure floating point basis, the 

nonblocking version requires 2 more 
DAXPY operations 

♦ A closer analysis shows that some 
operations can be merged 

•  More work does not imply more time 
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What’s Different at Peta/Exascale 

•  Performance Focus 
♦  Only a little – basically, the resource is expensive, so a 

premium placed on making good use of resource 
♦  Quite a bit – node is more complex, has more features 

that must be exploited 
•  Scalability 

♦  Solutions that work at 100-1000 way often inefficient at 
100,000-way 

♦  Some algorithms scale well 
•  Explicit time marching in 3D 

♦  Some don’t 
•  Direct implicit methods 

♦  Some scale well for a while  
•  FFTs (communication volume in Alltoall) 

♦  Load balance, latency are critical issues 
•  Fault Tolerance becoming important 

♦  Now: Reduce time spent in checkpoints 
♦  Soon: Lightweight recovery from transient errors 
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Preparing for the Next 
Generation of HPC Systems 

•  Better use of existing resources 
♦  Performance-oriented programming 
♦  Dynamic management of resources at all levels 
♦  Embrace hybrid programming models (you have 

already if you use SSE/VSX/OpenMP/…) 
•  Focus on results 

♦  Adapt to available network bandwidth and latency 
♦  Exploit I/O capability (available space grew faster 

than processor performance!) 
•  Prepare for the future 

♦  Fault tolerance 
♦  Hybrid processor architectures 
♦  Latency tolerant algorithms  
♦  Data-driven systems 
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Recommended Reading 

•  Bit reversal on uniprocessors (Alan Karp, SIAM 
Review, 1996) 

•  Achieving high sustained performance in an 
unstructured mesh CFD application (W. K. 
Anderson, W. D. Gropp, D. K. Kaushik, D. E. 
Keyes, B. F. Smith, Proceedings of 
Supercomputing, 1999) 

•  Experimental Analysis of Algorithms 
(Catherine McGeoch, Notices of the American 
Mathematical Society, March 2001) 

•  Reflections on the Memory Wall (Sally McKee, 
ACM Conference on Computing Frontiers, 
2004) 
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Thanks 
•  Torsten Hoefler 

♦  Performance modeling lead, 
Blue Waters; MPI datatype 

•  David Padua, Maria 
Garzaran, Saeed Maleki 
♦  Compiler vectorization 

•  Dahai Guo 
♦  Streamed format exploiting 

prefetch, vectorization, GPU 
•  Vivek Kale 

♦  SMP work partitioning 
•  Hormozd Gahvari 

♦  AMG application modeling 
•  Marc Snir and William 

Kramer 
♦  Performance model 

advocates 

•  Abhinav Bhatele 
♦  Process/node mapping 

•  Elena Caraba 
♦  Nonblocking Allreduce in CG 

•  Van Bui 
♦  Performance model-based 

evaluation of programming 
models 

•  Funding provided by: 
♦  Blue Waters project (State of 

Illinois and the University of 
Illinois) 

♦  Department of Energy, Office of 
Science 

♦  National Science Foundation 


