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•  Sparse Matrix and Vector multiply (SpMV) dominates the computations in 
many iterative methods , such as 
•  The Krylov subspace method in scientific computing: 

 
•  Google page rank algorithm used for web searches:  




•  The GPU is a powerful tool for accelerating computations with its many 
streaming multiprocessors.  

•  We present a simple auto-tuning process for SpMV on a GPU, based on the 
CSR format.  

Introduc%on	
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Challenges	
  for	
  SpMV	
  on	
  GPU	
  
•  Need to make efficient use of GPU global memory:  

Memory coalescing means sixteen consecutive threads (a half warp) access 
consecutive addresses in the GPU’s global memory. It can significantly 
reduce the latency and improve the memory bandwidth for data loaded from 
global memory. 

•  Need to make efficient use of all GPU cores: 
32 threads (1 warp) physically run in parallel.  Balanced workloads are 
needed to efficiently use parallel threads. Otherwise some threads are idle 
while other threads are busy.  
 

•  However, using GPUs for SpMV computation is a challenge because of the 
randomness of nonzero element distributions in different matrices.  
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Related	
  Work	
  
•  Nathan Bell and Michael Garland evaluated the performance of several 

storage formats on GPU (scalar and vector CSR, ELL, COO, HYB) and 
developed a SpMV package for GPUs. 

•  M. M. Baskaran and R. Bordawekar discussed some tuning approaches for 
SpMV on a GPU, such as synchronization-free parallelism, thread mapping, 
global memory access, data reuse, and achieved some performance 
improvement. 

•  J. W. Choi  et al developed a blocked ELL format and described a model-
driven auto-tuning framework. 

•  István Reguly and Miles Giles tuned the number of threads applied for each 
row of the whole matrix (TPR_C) using the vector-CSR format, and discussed  
how the different values of TPR and some other parameters affect the 
performance of SpMV on a GPU.  
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Limita%ons	
  of	
  the	
  current	
  formats	
  
•  The ELL format needs to add zeros in order to ensure that each row has the 

same number of elements so that the data can be loaded through “memory 
coalescing”. If too many zeros are added, the ELL format becomes inefficient.  

•  The HYB (ELL + COO) format partially solves the problem, but it requires 
more complex program logic. 
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•  Because the TPR_C  method uses a constant 
value of TPR for the entire matrix, it is very 
difficult to adjust and balance the workloads for 
matrices having very different numbers of 
nonzero elements per row, such as the matrix 
“ibm-dc1”. 

•  It can be expensive to convert matrices 
between different storage formats.  

The matrix “ibm-dc1” 



The	
  Adap%ve	
  Thread	
  Distribu%ons	
  

We adapt the number of threads used for each row of the matrix in order to 
balance the workload: 
 
•  Sort the matrix in the increasing order, based on the number of nonzero 

elements in each row. 
•  Partition the sorted matrix into several ranges of length;  each range is 

adaptively assigned a number of threads per row (TPR_A) according to the 
range length. 

•  The number of GPU blocks is then calculated to handle the computation in 
the matrix range. 
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The	
  Adap%ve	
  Thread	
  Distribu%ons	
  (cont’d)	
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For example,  
•  The value of 512 ( = 29) is set as the GPU block size. 
•  The matrix is partitioned into ten ranges with TPR = 20, 21, …, 2i,…, or 29  

respectively.  
•  TPR = 20 for the matrix range in which each row has at most 8 NNZ 

elements, 21 for the rows between 8 and 8*2, 22 for those in the range (8*2, 
8*4], …, and 29 for the matrix rows in the range (8*512, max]. If there is no 
row in a certain range, then no GPU block is distributed to that range. 

•  In the right figure the matrix is 
signed with ten GPU blocks, two 
with TPR =1, three with TPR=2, …, 
and two with TPR = 16.  



The	
  Tested	
  Matrices	
  

•  The Dell NVIDIA Linux cluster “Forge” at NCSA is used for the tests.  It is 
equipped with AMD Opteron 2.4 GHz processors and NVIDIA Fermi M2070 
GPU accelerators 
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Matrix	
   Rows	
   Columns	
   Nonzeros	
   Nonzeros/Row	
  

audikw_1	
   943695	
   943695	
   77651847	
   82.3	
  

torso1	
   116158	
   116158	
   8516500	
   73.3	
  

TSOPF_RS_b2383	
   38120	
   38120	
   16171169	
   424.2	
  

cage14	
   1505785	
   1505785	
   27130349	
   18.0	
  

Ldoor	
   952203	
   952203	
   46522475	
   48.9	
  

Msdoor	
   415863	
   415863	
   20240935	
   48.7	
  

ibm-­‐dc1	
   116835	
   116835	
   766396	
   6.6	
  

raefsky3	
   21200	
   21200	
   1488768	
   70.2	
  

Pwtk	
   217918	
   217918	
   11634424	
   53.4	
  

pdb1HYS	
   36417	
   36417	
   4344765	
   119.3	
  

mac_econ_fwd500	
   206500	
   206500	
   1273389	
   6.2	
  

mc2depi	
   525825	
   525825	
   2100225	
   4.0	
  

Scircuit	
   170998	
   170998	
   958936	
   5.6	
  

webbase-­‐1M	
   1000005	
   1000005	
   3105536	
   3.1	
  

web-­‐Google	
   916428	
   916428	
   5105039	
   5.6	
  

Stanford	
   281903	
   281903	
   2312497	
   8.2	
  

Stanford_Berkeley	
   683446	
   683446	
   7583376	
   11.1	
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•  Test matrices are chosen from 
“The University of Florida 
Sparse Matrix Collection”. 



Matrix	
  “ibm-­‐dc1”	
  

•  We begin the tests with the matrix “ibm-dc1”, which is 
one of the matrices we find hard to speed up, both on 
CPUs and GPUs. 

•  It has a very irregular nonzero distribution along the 
rows.  Most of the rows have fewer than 288 nonzero 
elements. However, there are two rows that have 
extremely large numbers of nonzero elements, 47193 
and 114190 respectively.  

•  It is hard to balance the workload of each thread if a 
constant number of threads per row (TPR_C) is 
applied to the whole matrix. 
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Two	
  adap%ve	
  TPR	
  methods	
  for	
  	
  “ibm-­‐dc1”	
  

Two adaptive thread methods (TPR_A) are used to handle the computations 
for those two long rows:  
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•  (1)  TPR_A I: one GPU block for each 
row.  The average nonzero elements 
handled by those two blocks (80691 per 
block) are still much larger than other 
blocks.  

•  (2) TPR_A II: multiple GPU blocks for 
each row. Only a little additional work is 
needed to collect the sum from each 
block and obtain the final result for the 
row.  It results in much better workload 
balance (4296 per block).   



Speed	
  Up	
  on	
  GPU	
  for	
  “ibm-­‐dc1”	
  
•  The best speedup in the NVIDIA SpMV package is 4.58. 
•  The performance of the method with the constant TPR (TPR_C) is even 

worse than the CPU serial run. 
•  The adaptive multiple TPR method (TPR_A) can significantly improve the 

performance on GPU.  
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•  The speedup from TPR_A I is 7.88. 
•  When the multiple GPU blocks 

(TPR_A II) are employed for the two 
long rows and the inner loop is 
unrolled by 4, it achieves a speedup 
of 9.88.  

•  Over 100% improvement compared 
to the NVIDIA best result 



Speed	
  Up	
  for	
  More	
  Matrices:	
  unrolling	
  
•  Unrolling the inner loop results in mixed performance; better for six of the 

matrices, worse for eleven. 
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Speed	
  Up	
  for	
  More	
  Matrices:	
  TPR	
  choice	
  
•  The TPR methods (either TPR_C or TPR_A) achieve as good as or 

significantly better performance for fifteen matrices, compared to the best 
result from the NVIDIA SpMV package. 
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The	
  ELL	
  Format	
  in	
  NVIDIA	
  SpMV	
  Package	
  
•  The ELL format  in NVIDIA results in significantly better performance 

than “autocsr” for two matrices “raefsky3” and “mc2depi”. 
•  Those two matrices both have similar numbers of nonzero elements 

per row, and it is easy to store them in the ELL format without adding 
too many zeros.  

•  The advantage of the ELL format is that it can fully exploit “memory 
coalescing” when loading data. 
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•  However, it is difficult to take advantage 
of the ELL format in general because of 
the irregularity of matrix sparsity 
patterns. 

 



The	
  Format	
  Choices	
  in	
  NVIDIA	
  SpMV	
  Package	
  

•  The NVIDIA SpMV package achieves the best 
results with either csr_vector, ELL, COO or HYB 
formats (_tex means the texture cache is used for 
vector X):  

•  five matrices with the csr_vector format 
•  five with the ELL format 
•  five with the COO format 
•  two with the HYB (ELL+HYB) format 

•  No format is significantly better than others. 
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The	
  AUTOCSR	
  Process	
  	
  
•  The methods “TPR_A” and “TPR_C” are combined together for 

auto-tuning, since both of them are based on the CSR format. 

•  In the first several iterations, different methods or TPR values are 
tried to decide the optimal method/value for the rest of iterations. 

•  However, the exhaustive search for the optimal value of the 
“TPR_C” may significantly slow down the tuning process. 
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The	
  AUTOCSR	
  Process	
  (Cont’d)	
  	
  
•  For “TPR_C”, only three values of TPR based on the average number of 

nonzero elements per row (ave_nnz = NNZ / Rows) are tried, in order to 
accelerate the tuning process.  
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•  Generally, when “ave_nnz” is smaller 
than 16, the TPR values of 2, 4 and 8 
are tried;  4, 8 and 16 are used when 
ave_nnz is between 16 and 32, and 8; 
16 and 32 are tested when ave_nnz is 
larger than 32. 



Performance	
  of	
  the	
  AUTOCSR	
  Process	
  
•  The results match what we obtained before. The “AUTOCSR” data 

shows the average speedup over 200 iterations achieved with our 
tuning program on the GPU, including the first several iterations 
which search for the best kernels and the optimized parameters.  
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Speed Up GFlops 



Summary	
  and	
  Conclusions	
  
•  The “AUTOCSR” process achieves good performance for most of the 

tested matrices. 
•  It is easy to implement and the tuning process is fast. 
•  We do not expect that it will always result in the optimal performance. 
•  Further optimization of the method to balance the workload on each 

GPU thread may obtain more performance benefit for SpMV on a 
GPU. 
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Thanks. 
 

Questions? 

22 Adaptive Thread Distributions for SpMV on a GPU 


