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Extrapolation is Risky 

•  1989 – T – 23 years 
♦  Intel introduces 486DX 
♦ Eugene Brooks writes “Attack of the Killer 

Micros” 
♦ 4 years before TOP500 
♦ Top systems at about 2 GF Peak 

•  1999 – T – 13 years 
♦ NVIDIA introduces its GPU (GeForce 256) 

•  Programming GPUs still a challenge 13 years later 

♦ Top system – ASCI Red, 9632 cores, 3.2 TF 
Peak (about 3 GPUs in 2012) 

♦ MPI is 7 years old 
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HPC Today 

•  High(est)-End systems 
♦  1 PF (1015 Ops/s) achieved on a few “peak friendly” 

applications 
♦  Much worry about scalability, how we’re going to get to an 

ExaFLOPS 
♦  Systems are all oversubscribed 

•  DOE INCITE awarded almost 900M processor hours in 2009; 
1600M-1700M hours in 2010-2012; (big jump planned in 2013 
– over 5B hours) 

•  NSF PRAC awards for Blue Waters similarly competitive 

•  Widespread use of clusters, many with accelerators; 
cloud computing services 
♦  These are transforming the low and midrange 

•  Laptops (far) more powerful than the supercomputers I 
used as a graduate student  
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HPC in 2011 

•  Sustained PF systems 
♦  K Computer (Fujitsu) at RIKEN, Kobe, Japan (2011) 
♦  “Sequoia” Blue Gene/Q at LLNL 
♦  NSF Track 1 “Blue Waters” at Illinois 
♦  Undoubtedly others (China, … ) 

•  Still programmed with MPI and MPI+other 
(e.g., MPI+OpenMP or MPI+OpenCL/CUDA) 
♦  But in many cases using toolkits, libraries, and other 

approaches 
•  And not so bad – applications will be able to run when the 

system is turned on 

♦  Replacing MPI will require some compromise – e.g., 
domain specific (higher-level but less general) 

•  Lots of evidence that fully automatic solutions won’t work 
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HPC in 2018-2020 

•  Exascale systems are likely to have 
♦  Extreme power constraints, leading to 

•  Clock Rates similar to today’s systems 
•  A wide-diversity of simple computing elements  

(simple for hardware but complex for software) 
•  Memory per core and per FLOP will be much smaller 
•  Moving data anywhere will be expensive (time and power) 

♦  Faults that will need to be detected and managed 
•  Some detection may be the job of the programmer, as 

hardware detection takes power 
♦  Extreme scalability and performance irregularity 

•  Performance will require enormous concurrency 
•  Performance is likely to be variable 

-  Simple, static decompositions will not scale 
♦  A need for latency tolerant algorithms and 

programming 
•  Memory, processors will be 100s to 10000s of cycles away.  

Waiting for operations to complete will cripple performance 

2020-2023 
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What Do Current Systems 
Tell Us?  

•  Examples of trends 
♦ Supercomputers: Blue Waters 
♦ Exploiting Commodity Computing: GPU 

Clusters 
♦ Post GPU: Radical architectures 

•  Parallelism is about getting performance 
♦ Productivity is important, but only if 

performance is achieved 
♦ All systems already “heterogeneous” 

•  “Vector” instructions really a separate unit 

♦ Sustained performance is the goal 
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Blue Waters Science Team 
Characteristics 

Science Area Number 
of Teams 

Codes Structured 
Grids 

Unstructured 
Grids 

Dense 
Matrix 

Sparse 
Matrix 

N-
Body 

Monte 
Carlo 

FFT Significant 
I/O 

Climate and 
Weather 

3 CESM, GCRM, CM1, 
HOMME 

X X X X 

Plasmas/
Magnetosphere 

2 H3D(M), OSIRIS, Magtail/
UPIC 

X X X X 

Stellar 
Atmospheres and 
Supernovae 

2 PPM, MAESTRO, CASTRO, 
SEDONA 

X X X X 

Cosmology 2 Enzo, pGADGET X X X 

Combustion/
Turbulence 

1 PSDNS X X 

General Relativity 2 Cactus, Harm3D, LazEV X X 

Molecular Dynamics 4 AMBER, Gromacs, NAMD, 
LAMMPS 

X X X 

Quantum 
Chemistry 

2 SIAL, GAMESS, NWChem X X X X X 

Material Science 3 NEMOS, OMEN, GW, 
QMCPACK 

X X X X 

Earthquakes/
Seismology 

2 AWP-ODC, HERCULES, 
PLSQR, SPECFEM3D 

X X X X 

Quantum Chromo 
Dynamics 

1 Chroma, MILC, USQCD X X X X X 

Social Networks 1 EPISIMDEMICS 

Evolution 1 Eve 

Computer Science 1 X X X X X 

CUG - May 2, 2012 
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Heart of Blue Waters: Two New 
Chips 

AMD	  Interlagos	  
157	  GF	  peak	  performance	  

Features:	  
	  2.3-‐2.6	  GHz	  
	  8	  core	  modules,	  16	  threads	  
	  On-‐chip	  Caches	  
	   	  L1	  (I:8x64KB;	  D:16x16KB)	  
	   	  L2	  (8x2MB)	  
	  Memory	  Subsystem	  
	   	  Four	  memory	  channels	  
	   	  51.2	  GB/s	  bandwidth	  

NVIDIA	  Kepler	  
1,400	  GF	  peak	  performance	  

Features:	  
	  15	  Streaming	  multiprocessors	  (SMX)	  
	   	  SMX:	  192	  sp	  CUDA	  cores,	  64	  dp	   	  
	  units,	  32	  special	  function	  units	  
	   	  L1	  caches/shared	  mem	  (64KB,	  48KB)	  
	   	  L2	  cache	  (1536KB)	  
	  Memory	  subsystem	  
	  	   	  Six	  memory	  channels	  
	   	  180	  GB/s	  bandwidth	  	  
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Blue Waters and Titan 
Computing Systems 

 NCSA  ORNL 
System Attribute  Blue Waters  Titan 
Vendors  Cray/AMD/NVIDIA  Cray/AMD/NVIDIA 
Processors  Interlagos/Kepler  Interlagos/Kepler 

Total Peak Performance (PF)  11.9  >20 
    Total Peak Performance (CPU/GPU)  7.6/4.3  3/17 
Number of CPU Chips  48,576  18,688 
Number of GPU Chips  3,072  14,592 
Amount of CPU Memory (TB)  1,510  688 

Interconnect  3D Torus  3D Torus 

Amount of On-line Disk Storage (PB)  26  20(?) 
Sustained Disk Transfer (TB/sec)  >1  0.4-0.7 
Amount of Archival Storage  300  15-30 
Sustained Tape Transfer (GB/sec)  100  7 
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Blue Waters and K 
Computing Systems 

 NCSA  RIKEN 
System Attribute  Blue Waters  K 
Vendors  Cray/AMD/NVIDIA  Fujitsu 
Processors  Interlagos/Kepler  SPARC64 VIIIfx 

Total Peak Performance (PF)  11.9  11.3 
    Total Peak Performance (CPU/GPU)  7.6/4.3  11.3/0.0 
Number of CPU Chips  48,576  88,128 
Number of GPU Chips  3,072  0 
Amount of CPU Memory (TB)  1,510  1,410 

Interconnect  3D Torus  6D Torus 

Amount of On-line Disk Storage (PB)  26  11/30 
Sustained Disk Transfer (TB/sec)  >1  ? 
Amount of Archival Storage  300  ? 
Sustained Tape Transfer (GB/sec)  100  ? 
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Blue Waters and Sequoia 
Computing Systems 

 NCSA  LLNL 
System Attribute  Blue Waters  Sequoia 
Vendors  Cray/AMD/NVIDIA  IBM 
Processors  Interlagos/Kepler  PowerPCA2 variant 

Total Peak Performance (PF)  11.9  20.1 
    Total Peak Performance (CPU/GPU)  7.6/4.3  20.1/0.0 
Number of CPU Chips (8, 16 cores/chip) 48,576  98,304 
Number of GPU Chips  3,072  0 
Amount of CPU Memory (TB)  1,510  1,572 

Interconnect  3D Torus  5D Torus 

Amount of On-line Disk Storage (PB)  26  50(?) 
Sustained Disk Transfer (TB/sec)  >1  0.5-1.0 
Amount of Archival Storage  300  ? 
Sustained Tape Transfer (GB/sec)  100  ? 
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Another Example System 

•  128 node GPU Cluster 
•  #3 on Green500 in 2010 
•  Each node has  

♦  One Core i3 530 2.93 GHz 
dual-core CPU 

♦  One Tesla C2050 GPU per 
node 

•  33.62 TFLOPS on HPL 
(10x ASCI Red) 

•  934 MFLOPS/Watt 
•  But how do you program 

it? 
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An Even More Radical System 
•  Rack Scale 

♦  Processing:128 Nodes, 1 (+) PF/s 
♦  Memory: 

•  128 TB DRAM 
•  0.4 PB/s Aggregate Bandwidth 

♦  NV Memory 
•  1 PB Phase Change Memory (addressable) 
•  Additional 128 for Redundancy/RAID 

♦  Network 
•  0.13 PB/sec Injection, 0.06 PB/s Bisection 



14 

How Do We Make Effective 
Use of These Systems? 

•  Better use of our existing systems 
♦  Blue Waters will provide a sustained PF, but that 

typically requires ~10PF peak (BW over 11PF peak) 
•  Improve node performance 

♦  Make the compiler better 
♦  Give better code to the compiler 
♦  Match algorithms/data structures to real hardware 

•  Improve parallel performance/scalability 
•  Improve productivity of applications 

♦  Better tools and interoperable languages, not a (single) 
new programming language 

•  Improve algorithms wrt real hardware 
♦  Optimize for the real issues – data movement, power, 

resilience, …  
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Make the Compiler Better 

•  It remains the case that most 
compilers cannot compete with 
hand-tuned or autotuned code on 
simple code 
♦ Just look at dense matrix-matrix  

multiplication or matrix transpose 
♦ Try it yourself! 

• Matrix multiply on my laptop: 
• N=100 (in cache): 1818 MF (1.1ms) 
• N=1000 (not): 335 MF (6s) 
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How Good are Compilers at 
Vectorizing Codes? 

28

27

6

4

34

ICC

XLCXLC

GCC

1
3

Not Vectorizable

Auto Vectorized

1

3

Vectorizable

Vectorizable but none of the 
compilers auto vectorized

21

7 18 5

Intel IBM

 
S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing 
Compilers. PACT 2011. 
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How Do We Change This? 

•  Short term: Help improve compilers by testing 
against best hand-tuned or auto-tuned code 
♦  Code for results on previous slide taken from Blue 

Waters project 
•  Medium term: Give “Better” code to the 

compiler 
♦  Augment (not replace) current programming 

languages to exploit advanced techniques for 
program optimization 

•  Enable autotuning; specialized code generation 
♦  Challenge: Develop suitable performance 

abstractions, rather than prescriptive commands 
♦  Challenge: Overcome practical issues (e.g., 

correctness of multiple versions, debugging) 
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Better Algorithms and Data 
Structures 

•  Autotuning only offers the best 
performance with the given data 
structure and algorithm 
♦ That’s a big constraint 

•  Processors include hardware to address 
performance challenges 
♦  “Vector” function units 
♦ Memory latency hiding/prefetch 
♦ Atomic update features for shared memory 
♦ Etc.  
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Sparse Matrix-Vector Multiply 

Barriers to faster code 
•  “Standard” formats 

such as CSR do not 
meet requirements 
for prefetch or 
vectorization 

•  Modest changes to 
data structure 
enable both 
vectorization, 
prefetch, for 
20-80% 
improvement on P7  
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Prefetch results in Optimizing Sparse Data 
Structures for Matrix Vector Multiply  
http://hpc.sagepub.com/content/25/1/115 
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What Does This Mean For 
You? 

•  It is time to rethink data structures and 
algorithms to match the realities of memory 
architecture 
♦  We have results for x86 where the benefit is smaller 

but still significant 
♦  Better match of algorithms to prefetch hardware is 

necessary to overcome memory performance 
barriers 

•  Similar issues come up with heterogeneous 
processing elements (someone needs to 
design for memory motion and concurrent and 
nonblocking data motion) 
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Processes and SMP nodes 

•  HPC users typically believe that their code 
“owns” all of the cores all of the time 
♦  The reality is that was never true, but they did have 

all of the cores the same fraction of time when there 
was one core /node 

•  We can use a simple performance model to 
check the assertion and then use 
measurements to identify the problem and 
suggest fixes. 

•  Based on this, we can tune a state-of-the-art 
LU factorization…. 
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Happy Medium Scheduling 

Page 34

Best performance of CALU on multicore architectures

•   Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Page 34

Best performance of CALU on multicore architectures

•   Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Performance irregularities introduce load-
imbalance. 
Pure dynamic has significant overhead; pure 
static too much imbalance. 
Solution: combined static and dynamic 
scheduling 
 
Communication Avoiding LU factorization 
(CALU) algorithm, S. Donfack, L .Grigori, V. 
Kale, WG, IPDPS ‘12 

Scary Consequence: Static 
data decompositions will not 
work at scale. 
Corollary: programming 
models with static task 
models will not work at scale  
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Synchronization and 
Performance Irregularities 

•  Communication 
dependencies between 
processes or threads can 
introduce cascading 
delays if performance is 
“irregular” 

•  Total delay related to  
♦  Local delay 
♦  Probability of delay 
♦  Number of threads 

•  Probability of impact 
goes from near 0 on 
small system to near 
1 on large system  

•  Not just an “OS Noise” 
issue 

“Characterizing the Influence of System 
Noise on Large-Scale Applications by 
Simulation,” Hoefler, Schneider, 
Lumsdaine; Best Paper, SC10 
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The Problem is  
Blocking Operations 

•  Simple, data-parallel algorithms easy to 
reason about but inefficient 
♦  True for decades, but ignored (memory) 

•  One solution: fully asynchronous 
methods 
♦  Very attractive, yet efficiency is low and 

there are good reasons for that 
♦  Blocking can be due to fully collective (e.g., 

Allreduce) or neighbor communications 
(halo exchange) 

♦  Can we save methods that involve global, 
synchronizing operations? 
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Saving Allreduce  

•  One common suggestion is to avoid using 
Allreduce 
♦  But algorithms with dot products are among the best 

known 
♦  Can sometimes aggregate the data to reduce the 

number of separate Allreduce operations 
♦  But better is to reduce the impact of the 

synchronization by hiding the Allreduce behind other 
operations (in MPI, using  MPI_Iallreduce) 

•  We can adapt CG to nonblocking Allreduce 
with some added floating point (but perhaps 
little time cost) 
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The Conjugate Gradient 
Algorithm 

•  While (not converged)  
  niters += 1; 
  s     = A * p; 
  t     = p' *s; 
  alpha = gmma / t; 
  x     = x + alpha * p; 
  r     = r - alpha * s; 
  if rnorm2 < tol2 ; break ; end 
  z     = M * r; 
  gmmaNew = r' * z; 
  beta  = gmmaNew / gmma; 
  gmma = gmmaNew; 
  p     = z + beta * p; 
end 
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The Conjugate Gradient 
Algorithm 

•  While (not converged)  
  niters += 1; 
  s     = A * p; 
  t     = p' *s; 
  alpha = gmma / t; 
  x     = x + alpha * p; 
  r     = r - alpha * s; 
  if rnorm2 < tol2 ; break ; end 
  z     = M * r; 
  gmmaNew = r' * z; 
  beta  = gmmaNew / gmma; 
  gmma = gmmaNew; 
  p     = z + beta * p; 
end 
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CG Reconsidered 

•  By reordering operations, nonblocking 
dot products (MPI_Iallreduce in MPI-3) 
can be overlapped with other operations 

•  Trades extra local work for overlapped 
communication 
♦ On a pure floating point basis, the 

nonblocking version requires 2 more 
DAXPY operations 

♦ A closer analysis shows that some 
operations can be merged 

•  More work does not imply more time 
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What’s Different at Peta/Exascale 

•  Performance Focus 
♦  Only a little – basically, the resource is expensive, so a 

premium placed on making good use of resource 
♦  Quite a bit – node is more complex, has more features 

that must be exploited 
•  Scalability 

♦  Solutions that work at 100-1000 way often inefficient at 
100,000-way 

♦  Some algorithms scale well 
•  Explicit time marching in 3D 

♦  Some don’t 
•  Direct implicit methods 

♦  Some scale well for a while  
•  FFTs (communication volume in Alltoall) 

♦  Load balance, latency are critical issues 
•  Fault Tolerance becoming important 

♦  Now: Reduce time spent in checkpoints 
♦  Soon: Lightweight recovery from transient errors 
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Preparing for the Next 
Generation of HPC Systems 

•  Better use of existing resources 
♦  Performance-oriented programming 
♦  Dynamic management of resources at all levels 
♦  Embrace hybrid programming models (you have 

already if you use SSE/VSX/OpenMP/…) 
•  Focus on results 

♦  Adapt to available network bandwidth and latency 
♦  Exploit I/O capability (available space crew faster 

than processor performance!) 
•  Prepare for the future 

♦  Fault tolerance 
♦  Hybrid processor architectures 
♦  Latency tolerant algorithms  
♦  Data-driven systems 
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Recommended Reading 

•  Bit reversal on uniprocessors (Alan Karp, SIAM 
Review, 1996) 

•  Achieving high sustained performance in an 
unstructured mesh CFD application (W. K. 
Anderson, W. D. Gropp, D. K. Kaushik, D. E. 
Keyes, B. F. Smith, Proceedings of 
Supercomputing, 1999) 

•  Experimental Analysis of Algorithms 
(Catherine McGeoch, Notices of the American 
Mathematical Society, March 2001) 

•  Reflections on the Memory Wall (Sally McKee, 
ACM Conference on Computing Frontiers, 
2004) 
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•  Torsten Hoefler 

♦  Performance modeling lead, 
Blue Waters; MPI datatype 

•  David Padua, Maria 
Garzaran, Saeed Maleki 
♦  Compiler vectorization 

•  Dahai Guo 
♦  Streamed format exploiting 

prefetch, vectorization, GPU 
•  Vivek Kale 

♦  SMP work partitioning 
•  Hormozd Gahvari 

♦  AMG application modeling 
•  Marc Snir and William 

Kramer 
♦  Performance model 

advocates 

•  Abhinav Bhatele 
♦  Process/node mapping 

•  Van Bui 
♦  Performance model-based 

evaluation of programming 
models 
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Illinois and the University of 
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♦  Department of Energy, Office of 
Science 

♦  National Science Foundation 
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