
The Next Generation of High
Performance Computing

William Gropp
www.cs.illinois.edu/~wgropp

2

Extrapolation is Risky

•  1989 – T – 23 years
♦  Intel introduces 486DX
♦ Eugene Brooks writes “Attack of the Killer

Micros”
♦ 4 years before TOP500
♦ Top systems at about 2 GF Peak

•  1999 – T – 13 years
♦ NVIDIA introduces its GPU (GeForce 256)

•  Programming GPUs still a challenge 13 years later

♦ Top system – ASCI Red, 9632 cores, 3.2 TF
Peak (about 3 GPUs in 2012)

♦ MPI is 7 years old

3

HPC Today

•  High(est)-End systems
♦  1 PF (1015 Ops/s) achieved on a few “peak friendly”

applications
♦  Much worry about scalability, how we’re going to get to an

ExaFLOPS
♦  Systems are all oversubscribed

•  DOE INCITE awarded almost 900M processor hours in 2009;
1600M-1700M hours in 2010-2012; (big jump planned in 2013
– over 5B hours)

•  NSF PRAC awards for Blue Waters similarly competitive

•  Widespread use of clusters, many with accelerators;
cloud computing services
♦  These are transforming the low and midrange

•  Laptops (far) more powerful than the supercomputers I
used as a graduate student

4

HPC in 2011

•  Sustained PF systems
♦  K Computer (Fujitsu) at RIKEN, Kobe, Japan (2011)
♦  “Sequoia” Blue Gene/Q at LLNL
♦  NSF Track 1 “Blue Waters” at Illinois
♦  Undoubtedly others (China, …)

•  Still programmed with MPI and MPI+other
(e.g., MPI+OpenMP or MPI+OpenCL/CUDA)
♦  But in many cases using toolkits, libraries, and other

approaches
•  And not so bad – applications will be able to run when the

system is turned on

♦  Replacing MPI will require some compromise – e.g.,
domain specific (higher-level but less general)

•  Lots of evidence that fully automatic solutions won’t work

5

HPC in 2018-2020

•  Exascale systems are likely to have
♦  Extreme power constraints, leading to

•  Clock Rates similar to today’s systems
•  A wide-diversity of simple computing elements

(simple for hardware but complex for software)
•  Memory per core and per FLOP will be much smaller
•  Moving data anywhere will be expensive (time and power)

♦  Faults that will need to be detected and managed
•  Some detection may be the job of the programmer, as

hardware detection takes power
♦  Extreme scalability and performance irregularity

•  Performance will require enormous concurrency
•  Performance is likely to be variable

-  Simple, static decompositions will not scale
♦  A need for latency tolerant algorithms and

programming
•  Memory, processors will be 100s to 10000s of cycles away.

Waiting for operations to complete will cripple performance

2020-2023

6

What Do Current Systems
Tell Us?

•  Examples of trends
♦ Supercomputers: Blue Waters
♦ Exploiting Commodity Computing: GPU

Clusters
♦ Post GPU: Radical architectures

•  Parallelism is about getting performance
♦ Productivity is important, but only if

performance is achieved
♦ All systems already “heterogeneous”

•  “Vector” instructions really a separate unit

♦ Sustained performance is the goal

7

Blue Waters Science Team
Characteristics

Science Area Number
of Teams

Codes Structured
Grids

Unstructured
Grids

Dense
Matrix

Sparse
Matrix

N-
Body

Monte
Carlo

FFT Significant
I/O

Climate and
Weather

3 CESM, GCRM, CM1,
HOMME

X X X X

Plasmas/
Magnetosphere

2 H3D(M), OSIRIS, Magtail/
UPIC

X X X X

Stellar
Atmospheres and
Supernovae

2 PPM, MAESTRO, CASTRO,
SEDONA

X X X X

Cosmology 2 Enzo, pGADGET X X X

Combustion/
Turbulence

1 PSDNS X X

General Relativity 2 Cactus, Harm3D, LazEV X X

Molecular Dynamics 4 AMBER, Gromacs, NAMD,
LAMMPS

X X X

Quantum
Chemistry

2 SIAL, GAMESS, NWChem X X X X X

Material Science 3 NEMOS, OMEN, GW,
QMCPACK

X X X X

Earthquakes/
Seismology

2 AWP-ODC, HERCULES,
PLSQR, SPECFEM3D

X X X X

Quantum Chromo
Dynamics

1 Chroma, MILC, USQCD X X X X X

Social Networks 1 EPISIMDEMICS

Evolution 1 Eve

Computer Science 1 X X X X X

CUG - May 2, 2012

8

Heart of Blue Waters: Two New
Chips

AMD	 Interlagos	
157	 GF	 peak	 performance	

Features:	
	 2.3-‐2.6	 GHz	
	 8	 core	 modules,	 16	 threads	
	 On-‐chip	 Caches	
	 	 L1	 (I:8x64KB;	 D:16x16KB)	
	 	 L2	 (8x2MB)	
	 Memory	 Subsystem	
	 	 Four	 memory	 channels	
	 	 51.2	 GB/s	 bandwidth	

NVIDIA	 Kepler	
1,400	 GF	 peak	 performance	

Features:	
	 15	 Streaming	 multiprocessors	 (SMX)	
	 	 SMX:	 192	 sp	 CUDA	 cores,	 64	 dp	 	
	 units,	 32	 special	 function	 units	
	 	 L1	 caches/shared	 mem	 (64KB,	 48KB)	
	 	 L2	 cache	 (1536KB)	
	 Memory	 subsystem	
	 	 	 Six	 memory	 channels	
	 	 180	 GB/s	 bandwidth	 	

9

Blue Waters and Titan
Computing Systems

 NCSA ORNL
System Attribute Blue Waters Titan
Vendors Cray/AMD/NVIDIA Cray/AMD/NVIDIA
Processors Interlagos/Kepler Interlagos/Kepler

Total Peak Performance (PF) 11.9 >20
 Total Peak Performance (CPU/GPU) 7.6/4.3 3/17
Number of CPU Chips 48,576 18,688
Number of GPU Chips 3,072 14,592
Amount of CPU Memory (TB) 1,510 688

Interconnect 3D Torus 3D Torus

Amount of On-line Disk Storage (PB) 26 20(?)
Sustained Disk Transfer (TB/sec) >1 0.4-0.7
Amount of Archival Storage 300 15-30
Sustained Tape Transfer (GB/sec) 100 7

10

Blue Waters and K
Computing Systems

 NCSA RIKEN
System Attribute Blue Waters K
Vendors Cray/AMD/NVIDIA Fujitsu
Processors Interlagos/Kepler SPARC64 VIIIfx

Total Peak Performance (PF) 11.9 11.3
 Total Peak Performance (CPU/GPU) 7.6/4.3 11.3/0.0
Number of CPU Chips 48,576 88,128
Number of GPU Chips 3,072 0
Amount of CPU Memory (TB) 1,510 1,410

Interconnect 3D Torus 6D Torus

Amount of On-line Disk Storage (PB) 26 11/30
Sustained Disk Transfer (TB/sec) >1 ?
Amount of Archival Storage 300 ?
Sustained Tape Transfer (GB/sec) 100 ?

11

Blue Waters and Sequoia
Computing Systems

 NCSA LLNL
System Attribute Blue Waters Sequoia
Vendors Cray/AMD/NVIDIA IBM
Processors Interlagos/Kepler PowerPCA2 variant

Total Peak Performance (PF) 11.9 20.1
 Total Peak Performance (CPU/GPU) 7.6/4.3 20.1/0.0
Number of CPU Chips (8, 16 cores/chip) 48,576 98,304
Number of GPU Chips 3,072 0
Amount of CPU Memory (TB) 1,510 1,572

Interconnect 3D Torus 5D Torus

Amount of On-line Disk Storage (PB) 26 50(?)
Sustained Disk Transfer (TB/sec) >1 0.5-1.0
Amount of Archival Storage 300 ?
Sustained Tape Transfer (GB/sec) 100 ?

12

Another Example System

•  128 node GPU Cluster
•  #3 on Green500 in 2010
•  Each node has

♦  One Core i3 530 2.93 GHz
dual-core CPU

♦  One Tesla C2050 GPU per
node

•  33.62 TFLOPS on HPL
(10x ASCI Red)

•  934 MFLOPS/Watt
•  But how do you program

it?

13

An Even More Radical System
•  Rack Scale

♦  Processing:128 Nodes, 1 (+) PF/s
♦  Memory:

•  128 TB DRAM
•  0.4 PB/s Aggregate Bandwidth

♦  NV Memory
•  1 PB Phase Change Memory (addressable)
•  Additional 128 for Redundancy/RAID

♦  Network
•  0.13 PB/sec Injection, 0.06 PB/s Bisection

14

How Do We Make Effective
Use of These Systems?

•  Better use of our existing systems
♦  Blue Waters will provide a sustained PF, but that

typically requires ~10PF peak (BW over 11PF peak)
•  Improve node performance

♦  Make the compiler better
♦  Give better code to the compiler
♦  Match algorithms/data structures to real hardware

•  Improve parallel performance/scalability
•  Improve productivity of applications

♦  Better tools and interoperable languages, not a (single)
new programming language

•  Improve algorithms wrt real hardware
♦  Optimize for the real issues – data movement, power,

resilience, …

15

Make the Compiler Better

•  It remains the case that most
compilers cannot compete with
hand-tuned or autotuned code on
simple code
♦ Just look at dense matrix-matrix

multiplication or matrix transpose
♦ Try it yourself!

• Matrix multiply on my laptop:
• N=100 (in cache): 1818 MF (1.1ms)
• N=1000 (not): 335 MF (6s)

16

How Good are Compilers at
Vectorizing Codes?

28

27

6

4

34

ICC

XLCXLC

GCC

1
3

Not Vectorizable

Auto Vectorized

1

3

Vectorizable

Vectorizable but none of the
compilers auto vectorized

21

7 18 5

Intel IBM

S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing
Compilers. PACT 2011.

17

How Do We Change This?

•  Short term: Help improve compilers by testing
against best hand-tuned or auto-tuned code
♦  Code for results on previous slide taken from Blue

Waters project
•  Medium term: Give “Better” code to the

compiler
♦  Augment (not replace) current programming

languages to exploit advanced techniques for
program optimization

•  Enable autotuning; specialized code generation
♦  Challenge: Develop suitable performance

abstractions, rather than prescriptive commands
♦  Challenge: Overcome practical issues (e.g.,

correctness of multiple versions, debugging)

18

Better Algorithms and Data
Structures

•  Autotuning only offers the best
performance with the given data
structure and algorithm
♦ That’s a big constraint

•  Processors include hardware to address
performance challenges
♦  “Vector” function units
♦ Memory latency hiding/prefetch
♦ Atomic update features for shared memory
♦ Etc.

19

Sparse Matrix-Vector Multiply

Barriers to faster code
•  “Standard” formats

such as CSR do not
meet requirements
for prefetch or
vectorization

•  Modest changes to
data structure
enable both
vectorization,
prefetch, for
20-80%
improvement on P7

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Pe
rf

or
m

an
ce

 R
at

io

SCSR-
2
SCSR-
4
VSCSR
-2
VSCSR
-4

Prefetch results in Optimizing Sparse Data
Structures for Matrix Vector Multiply
http://hpc.sagepub.com/content/25/1/115

20

What Does This Mean For
You?

•  It is time to rethink data structures and
algorithms to match the realities of memory
architecture
♦  We have results for x86 where the benefit is smaller

but still significant
♦  Better match of algorithms to prefetch hardware is

necessary to overcome memory performance
barriers

•  Similar issues come up with heterogeneous
processing elements (someone needs to
design for memory motion and concurrent and
nonblocking data motion)

21

Processes and SMP nodes

•  HPC users typically believe that their code
“owns” all of the cores all of the time
♦  The reality is that was never true, but they did have

all of the cores the same fraction of time when there
was one core /node

•  We can use a simple performance model to
check the assertion and then use
measurements to identify the problem and
suggest fixes.

•  Based on this, we can tune a state-of-the-art
LU factorization….

22

Happy Medium Scheduling

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Performance irregularities introduce load-
imbalance.
Pure dynamic has significant overhead; pure
static too much imbalance.
Solution: combined static and dynamic
scheduling

Communication Avoiding LU factorization
(CALU) algorithm, S. Donfack, L .Grigori, V.
Kale, WG, IPDPS ‘12

Scary Consequence: Static
data decompositions will not
work at scale.
Corollary: programming
models with static task
models will not work at scale

23

Synchronization and
Performance Irregularities

•  Communication
dependencies between
processes or threads can
introduce cascading
delays if performance is
“irregular”

•  Total delay related to
♦  Local delay
♦  Probability of delay
♦  Number of threads

•  Probability of impact
goes from near 0 on
small system to near
1 on large system

•  Not just an “OS Noise”
issue

“Characterizing the Influence of System
Noise on Large-Scale Applications by
Simulation,” Hoefler, Schneider,
Lumsdaine; Best Paper, SC10

24

The Problem is
Blocking Operations

•  Simple, data-parallel algorithms easy to
reason about but inefficient
♦  True for decades, but ignored (memory)

•  One solution: fully asynchronous
methods
♦  Very attractive, yet efficiency is low and

there are good reasons for that
♦  Blocking can be due to fully collective (e.g.,

Allreduce) or neighbor communications
(halo exchange)

♦  Can we save methods that involve global,
synchronizing operations?

25

Saving Allreduce

•  One common suggestion is to avoid using
Allreduce
♦  But algorithms with dot products are among the best

known
♦  Can sometimes aggregate the data to reduce the

number of separate Allreduce operations
♦  But better is to reduce the impact of the

synchronization by hiding the Allreduce behind other
operations (in MPI, using MPI_Iallreduce)

•  We can adapt CG to nonblocking Allreduce
with some added floating point (but perhaps
little time cost)

26

The Conjugate Gradient
Algorithm

•  While (not converged)
 niters += 1;
 s = A * p;
 t = p' *s;
 alpha = gmma / t;
 x = x + alpha * p;
 r = r - alpha * s;
 if rnorm2 < tol2 ; break ; end
 z = M * r;
 gmmaNew = r' * z;
 beta = gmmaNew / gmma;
 gmma = gmmaNew;
 p = z + beta * p;
end

27

The Conjugate Gradient
Algorithm

•  While (not converged)
 niters += 1;
 s = A * p;
 t = p' *s;
 alpha = gmma / t;
 x = x + alpha * p;
 r = r - alpha * s;
 if rnorm2 < tol2 ; break ; end
 z = M * r;
 gmmaNew = r' * z;
 beta = gmmaNew / gmma;
 gmma = gmmaNew;
 p = z + beta * p;
end

28

CG Reconsidered

•  By reordering operations, nonblocking
dot products (MPI_Iallreduce in MPI-3)
can be overlapped with other operations

•  Trades extra local work for overlapped
communication
♦ On a pure floating point basis, the

nonblocking version requires 2 more
DAXPY operations

♦ A closer analysis shows that some
operations can be merged

•  More work does not imply more time

29

What’s Different at Peta/Exascale

•  Performance Focus
♦  Only a little – basically, the resource is expensive, so a

premium placed on making good use of resource
♦  Quite a bit – node is more complex, has more features

that must be exploited
•  Scalability

♦  Solutions that work at 100-1000 way often inefficient at
100,000-way

♦  Some algorithms scale well
•  Explicit time marching in 3D

♦  Some don’t
•  Direct implicit methods

♦  Some scale well for a while
•  FFTs (communication volume in Alltoall)

♦  Load balance, latency are critical issues
•  Fault Tolerance becoming important

♦  Now: Reduce time spent in checkpoints
♦  Soon: Lightweight recovery from transient errors

30

Preparing for the Next
Generation of HPC Systems

•  Better use of existing resources
♦  Performance-oriented programming
♦  Dynamic management of resources at all levels
♦  Embrace hybrid programming models (you have

already if you use SSE/VSX/OpenMP/…)
•  Focus on results

♦  Adapt to available network bandwidth and latency
♦  Exploit I/O capability (available space crew faster

than processor performance!)
•  Prepare for the future

♦  Fault tolerance
♦  Hybrid processor architectures
♦  Latency tolerant algorithms
♦  Data-driven systems

31

Recommended Reading

•  Bit reversal on uniprocessors (Alan Karp, SIAM
Review, 1996)

•  Achieving high sustained performance in an
unstructured mesh CFD application (W. K.
Anderson, W. D. Gropp, D. K. Kaushik, D. E.
Keyes, B. F. Smith, Proceedings of
Supercomputing, 1999)

•  Experimental Analysis of Algorithms
(Catherine McGeoch, Notices of the American
Mathematical Society, March 2001)

•  Reflections on the Memory Wall (Sally McKee,
ACM Conference on Computing Frontiers,
2004)

32

Thanks
•  Torsten Hoefler

♦  Performance modeling lead,
Blue Waters; MPI datatype

•  David Padua, Maria
Garzaran, Saeed Maleki
♦  Compiler vectorization

•  Dahai Guo
♦  Streamed format exploiting

prefetch, vectorization, GPU
•  Vivek Kale

♦  SMP work partitioning
•  Hormozd Gahvari

♦  AMG application modeling
•  Marc Snir and William

Kramer
♦  Performance model

advocates

•  Abhinav Bhatele
♦  Process/node mapping

•  Van Bui
♦  Performance model-based

evaluation of programming
models

•  Funding provided by:
♦  Blue Waters project (State of

Illinois and the University of
Illinois)

♦  Department of Energy, Office of
Science

♦  National Science Foundation

33

