
8/14/12	

1	

Performance, Correctness, and
Programmability: Challenges for

Parallel Programming at
Exascale

William Gropp
www.cs.illinois.edu/~wgropp

2

Why Exascale?
•  Many applications require more accuracy/

features that currently available
♦ More computation (more complex models,

higher resolution)
♦ More data (which in turn requires

computation)
♦ The challenge is to do science with these

•  Common theme is performance.

8/14/12	

2	

3

What Kind of Programmers?

•  Experts, but they need our help
♦ Experts are rare
♦ So are extreme scale systems:

•  An extreme scale system is an expensive and valuable
resource ($100-500M)

• One hour on a large system is over $10K
•  Speeding up one code that will run for a week by just

10% is worth about $200K
•  Speeding up all codes by 10% is worth about $10M/

year/system

•  Issues are subtle, even for experts
♦ See “You don’t know Jack about Shared Variables

or Memory Models”, CACM Vol 55#2, Feb 2012.

4

Compilers Are Unable To Deliver
Performance Automatically

•  Years of trying have shown how hard
the problem is
♦ Note that much of the problem has to do

with handling the memory hierarchy for a
single core or node

♦  Large parallel systems will be harder
•  Compilers can be a partner in solving

the problem but not the answer
•  We must stop pretending: We cannot

turn the problem of generating fast and
correct code over to “the” compiler
♦ Get over it

8/14/12	

3	

5

What Should a High Level
Programming Language Do?

•  Not make it easy to program easy problems!
♦  Programming in the large is not the same as

programming small and simple applications
♦  Its ok if it turns out to be easy to program easy

problems, but that is not a useful criteria or
evaluation metric

•  Make it possible to program challenging
problems
♦  And meet constraints: performance, correctness,

adaptability
♦  This is the real productivity challenge

•  We’ve been here before…

6

Quotes from “System Software and Tools for High
Performance Computing Environments” (1993)

•  “The strongest desire expressed by these users
was simply to satisfy the urgent need to get
applications codes running on parallel machines
as quickly as possible”

•  Immediate Goals for Computing Environments:
♦  Parallel computer support environment
♦  Standards for same
♦  Standard for parallel I/O
♦  Standard for message passing on distributed memory machines

•  “The single greatest hindrance to significant
penetration of MPP technology in scientific
computing is the absence of common
programming interfaces across various parallel
computing systems”

8/14/12	

4	

7

Quotes from “Enabling Technologies for
Petaflops Computing” (1995)

•  “The software for the current generation of 100 GF machines is
not adequate to be scaled to a TF…”

•  “The Petaflops computer is achievable at reasonable cost with
technology available in about 20 years [2014].”
♦  (estimated clock speed in 2004 — 700MHz)*

•  “Software technology for MPP’s must evolve new ways to
design software that is portable across a wide variety of
computer architectures. Only then can the small but important
MPP sector of the computer hardware market leverage the
massive investment that is being applied to commercial
software for the business and commodity computer market.”

•  “To address the inadequate state of software productivity,
there is a need to develop language systems able to integrate
software components that use different paradigms and
language dialects.”

•  (9 overlapping programming models, including shared
memory, message passing, data parallel, distributed shared
memory, functional programming, O-O programming, and
evolution of existing languages)

False

True*

True?
(MPI)

Still
True
L

8

What are the Real Problems?

•  Single node performance is clearly a problem.
•  Is there another problem?

♦  There is the issue of productivity.
♦  It isn’t just Message-passing vs shared memory

• Message passing codes can take longer to write
but bugs are often deterministic (program
hangs). Explicit memory locality simplifies fixing
performance bugs

•  Shared memory codes can be written quickly but
bugs due to races are difficult to find;
performance bugs can be harder to identify and
fix (e.g., see You don’t know Jack about...)

♦  It isn’t just the way in which you move data
•  Consider the NAS parallel benchmark code for

Multigrid (mg.f):

8/14/12	

5	

9

MPI

User
DS

Code

10

What is the problem?
The user is responsible
for all steps in the
decomposition of the data
structures across the
processors

Note that this does give
the user (or someone) a
great deal of flexibility, as
the data structure can be
distributed in arbitrary
ways across arbitrary sets
of processors

Users want their data
structures

8/14/12	

6	

11

But the Situation is
Even Worse

•  NAS Benchmarks (reference code) built for a
single level of parallelism
♦  A single processor, single core node
♦  Interconnect with one interface per node/core
♦  Modern systems have

•  More cores per node
•  May have multiple interconnect interfaces
•  Shared resources, including cores

-  Limits usefulness of static decompositions

•  Real challenge is support for complex
distributed data structures
♦  Not just the basic distributed data structures

provided by, e.g., HPF, CAF, or UPC

12

Why Was MPI Successful?
•  It address all of the following issues:

♦  Portability
♦  Performance
♦  Simplicity and Symmetry
♦  Modularity
♦  Composability
♦  Completeness

•  For a more complete discussion, see “Learning
from the Success of MPI”,
http://www.cs.illinois.edu/~wgropp/bib/papers/
2001/mpi-lessons.pdf

•  In addition, it has a precise definition (syntax and
semantics), permitting applications that ran on the
T3D to get the same answer on the Fujitsu K
Computer.
♦  See papers from U Utah and U Delaware on formal

analysis of MPI programs

8/14/12	

7	

13

Portability and Performance

•  Portability does not require a “lowest common
denominator” approach
♦  Good design allows the use of special, performance

enhancing features without requiring hardware support
♦  For example, MPI’s nonblocking message-passing

semantics allows but does not require “zero-copy” data
transfers

•  MPI is really a “Greatest Common Denominator”
approach
♦  It is a “common denominator” approach; this is portability

•  To fix this, you need to change the hardware (change “common”)
♦  It is a (nearly) greatest approach in that, within the design

space (which includes a library-based approach), changes
don’t improve the approach

•  Least suggests that it will be easy to improve; by definition, any
change would improve it.

♦  Getting the name right is important - “least” makes it easy
to think there are easy, better alternatives

14

Simplicity and Symmetry

• MPI is organized around a small
number of concepts
♦ The number of routines is not a good

measure of complexity
♦ E.g., Fortran

• Large number of intrinsic functions
♦ C and Java runtimes are large
♦ Development Frameworks

• Hundreds to thousands of methods
♦ This doesn’t bother millions of

programmers

8/14/12	

8	

15

Modularity

• Modern algorithms are hierarchical
♦ Do not assume that all operations

involve all or only one process
♦ Provide tools that don’t limit the user

• Modern software is built from
components
♦ MPI designed to support libraries

• Programming “in the large”
♦ Communication contexts (not just

groups) in MPI are an example

16

Composability

•  Environments are built from
components
♦ Compilers, libraries, runtime systems
♦ MPI designed to “play well with others”

• MPI exploits newest advancements in
compilers
♦ … without ever talking to compiler

writers
♦ MPI+OpenMP is an example

• MPI (the standard) required no changes to
work with OpenMP

8/14/12	

9	

17

Completeness

•  MPI provides a complete parallel
programming model and avoids
simplifications that limit the model
♦ Contrast: Models that require that

synchronization only occurs collectively for
all processes or tasks

♦ Contrast: Models that provide support for a
specialized (sub)set of distributed data
structures

•  Make sure that the functionality is there
when the user needs it
♦ Don’t force the user to start over with a new

programming model when a new feature is
needed (such models are brittle)

18

What’s Different?
(Or, Why MPI isn’t Enough?)

•  Nodes are hierarchical, more memory levels,
resources not perfectly divided among threads
♦  MPI’s process model no longer a good fit, though not

bad for the node or chip
•  Other constraints emerging: e.g., faults, total

power
♦  Never a concern in MPI design; little direct support

•  Community more accepting of mixed strategies
♦  “Domain specific languages”

•  Really “Abstract Data Structure Specific” languages

♦  Multi-language programming
•  MPI’s composabilty a strength

♦  True complexity of shared-memory programming
understood (?)

8/14/12	

10	

19

Happy Medium Scheduling

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Performance irregularities introduce load-
imbalance.
Pure dynamic has significant overhead; pure
static too much imbalance.
Solution: combined static and dynamic
scheduling

Communication Avoiding LU factorization
(CALU) algorithm, S. Donfack, L .Grigori, V.
Kale, WG, IPDPS ‘12

Scary Consequence: Static
data decompositions will not
work at scale.
Corollary: programming
models with static task
models will not work at scale

20

Faults and
Programming Models

•  “Give me what I want”
♦  Add tension between “do what I want” and “have a well defined

behavior for others”
•  Note that it is provably impossible to reliably detect all kinds

of faults
♦  Node “down” may be node “really, really slow”
♦  Some recent theory gets around this by defining a down node as one

that doesn’t respond in time. Problem then is in defining the threshold
to quickly detect the truly failed but not abandon the merely slow.

•  Hard to provide general solution that users like
♦  Users like simplicity except when it gives them the wrong answer

•  They tend to like simplicity until it gives them the wrong answer.
♦  Users like models that are full of races and errors, as long as it doesn’t

mess them up (as far as they can tell, and they often can’t in a
scientific code, as errors are often proportional to Δt and reduce the
accuracy of the computation)

•  May be the wrong problem
♦  Node “down” may be much less likely than “uncorrected but

recoverable memory or data path error”
♦  May not require the same corrective steps as node down
♦  Programming model support for “node down” and “memory lost” likely

very, very different

8/14/12	

11	

21

Conclusions
•  No single programming model can dominate
•  Layers must work together

♦  Its why MPI + OpenMP is so painful now – they don’t

•  Users have not embraced other models
♦  Despite years of efforts, few UPC or CAF users
♦  There are good reasons for this (see the reasons for MPI success, esp.

performance and completeness)
•  Achieving performance has often required “MPI-like” locality management

•  Interoperability is essential
♦  Challenge – resource sharing between models
♦  Challenge – subtly different semantics

•  Performance issues often reflect implementation issues
rather than choice of programming model
♦  Many “MPI vs. X” comparisons are really “Underoptimized MPI

implementation vs. optimized X”.

•  Need to offer significantly new capabilities, not just slightly
(maybe) better ways to do what apps are already doing

