
Challenges for Algorithms and
Software at Extreme Scale

William Gropp
www.cs.illinois.edu/~wgropp

2

Frequency Scaling is Over

•  New (prediction):
Increase 4% per
year (ITRS 2012
Roadmap)

•  Old: Double every 2
years

•  The change (loss) is
enormous

•  Extrapolations are
just as dangerous as
we tell our students

0

1

2

3

4

5

6

7

8

2010 2015 2020 2025 2030

GHz

0

100

200

300

400

500

600

700

800

2010 2012 2014 2016 2018 2020 2022 2024 2026 2028

GHz

Double 2
years

RSFQ
Superconducting
technology??

3

ITRS projections for gate lengths (nm)
for 2005, 2008 and 2011 editions

0

5

10

15

20

25

30

2007 2009 2011 2013 2015 2017 2019 2021 2023 2025

P
h

ys
ic

al
 g

at
e

le
n

g
th

,
n

m

Expected manufacturing year

2005
2008
2011

ITRS
edition

5 years

Note the rapid 3- and then 5-year shifts in ITRS
projections for physical gate lengths.

3 years

4

Current Petascale Systems
Already Complex

•  Typical processor
♦  8 floating point units, 16 integer units

•  What is a “core”?
♦  Full FP performance requires use of short vector

instructions
•  Memory

♦  Performance depends on location, access pattern
♦  “Saturates” on multicore chip

•  Specialized processing elements
♦  E.g., NVIDIA GPU (K20X); 2688 “cores” (or 56…)

•  Network
♦  3- or 5-D Torus, latency, bandwidth, contention

important

5

Blue Waters:
NSF’s Most Powerful System

•  3072 XK7 nodes and 22,752 XE6 nodes
♦ ~ 1/8 GPU+CPU, 7/8 CPU+CPU
♦ Peak perf: ~ 1/3 GPU+CPU, 2/3 CPU+CPU

•  1.5 PB Memory, 1TB/Sec I/O Bandwidth
•  System sustains > 1 PetaFLOPS on a

wide range of applications
♦  From starting to read input from disk to

results written to disk, not just
computational kernels

♦ No Top500 run – does not represent
application workload

6

Why Is Exascale Different?

•  Extreme power constraints, leading to
♦  Clock Rates similar to today’s systems
♦  A wide-diversity of simple computing elements

(simple for hardware but complex for algorithms and
software)

♦  Memory per core and per FLOP will be much smaller
♦  Moving data anywhere will be expensive (time and

power)
•  Faults that will need to be detected and

managed
♦  Some detection may be the job of the programmer,

as hardware detection takes power

7

Why is Exacale Different?

•  Extreme scalability and performance
irregularity
♦ Performance will require enormous

concurrency (108 – 109)
♦ Performance is likely to be variable

•  Simple, static decompositions will not scale

•  A need for latency tolerant algorithms
and programming
♦ Memory, processors will be 100s to 10000s

of cycles away. Waiting for operations to
complete will cripple performance

8

What Has To Change?

•  Accept that data motion dominates cost
•  Use communication cost models that

include more than just point-to-point
•  Provide Latency-tolerance everywhere
•  Match data structure (not just

algorithm) to increasingly complex
hardware

•  … just for starters!
•  What follows are examples of how this

is important now

9

Data Motion Can Dominate Cost

• This is not new
♦ Even though floating point operations

are still the way computations are
usually compared

• Minimizing time may require more
computations

• Many examples
♦ Lesson here is that simple cost

models are often sufficient

10

Using Redundant Solvers

•  AMG requires a solve on the coarse grid

•  Options:
♦ Solve in parallel (too little work)
♦ Solve in serial and distribute (Amdahl

bottleneck + communication)
♦ Solve redundantly

Redundant Solution

At some level, gather the unknowns onto every process. That level and
coarser ones then require no communication:

serial AMG!
coarse solve!

all-gather!
at level l!

smooth,!
form residual!

restrict to!
level i+1!

prolong to!
level i-1!

smooth!

An analysis17 suggests that this can be of some benefit; we will examine
this further

17
W. Gropp, “Parallel Computing and Domain Decomposition,” 1992

Gahvari (University of Illinois) Scaling AMG November 3, 2011 22 / 54

11

Redundant Solution

•  Replace communication at levels ≥L
with Allgather

•  Every process now has complete
information; no further communication
needed
♦ Solution is computed redundantly

•  Performance analysis (based on Gropp
& Keyes 1989) can guide selection of L
♦ Must be modified by characteristics of

modern CPUs and networks

12

Redundant Solves
Redundant Solution

When applied to model problem on Hera, there is a speedup region like for
additive AMG:

 128 1024 3456

8

7

6

5

4

3

2

Processes

R
e

d
u

n
d

a
n

t
L

e
ve

l

Modeled Speedups for Redundant AMG on Hera

0.13

1.31

1.90

1.40

1.03

1.00

0.02

0.12

1.54

1.60

1.07

1.00

1.00

0.01

0.03

0.31

1.40

1.07

1.01

1.00

0.0

0.5

1.0

1.5

2.0

 128 1024 3456

8

7

6

5

4

3

2

Processes

R
e

d
u

n
d

a
n

t
L

e
ve

l

Actual Speedups for Redundant AMG on Hera

1.18

1.62

1.25

1.40

1.42

1.07

0.25

1.27

1.04

0.0

0.5

1.0

1.5

2.0

Diagonal pattern of speedup region, however, still persists. LLNL is
currently in the process of putting redundant solve/setup in hypre.

Gahvari (University of Illinois) Scaling AMG November 3, 2011 42 / 54

•  Applied to Hera at LLNL, provides significant
speedup

•  Lesson: More work can be faster
•  Key idea is to compute performance envelope
•  Thanks to Hormozd Gahvari

13

Communication Cost Includes More
than Latency and Bandwidth

•  Communication does
not happen in isolation

•  Effective bandwidth on
shared link is ½ point-
to-point bandwidth

•  Real patterns can
involve many more
(integer factors)

•  Loosely synchronous
algorithms ensure
communication cost is
worst case

14

Is It Communication Avoiding Or
Minimum Solution Time?

• Example: non minimum collective
algorithms

• Work of Paul Sack; see “Faster
topology-aware collective
algorithms through non-minimal
communication”, Best Paper,
PPoPP 2012

• Lesson: minimum communication
need not be optimal

15

Allgather

1 2 3 4

Input

Output

16

Allgather: Recursive Doubling

a
 b
 c
 d

e
 f
 g
 h

i
 j
 k
 l

m
 n
 o
 p

17

Allgather: Recursive Doubling

ab
 ab
 cd
 cd

ef
 ef
 gh
 gh

ij
 ij
 kl
 kl

mn
 mn
 op
 op

18

Allgather: Recursive Doubling

abcd
 abcd
 abcd
 abcd

efgh
 efgh
 efgh
 efgh

ijkl
 ijkl
 ijkl
 ijkl

mnop
 mnop
 mnop
 mnop

19

Allgather: Recursive Doubling

abcdefgh
 abcdefgh
 abcdefgh
 abcdefgh

abcdefgh
 abcdefgh
 abcdefgh
 abcdefgh

ijklmnop
 ijklmnop
 ijklmnop
 ijklmnop

ijklmnop
 ijklmnop
 ijklmnop
 ijklmnop

20

Allgather: Recursive Doubling

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

abcdefgh
ijklmnop

T=(lg P) α + n(P-1)β

21

Problem: Recursive-Doubling

• No congestion model:
♦ T=(lgP)α + n(P-1)β

• Congestion on torus:
♦ T≈(lgP)α + (5/24)nP4/3β

• Congestion on Clos network:
♦ T≈(lgP)α + (nP/µ)β

• Solution approach: move smallest

amounts of data the longest distance

22

Solution: Recursive-Doubling

2
2

a
 b
 c
 d

e
 f
 g
 h

i
 j
 k
 l

m
 n
 o
 p

23

Solution: Recursive-Doubling

2
3

ac
 bd
 ac
 bd

eg
 fh
 eg
 fh

ik
 jl
 ik
 jl

mo
 np
 mo
 np

24

Solution: Recursive-Doubling

2
4

acik
 bdjl
 acik
 bdjl

egmo
 fhnp
 egmo
 fhnp

acik
 bdjl
 acik
 bdjl

egmo
 fhnp
 egmo
 fhnp

25

Solution: Recursive-Doubling

2
5

acikbdjl
 acikbdjl
 acikbdjl
 acikbdjl

egmofhnp
 egmofhnp
 egmofhnp
 egmofhnp

acikbdjl
 acikbdjl
 acikbdjl
 acikbdjl

egmofhnp
 egmofhnp
 egmofhnp
 egmofhnp

26

Solution: Recursive-Doubling

2
6

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

acikbdjl

egmofhnp

T=(lg P)α + (7/6)nPβ

27

New Problem: Data
Misordered

•  Solution: shuffle
input data
♦ Could shuffle at end

(redundant work; all
processes shuffle)

♦ Could use non-
contiguous data
moves (but extra
overhead)

♦ But best approach is
often to shuffle data
on network (see paper
for details)

26
2
6

a
 b
 c
 d

e
 f
 g
 h

i
 j
 k
 l

m
 n
 o
 p

Solution: input shuffle

28

Evaluation:
Intrepid BlueGene/P at ANL

• 40k-node system
♦ Each is 4 x 850 MHz PowerPC 450

• 512+ nodes is 3d torus; fewer is
3d mesh

• xlc -O4
• 375 MB/s delivered per link

♦ 7% penalty using all 6 links both
ways

29
2
9

Allgather Performance

30

Notes on Allgather

• Bucket algorithm (not described
here) exploits multiple
communication engines on BG

• Analysis shows performance near
optimal

• Alternative to reorder data step is
in-memory move; analysis shows
similar performance and
measurements show reorder step
faster on tested systems

31

Latency Tolerance
Everywhere

• Communication, even to local
memory, takes 10s to 100s of
cycles
♦ 1000 to 10,000s in big machines to

remote nodes
• Time waiting is lost
• Needs algorithmic help

♦ Many algorithms have dependencies
that are latency intolerant

32

Scaling Problems

•  Simple, data-parallel algorithms easy to
reason about but inefficient
♦  True for decades, but ignored (memory)
♦  Log p terms can dominate at p = 106

•  One solution: fully asynchronous methods
♦  Very attractive (parallel efficiency high), yet solution

efficiency is low and there are good reasons for that
♦  Blocking (synchronizing) communication can be due

to fully collective (e.g., Allreduce) or neighbor
communications (halo exchange)

♦  Can we save methods that involve global,
synchronizing operations?

33

Saving Allreduce

•  One common suggestion is to avoid using
Allreduce
♦  But algorithms with dot products are among the best

known
♦  Can sometimes aggregate the data to reduce the

number of separate Allreduce operations
♦  But better is to reduce the impact of the

synchronization by hiding the Allreduce behind other
operations (in MPI-3, using MPI_Iallreduce)

•  We can adapt CG to nonblocking Allreduce
with some added floating point (but perhaps
little time cost)

34

The Conjugate Gradient
Algorithm

•  While (not converged)
 niters += 1;
 s = A * p;
 t = p' *s;
 alpha = gmma / t;
 x = x + alpha * p;
 r = r - alpha * s;
 if rnorm2 < tol2 ; break ; end
 z = M * r;
 gmmaNew = r' * z;
 beta = gmmaNew / gmma;
 gmma = gmmaNew;
 p = z + beta * p;
end

35

The Conjugate Gradient
Algorithm

•  While (not converged)
 niters += 1;
 s = A * p;
 t = p' *s;
 alpha = gmma / t;
 x = x + alpha * p;
 r = r - alpha * s;
 if rnorm2 < tol2 ; break ; end
 z = M * r;
 gmmaNew = r' * z;
 beta = gmmaNew / gmma;
 gmma = gmmaNew;
 p = z + beta * p;
end

36

A Nonblocking Version of CG

•  While (not converged)
 niters += 1;
 s = Z + beta * s;
 Begin p'*s
 S = M * s;
 Complete t = p' *s;
 alpha = gmma / t;
 x = x + alpha * p;
 r = r - alpha * s;
 if rnorm2 < tol2 ; break ; end
 z = z - alpha * S;
 Begin r'*z here (also begin r'*r for convergence test)
 Z = A * z;
 Complete gmmaNew = r' * z;
 beta = gmmaNew / gmma;
 gmma = gmmaNew;
 p = z + beta * p;
end

37

CG Reconsidered
•  By reordering operations, nonblocking dot products

(MPI_Iallreduce in MPI-3) can be overlapped with other
operations

•  Trades extra local work for overlapped communication
♦  On a pure floating point basis, the nonblocking version

requires 2 more DAXPY operations
♦  A closer analysis shows that some operations can be

merged (in terms of memory references)
•  Count memory motion, not floating point

•  Other approaches possible; see “Hiding global
synchronization latency in the preconditioned Conjugate
Gradient algorithm,” P. Ghysels and W. Vanroose,
submitted

•  More work does not imply more time

38

Processes and SMP nodes

•  HPC users typically believe that their code
“owns” all of the cores all of the time
♦  The reality is that was never true, but they did have

all of the cores the same fraction of time when there
was one core /node

•  We can use a simple performance model to
check the assertion and then use
measurements to identify the problem and
suggest fixes.

•  Based on this, we can tune a state-of-the-art
LU factorization….

39

Happy Medium Scheduling

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Performance irregularities introduce load-
imbalance.
Pure dynamic has significant overhead; pure
static too much imbalance.
Solution: combined static and dynamic
scheduling

Communication Avoiding LU factorization
(CALU) algorithm, S. Donfack, L .Grigori, V.
Kale, WG, IPDPS ‘12

Scary Consequence: Static
data decompositions will not
work at scale.
Corollary: programming
models with static task
models will not work at scale

40

Changing Requirements for
Data Decomposition

•  Paraphrasing either Lincoln or PT Barnum:

You own some of the cores all of the time and
all of the cores some of the time, but you
don’t own all of the cores all of the time

•  Translation: a priori data decompositions that
were effective on single core processors are no
longer effective on multicore processors

•  We see this in recommendations to “leave one
core to the OS”

♦  What about other users of cores, like … the runtime
system?

41

Match Data Structure to
Hardware

• Processors include hardware to
address performance challenges
♦ “Vector” function units
♦ Memory latency hiding/prefetch
♦ Atomic update features for shared

memory
♦ Etc.

• Both algorithms and data
structures must be designed to
work well with real hardware

42

Sparse Matrix-Vector Multiply

Barriers to faster code
•  “Standard” formats

such as CSR do not
meet requirements
for prefetch or
vectorization

•  Modest changes to
data structure
enable both
vectorization,
prefetch, for
20-80%
improvement on P7

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Pe
rf

or
m

an
ce

 R
at

io

SCSR-
2
SCSR-
4
VSCSR
-2
VSCSR
-4

Prefetch results in Optimizing Sparse Data
Structures for Matrix Vector Multiply
http://hpc.sagepub.com/content/25/1/115

43

What Does This Mean For
You?

•  It is time to rethink data structures and
algorithms to match the realities of memory
architecture
♦  For SpMV, we have results for x86 where the benefit

is smaller but still significant
♦  Even more important for GPUs
♦  Better match of algorithms to prefetch hardware is

necessary to overcome memory performance
barriers

•  Similar issues come up with heterogeneous
processing elements (someone needs to
design for memory motion and concurrent and
nonblocking data motion)

44

Summary

• Extreme scale architecture forces
us to confront architectural
realities

• Even approximate (yet realistic)
performance models can guide
development
♦  “All models are wrong; some are

useful”
• Opportunities abound

45

Implications (1)

•  Restrict the use of separate computational
and communication “phases”
♦ Need more overlap of communication and

computation to achieve latency tolerance (and
energy reduction)

♦ Adds pressure to be memory efficient
•  May need to re-think entire solution stack

♦ E.g., Nonlinear Schwarz instead of
approximate Newton

♦ Don’t reduce everything to Linear Algebra
(sorry Gene!)

46

Implications (2)

•  Use aggregates that match the hardware
•  Limit scalars to limited, essential control

♦ Data must be in a hierarchy of small to
large

•  Fully automatic fixes unlikely
♦ No vendor compiles the simple code for

DGEMM and uses that for benchmarks
♦ No vendor compiles simple code for a

shared memory barrier and uses that (e.g.,
in OpenMP)

♦ Until they do, the best case is a human-
machine interaction, with the compiler
helping

47

Implications (3)

•  Use mathematics as the organizing principle
♦  Continuous representations, possibly adaptive,

memory-optimizing representation, lossy (within
accuracy limits) but preserves essential properties
(e.g., conservation)

•  Manage code by using abstract-data-structure-
specific languages (ADSL) to handle operations
and vertical integration across components
♦  So-called “domain specific languages” are really

abstract-data-structure specific languages – they
support more applications but fewer algorithms.

♦  Difference is important because a “domain” almost
certainly requires flexibility with data structures and
algorithms

48

Implications (4)

•  Adaptive program models with a multi-
level approach
♦  Lightweight, locality-optimized for fine grain
♦ Within node/locality domain for medium

grain
♦ Regional/global for coarse grain
♦ May be different programming models

(hierarchies are ok!) but they must work
well together

•  Performance annotations to support a
complex compilation environment

•  Asynchronous and multilevel algorithms
to match hardware

49

Conclusions

•  Planning for extreme scale systems
requires rethinking both algorithms and
programming approaches

•  Key requirements include
♦ Minimizing memory motion at all levels
♦ Avoiding unnecessary synchronization at all

levels
•  Decisions must be informed by

performance modeling / understanding
♦ Not necessarily performance estimates –

the goal is to guide the decisions

50

Recommended Reading

•  Bit reversal on uniprocessors (Alan Karp, SIAM
Review, 1996)

•  Achieving high sustained performance in an
unstructured mesh CFD application (W. K.
Anderson, W. D. Gropp, D. K. Kaushik, D. E.
Keyes, B. F. Smith, Proceedings of
Supercomputing, 1999)

•  Experimental Analysis of Algorithms
(Catherine McGeoch, Notices of the American
Mathematical Society, March 2001)

•  Reflections on the Memory Wall (Sally McKee,
ACM Conference on Computing Frontiers,
2004)

51

Thanks
•  Torsten Hoefler

♦  Performance modeling,
MPI datatype

•  Dahai Guo
♦  Streamed format exploiting

prefetch
•  Vivek Kale

♦  SMP work partitioning
•  Hormozd Gahvari

♦  AMG application modeling
•  Marc Snir and William

Kramer
♦  Performance model

advocates

•  Abhinav Bhatele
♦  Process/node mapping

•  Van Bui
♦  Performance model-based

evaluation of programming
models

•  Collaborators including
♦  Kirk Jordan, Martin Schultz,

Ulrike Yang, Todd Gablin,
Bronis de Supinski, …

•  Funding provided by:
♦  Blue Waters project (State of

Illinois and the University of
Illinois)

♦  Department of Energy, Office of
Science

♦  National Science Foundation

