
How Would We Define High
Value in a Software Innovation
Institute?
William Gropp
www.cs.illinois.edu/~wgropp

High Value Software
•  Software in this context is used to perform and analyze experiments,

both computational and other
•  Value is measured by how it enables these tasks
•  Measuring this is hard; like measuring value of research.
•  Total cost of the experiment and analysis includes multiple

elements:
•  Cost of people (writing/planning/using)
•  Cost of hardware on which software runs (capital and operating)
•  Cost of developing/adapting/tuning/maintaining software
•  Cost of data acquisition and management

•  There are also constraints
•  Immediate: correctness, completeness
•  Longer term: portable, extensible,

•  Added value to what would happen without a software institute
•  Life is making choices

Correct assignment of problem

•  Are new ideas/tools needed or better
implementations of existing tools?
•  Must avoid building a new tool to work around a

limitation in some implementation
•  Example: Parallel I/O libraries that work around

limitations of current implementations
•  Instead of illuminating upon and requiring better implementations of

existing standards
•  Easier to get credit by creating a new project than improve an

existing one
If you thought trying to get a reward for software is hard, try

getting a reward for improving software

Who is the direct beneficiary of this
institute?
•  The rare code experts needed to build key

libraries and tools?
•  Code developers who are not experts?
•  The practicing scientists and engineers that need

to use computation in their work?
•  Students learning to be scientists and engineers?

Learning to be code experts?
•  Most likely: a combination of these

•  But beware mission creep

On what sort of systems will this code run?

•  Leadership systems (e.g., Blue Waters, Sequoia,
K, Titan)

•  Divisional/Center systems (e.g., iForge)
•  Deskside/laptop
•  Other (phone, embedded)
•  Probably all of the above, but may require different

solution and emphasis
•  Is scalability single chip/node (shared memory/

threads) or 10k-100k nodes? (distributed
memory; fully distributed control)

Two Timescales in CS Work

•  Computer science has a least two timescales:
•  Very fast: esp. the increase in hardware capability
•  Slow or step changes: everything else

•  Sustaining progress requires recognizing the
difference between these

Amazing Increase in Computing Power

•  Exponential increase
in performance for
several decades

•  Five orders of
magnitude since the
Top500 was started
only 20 years ago

•  But not everything
has changed that
fast…

That “kink” in #500 is Real

•  Extrapolation of recent
data gives ~1PF HPL
in 2018 on the #500
system

•  Extrapolation of older
data gives ~1PF in
2015, ~7PF in 2018

•  The #500 may be a
better predictor of
trends

Everything Else Changes Slowly

•  Programming, libraries
•  Standards, software, languages

•  Ken Kennedy said it takes at least 10 years for a new
programming language to “take”

•  MPI and MPICH illustrate both (see later)
•  Somewhere in the middle

•  Are Applications here? What do you think?

•  “Punctuated Equilibrium” may be a better model
•  Combined with slow change
•  Can argue that accelerators are another step change in

hardware (look at the top of the top500)

•  To predict the future it is useful to look at the past…

Quotes from “System Software and Tools for High
Performance Computing Environments” (1993)

•  “The strongest desire expressed by these users was simply to satisfy
the urgent need to get applications codes running on parallel machines
as quickly as possible”

•  In a list of enabling technologies for mathematical software, “Parallel
prefix for arbitrary user-defined associative operations should be
supported. Conflicts between system and library (e.g., in message
types) should be automatically avoided.”

•  Note that MPI-1 provided both
•  Immediate Goals for Computing Environments:

•  Parallel computer support environment
•  Standards for same
•  Standard for parallel I/O
•  Standard for message passing on distributed memory machines

•  “The single greatest hindrance to significant penetration of MPP
technology in scientific computing is the absence of common
programming interfaces across various parallel computing systems”

Quotes from “Enabling Technologies for
Petaflops Computing” (1995)
•  “The software for the current generation of 100 GF machines is not adequate to

be scaled to a TF…”
•  “The Petaflops computer is achievable at reasonable cost with technology available

in about 20 years [2014].”
•  (estimated clock speed in 2004 — 700MHz)*

•  “Software technology for MPP’s must evolve new ways to design software that is
portable across a wide variety of computer architectures. Only then can the small but
important MPP sector of the computer hardware market leverage the massive
investment that is being applied to commercial software for the business and
commodity computer market.”

•  “To address the inadequate state of software productivity, there is a need to develop
language systems able to integrate software components that use different
paradigms and language dialects.”

•  (9 overlapping programming models, including shared memory, message passing,
data parallel, distributed shared memory, functional programming, O-O programming,
and evolution of existing languages)

Trickle up

Why This Matters

•  Performance gains from hardware are slowing
•  Some features, such as frequency scaling, ended

years ago
•  We need to change intuition about hardware

performance and impact on algorithms and software
•  Expectations of rapid change diverts attention

from the need to sustain development in
software and algorithms
•  Change is a step – but the step only succeeds if it is

nurtured

PETSc Timeline
•  Two very distinct

timescales
•  Fast: New way of looking at

organization
•  Slow: Work of

implementation, tuning,
extension

•  Requires sustained effort
to provide end-to-end
support, extend to new
application needs

1991 1995 2000 2005 2010

PETSc-1

MPI-1 MPI-2

PETSc-2 PETSc-3
Barry

Bill

Lois

Satish

Dinesh

Hong

Kris

Matt

Victor

Dmitry

Lisandro

Jed

Shri

Peter

“Why we couldn't use numerical libraries for PETSc,” Proceedings of the IFIP
TC2/WG2.5 Working Conference on the Quality of Numerical Software,
Assessment and Enhancement, 1997.

First Gordon Bell Prize

MPI and MPICH Timeline

90! 91! 92! 93! 94! 95! 96! 97! 98! 99! 00! 01! 02! 03! 04! 05! 06! 07! 08! 09! 10! 11!

P4,
Chameleon!
!
!

MPI-1
Standard!
!
!

MPICH-1
Released!
!
!

MPI on
1M Cores!
!
!

MPI-2
Standard!
!
!

Verification!
!
!

Scalable
Trace Files!
!
!

!
!
!

Fault
Tolerance!

!
!

!
!

12! 13!

MPI-3 !
Standard!MPICH2

Released!
!
!

Hybrid Programming!

Multithreading!
MPI-IO apps!

MPICH 3.0
Released!
!
!

Performance research!

Proc Mgmt
Software!

!
!

I/O !
Algorithms!

!
!

What is the goal of a software institute?

•  Create new software?
•  Improve current software?
•  “Harden” research prototypes?
•  Create a better process for community software?

Create software that doesn’t exist yet?

•  Why? Who will use? How big is the user base? What is the value WRT
development effort?

•  Example: Why we created PETSc
•  Problem: Performing research into parallel domain decomposition

algorithms
•  Divide domain into parts, solve on parts, put back together
•  May want to recurse (solve by applying domain decomposition)

•  Most numerical libraries of the time unusable
•  Global state: Can’t nest library calls; some have high overhead for

initialization
•  No routines to solve problems – only routines to apply a specific algorithm
•  Often “unnatural” data structures (designed for algorithm, not problem)
•  No parallelism

•  PETSc created with a very specific user in mind – me!
•  Not as a numerical library for others – if we had, it would have been another of many

such projects that has since disappeared

Improve current software?
•  Why? What quantitative improvement is needed?
•  Recall claims from petascale studies that

“The software for the current generation of 100 GF machines is not
adequate to be scaled to a TF…”

•  That statement based on no evidence
•  Just a feeling that “It has to be better than this”

•  Any claims must be specific both to what limitations exist and why
they can’t be solved with known methods
•  Productivity arguments talk about simple codes – but MPI’s

strength is its support for programming in the large, not the
support for short, simple programs

•  Yes, using/extending known tools may involve paying for software.
Would an institute be more cost effective? Why?

Create usable software from research
prototypes?
•  Nurture an existing prototype software to build a

user base (middle age support for software)
•  Why? How do you select? What is the

quantitative value?
•  Can you commit to the length of time often

needed to build a user base?
•  Q: When was the GPU introduced by NVIDIA?

•  Founded 1993, GeFORCE in 1999, CUDA 2006
•  Q: when did SGI introduce a graphics processing chip?

•  1982: Geometry Engine

Figure 2: Photograph of the G
eom

etry Engine.

Create a stronger ecosystem for software
development?
•  Meta support – Support others in the development

of high value software
•  Why? What is needed? Many open source tools

exist (e.g., testing, documentation, code
transformation, open compiler frameworks). Why
are these not adequate?

•  How? Code development notoriously personal
and immune to rational discussion (e.g., language
wars)

•  Who? Current coders and development teams,
or students before they are corrupted?

Challenges for Current Software
•  Obvious:

•  Code performance
•  Core performance
•  Node performance
•  Scalability

•  Correctness and Testing
•  Portability

•  Especially in a era of rapidly changing hardware, compute architecture, and
constraints such as power

•  Productivity
•  Whatever that really means

•  Maybe less obvious
•  Enabling/encouraging new algorithms
•  More quantitative approach to development/evaluation
•  Performance irregularity in all elements
•  Data-centric applications and workflows

•  And so on…

