
Adap%ve	
 Thread	
 Distribu%ons	
 for	

Sparse	
 Matrix-­‐Vector	
 Mul%ply	
 on	

a	
 GPU	

William Gropp and Dahai Guo
NCSA, UIUC

Outline	

•  Introduction
•  Challenges for SpMV on GPU
•  Related work and the limitations
•  Adaptive thread distributions for SpMV
•  Test Results
•  The AUTOCSR process
•  Summary and Conclusions

2 Adaptive Thread Distributions for SpMV on a GPU

•  Sparse Matrix and Vector multiply (SpMV) dominates the computations in
many iterative methods , such as
•  The Krylov subspace method in scientific computing:

•  Google page rank algorithm used for web searches:

•  The GPU is a powerful tool for accelerating computations with its many
streaming multiprocessors.

•  We present a simple auto-tuning process for SpMV on a GPU, based on the
CSR format.

Introduc%on	

3 Adaptive Thread Distributions for SpMV on a GPU

Challenges	
 for	
 SpMV	
 on	
 GPU	

•  Need to make efficient use of GPU global memory:

Memory coalescing means sixteen consecutive threads (a half warp) access
consecutive addresses in the GPU’s global memory. It can significantly
reduce the latency and improve the memory bandwidth for data loaded from
global memory.

•  Need to make efficient use of all GPU cores:
32 threads (1 warp) physically run in parallel. Balanced workloads are
needed to efficiently use parallel threads. Otherwise some threads are idle
while other threads are busy.

•  However, using GPUs for SpMV computation is a challenge because of the
randomness of nonzero element distributions in different matrices.

4 Adaptive Thread Distributions for SpMV on a GPU

Related	
 Work	

•  Nathan Bell and Michael Garland evaluated the performance of several

storage formats on GPU (scalar and vector CSR, ELL, COO, HYB) and
developed a SpMV package for GPUs.

•  M. M. Baskaran and R. Bordawekar discussed some tuning approaches for
SpMV on a GPU, such as synchronization-free parallelism, thread mapping,
global memory access, data reuse, and achieved some performance
improvement.

•  J. W. Choi et al developed a blocked ELL format and described a model-
driven auto-tuning framework.

•  István Reguly and Miles Giles tuned the number of threads applied for each
row of the whole matrix (TPR_C) using the vector-CSR format, and discussed
how the different values of TPR and some other parameters affect the
performance of SpMV on a GPU.

5 Adaptive Thread Distributions for SpMV on a GPU

Limita%ons	
 of	
 the	
 current	
 formats	

•  The ELL format needs to add zeros in order to ensure that each row has the

same number of elements so that the data can be loaded through “memory
coalescing”. If too many zeros are added, the ELL format becomes inefficient.

•  The HYB (ELL + COO) format partially solves the problem, but it requires
more complex program logic.

6 Adaptive Thread Distributions for SpMV on a GPU

•  Because the TPR_C method uses a constant
value of TPR for the entire matrix, it is very
difficult to adjust and balance the workloads for
matrices having very different numbers of
nonzero elements per row, such as the matrix
“ibm-dc1”.

•  It can be expensive to convert matrices
between different storage formats.

The matrix “ibm-dc1”

The	
 Adap%ve	
 Thread	
 Distribu%ons	

We adapt the number of threads used for each row of the matrix in order to
balance the workload:

•  Sort the matrix in the increasing order, based on the number of nonzero

elements in each row.
•  Partition the sorted matrix into several ranges of length; each range is

adaptively assigned a number of threads per row (TPR_A) according to the
range length.

•  The number of GPU blocks is then calculated to handle the computation in
the matrix range.

7 Adaptive Thread Distributions for SpMV on a GPU

The	
 Adap%ve	
 Thread	
 Distribu%ons	
 (cont’d)	

8 Adaptive Thread Distributions for SpMV on a GPU

For example,
•  The value of 512 (= 29) is set as the GPU block size.
•  The matrix is partitioned into ten ranges with TPR = 20, 21, …, 2i,…, or 29

respectively.
•  TPR = 20 for the matrix range in which each row has at most 8 NNZ

elements, 21 for the rows between 8 and 8*2, 22 for those in the range (8*2,
8*4], …, and 29 for the matrix rows in the range (8*512, max]. If there is no
row in a certain range, then no GPU block is distributed to that range.

•  In the right figure the matrix is
signed with ten GPU blocks, two
with TPR =1, three with TPR=2, …,
and two with TPR = 16.

The	
 Tested	
 Matrices	

•  The Dell NVIDIA Linux cluster “Forge” at NCSA is used for the tests. It is
equipped with AMD Opteron 2.4 GHz processors and NVIDIA Fermi M2070
GPU accelerators

9

Matrix	
 Rows	
 Columns	
 Nonzeros	
 Nonzeros/Row	

audikw_1	
 943695	
 943695	
 77651847	
 82.3	

torso1	
 116158	
 116158	
 8516500	
 73.3	

TSOPF_RS_b2383	
 38120	
 38120	
 16171169	
 424.2	

cage14	
 1505785	
 1505785	
 27130349	
 18.0	

Ldoor	
 952203	
 952203	
 46522475	
 48.9	

Msdoor	
 415863	
 415863	
 20240935	
 48.7	

ibm-­‐dc1	
 116835	
 116835	
 766396	
 6.6	

raefsky3	
 21200	
 21200	
 1488768	
 70.2	

Pwtk	
 217918	
 217918	
 11634424	
 53.4	

pdb1HYS	
 36417	
 36417	
 4344765	
 119.3	

mac_econ_fwd500	
 206500	
 206500	
 1273389	
 6.2	

mc2depi	
 525825	
 525825	
 2100225	
 4.0	

Scircuit	
 170998	
 170998	
 958936	
 5.6	

webbase-­‐1M	
 1000005	
 1000005	
 3105536	
 3.1	

web-­‐Google	
 916428	
 916428	
 5105039	
 5.6	

Stanford	
 281903	
 281903	
 2312497	
 8.2	

Stanford_Berkeley	
 683446	
 683446	
 7583376	
 11.1	

Adaptive Thread Distributions for SpMV on a GPU

•  Test matrices are chosen from
“The University of Florida
Sparse Matrix Collection”.

Matrix	
 “ibm-­‐dc1”	

•  We begin the tests with the matrix “ibm-dc1”, which is
one of the matrices we find hard to speed up, both on
CPUs and GPUs.

•  It has a very irregular nonzero distribution along the
rows. Most of the rows have fewer than 288 nonzero
elements. However, there are two rows that have
extremely large numbers of nonzero elements, 47193
and 114190 respectively.

•  It is hard to balance the workload of each thread if a
constant number of threads per row (TPR_C) is
applied to the whole matrix.

10 Adaptive Thread Distributions for SpMV on a GPU

Two	
 adap%ve	
 TPR	
 methods	
 for	
 	
 “ibm-­‐dc1”	

Two adaptive thread methods (TPR_A) are used to handle the computations
for those two long rows:

11 Adaptive Thread Distributions for SpMV on a GPU

•  (1) TPR_A I: one GPU block for each
row. The average nonzero elements
handled by those two blocks (80691 per
block) are still much larger than other
blocks.

•  (2) TPR_A II: multiple GPU blocks for
each row. Only a little additional work is
needed to collect the sum from each
block and obtain the final result for the
row. It results in much better workload
balance (4296 per block).

Speed	
 Up	
 on	
 GPU	
 for	
 “ibm-­‐dc1”	

•  The best speedup in the NVIDIA SpMV package is 4.58.
•  The performance of the method with the constant TPR (TPR_C) is even

worse than the CPU serial run.
•  The adaptive multiple TPR method (TPR_A) can significantly improve the

performance on GPU.

12 Adaptive Thread Distributions for SpMV on a GPU

•  The speedup from TPR_A I is 7.88.
•  When the multiple GPU blocks

(TPR_A II) are employed for the two
long rows and the inner loop is
unrolled by 4, it achieves a speedup
of 9.88.

•  Over 100% improvement compared
to the NVIDIA best result

Speed	
 Up	
 for	
 More	
 Matrices:	
 unrolling	

•  Unrolling the inner loop results in mixed performance; better for six of the

matrices, worse for eleven.

13 Adaptive Thread Distributions for SpMV on a GPU

Speed	
 Up	
 for	
 More	
 Matrices:	
 TPR	
 choice	

•  The TPR methods (either TPR_C or TPR_A) achieve as good as or

significantly better performance for fifteen matrices, compared to the best
result from the NVIDIA SpMV package.

14 Adaptive Thread Distributions for SpMV on a GPU

The	
 ELL	
 Format	
 in	
 NVIDIA	
 SpMV	
 Package	

•  The ELL format in NVIDIA results in significantly better performance

than “autocsr” for two matrices “raefsky3” and “mc2depi”.
•  Those two matrices both have similar numbers of nonzero elements

per row, and it is easy to store them in the ELL format without adding
too many zeros.

•  The advantage of the ELL format is that it can fully exploit “memory
coalescing” when loading data.

15 Adaptive Thread Distributions for SpMV on a GPU

•  However, it is difficult to take advantage
of the ELL format in general because of
the irregularity of matrix sparsity
patterns.

The	
 Format	
 Choices	
 in	
 NVIDIA	
 SpMV	
 Package	

•  The NVIDIA SpMV package achieves the best
results with either csr_vector, ELL, COO or HYB
formats (_tex means the texture cache is used for
vector X):

•  five matrices with the csr_vector format
•  five with the ELL format
•  five with the COO format
•  two with the HYB (ELL+HYB) format

•  No format is significantly better than others.

16 Adaptive Thread Distributions for SpMV on a GPU

The	
 AUTOCSR	
 Process	
 	

•  The methods “TPR_A” and “TPR_C” are combined together for

auto-tuning, since both of them are based on the CSR format.

•  In the first several iterations, different methods or TPR values are
tried to decide the optimal method/value for the rest of iterations.

•  However, the exhaustive search for the optimal value of the
“TPR_C” may significantly slow down the tuning process.

17 Adaptive Thread Distributions for SpMV on a GPU

The	
 AUTOCSR	
 Process	
 (Cont’d)	
 	

•  For “TPR_C”, only three values of TPR based on the average number of

nonzero elements per row (ave_nnz = NNZ / Rows) are tried, in order to
accelerate the tuning process.

18 Adaptive Thread Distributions for SpMV on a GPU

•  Generally, when “ave_nnz” is smaller
than 16, the TPR values of 2, 4 and 8
are tried; 4, 8 and 16 are used when
ave_nnz is between 16 and 32, and 8;
16 and 32 are tested when ave_nnz is
larger than 32.

Performance	
 of	
 the	
 AUTOCSR	
 Process	

•  The results match what we obtained before. The “AUTOCSR” data

shows the average speedup over 200 iterations achieved with our
tuning program on the GPU, including the first several iterations
which search for the best kernels and the optimized parameters.

19 Adaptive Thread Distributions for SpMV on a GPU

Speed Up GFlops

Summary	
 and	
 Conclusions	

•  The “AUTOCSR” process achieves good performance for most of the

tested matrices.
•  It is easy to implement and the tuning process is fast.
•  We do not expect that it will always result in the optimal performance.
•  Further optimization of the method to balance the workload on each

GPU thread may obtain more performance benefit for SpMV on a
GPU.

20 Adaptive Thread Distributions for SpMV on a GPU

Acknowledgements	

This research is part of the Blue Waters sustained-petascale computing
project, which is supported by the National Science Foundation (award
number OCI 07-25070) and the state of Illinois. Blue Waters is a joint
effort of the University of Illinois at Urbana-Champaign, its National
Center for Supercomputing Applications and the Great Lakes
Consortium for Petascale Computation.

21 Adaptive Thread Distributions for SpMV on a GPU

Thanks.

Questions?

22 Adaptive Thread Distributions for SpMV on a GPU

