
Challenges for Algorithms and 
Software at Extreme Scale 

William Gropp 
www.cs.illinois.edu/~wgropp 



2 

Frequency Scaling is Over 

•  New (prediction): 
Increase 4% per 
year (ITRS 2012 
Roadmap) 

•  Old: Double every 2 
years 

•  The change (loss) is 
enormous 

•  Extrapolations are 
just as dangerous as 
we tell our students 
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ITRS projections for gate lengths (nm)  
for 2005, 2008 and 2011 editions 
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Current Petascale Systems 
Already Complex 

•  Typical processor 
♦  8 floating point units, 16 integer units 

•  What is a “core”? 
♦  Full FP performance requires use of short vector 

instructions 
•  Memory 

♦  Performance depends on location, access pattern 
♦  “Saturates” on multicore chip 

•  Specialized processing elements 
♦  E.g., NVIDIA GPU (K20X); 2688 “cores” (or 56…) 

•  Network 
♦  3- or 5-D Torus, latency, bandwidth, contention 

important 
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Blue Waters: 
NSF’s Most Powerful System 

•  3072 XK7 nodes and 22,752 XE6 nodes 
♦ ~ 1/8 GPU+CPU, 7/8 CPU+CPU 
♦ Peak perf: ~ 1/3 GPU+CPU, 2/3 CPU+CPU 

•  1.5 PB Memory, 1TB/Sec I/O Bandwidth 
•  System sustains > 1 PetaFLOPS on a 

wide range of applications 
♦  From starting to read input from disk to 

results written to disk, not just 
computational kernels 

♦ No Top500 run – does not represent 
application workload 
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Why Is Exascale Different? 

•  Extreme power constraints, leading to 
♦  Clock Rates similar to today’s systems 
♦  A wide-diversity of simple computing elements 

(simple for hardware but complex for algorithms and 
software) 

♦  Memory per core and per FLOP will be much smaller 
♦  Moving data anywhere will be expensive (time and 

power) 
•  Faults that will need to be detected and 

managed 
♦  Some detection may be the job of the programmer, 

as hardware detection takes power 
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Why is Exacale Different?  

•  Extreme scalability and performance 
irregularity 
♦ Performance will require enormous 

concurrency (108 – 109) 
♦ Performance is likely to be variable 

•  Simple, static decompositions will not scale 

•  A need for latency tolerant algorithms 
and programming 
♦ Memory, processors will be 100s to 10000s 

of cycles away.  Waiting for operations to 
complete will cripple performance 
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What Has To Change? 

•  Accept that data motion dominates cost 
•  Use communication cost models that 

include more than just point-to-point 
•  Provide Latency-tolerance everywhere 
•  Match data structure (not just 

algorithm) to increasingly complex 
hardware 

•  … just for starters! 
•  What follows are examples of how this 

is important now 



9 

Data Motion Can Dominate Cost 

• This is not new 
♦ Even though floating point operations 

are still the way computations are 
usually compared 

• Minimizing time may require more 
computations 

• Many examples 
♦ Lesson here is that simple cost 

models are often sufficient 
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Using Redundant Solvers 

•  AMG requires a solve on the coarse grid 
 
 
 
 
 

•  Options: 
♦ Solve in parallel (too little work) 
♦ Solve in serial and distribute (Amdahl 

bottleneck + communication) 
♦ Solve redundantly 

Redundant Solution

At some level, gather the unknowns onto every process. That level and
coarser ones then require no communication:

serial AMG!
coarse solve!

all-gather!
at level l!

smooth,!
form residual!

restrict to!
level i+1!

prolong to!
level i-1!

smooth!

An analysis17 suggests that this can be of some benefit; we will examine
this further

17
W. Gropp, “Parallel Computing and Domain Decomposition,” 1992

Gahvari (University of Illinois) Scaling AMG November 3, 2011 22 / 54
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Redundant Solution 

•  Replace communication at levels ≥L 
with Allgather 

•  Every process now has complete 
information; no further communication 
needed 
♦ Solution is computed redundantly 

•  Performance analysis (based on Gropp 
& Keyes 1989) can guide selection of L 
♦ Must be modified by characteristics of 

modern CPUs and networks 
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Redundant Solves 
Redundant Solution

When applied to model problem on Hera, there is a speedup region like for
additive AMG:
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Diagonal pattern of speedup region, however, still persists. LLNL is
currently in the process of putting redundant solve/setup in hypre.

Gahvari (University of Illinois) Scaling AMG November 3, 2011 42 / 54

•  Applied to Hera at LLNL, provides significant 
speedup 

•  Lesson: More work can be faster 
•  Key idea is to compute performance envelope 
•  Thanks to Hormozd Gahvari 
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Communication Cost Includes More 
than Latency and Bandwidth 

•  Communication does 
not happen in isolation 

•  Effective bandwidth on 
shared link is ½ point-
to-point bandwidth 

•  Real patterns can 
involve many more 
(integer factors) 

•  Loosely synchronous 
algorithms ensure 
communication cost is 
worst case 
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Is It Communication Avoiding Or 
Minimum Solution Time? 

• Example: non minimum collective 
algorithms 

• Work of Paul Sack; see “Faster 
topology-aware collective 
algorithms through non-minimal 
communication”, Best Paper, 
PPoPP 2012 

• Lesson: minimum communication 
need not be optimal 
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Allgather 

1 2 3 4 

Input 

Output 
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Allgather: Recursive Doubling 
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Allgather: Recursive Doubling 
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Allgather: Recursive Doubling 
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Allgather: Recursive Doubling 
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Allgather: Recursive Doubling
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Problem: Recursive-Doubling 

• No congestion model:  
♦ T=(lgP)α + n(P-1)β 

• Congestion on torus:  
♦ T≈(lgP)α + (5/24)nP4/3β 

• Congestion on Clos network:  
♦ T≈(lgP)α + (nP/µ)β 

 
• Solution approach: move smallest 

amounts of data the longest distance 
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Solution: Recursive-Doubling 
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Solution: Recursive-Doubling 
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Solution: Recursive-Doubling 

2
4


acik
 bdjl
 acik
 bdjl


egmo
 fhnp
 egmo
 fhnp


acik
 bdjl
 acik
 bdjl


egmo
 fhnp
 egmo
 fhnp




25 

Solution: Recursive-Doubling 

2
5
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Solution: Recursive-Doubling 
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New Problem: Data 
Misordered 

•  Solution: shuffle 
input data 
♦ Could shuffle at end 

(redundant work; all 
processes shuffle) 

♦ Could use non-
contiguous data 
moves (but extra 
overhead) 

♦ But best approach is 
often to shuffle data 
on network (see paper 
for details)  
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Evaluation: 
Intrepid BlueGene/P at ANL 

• 40k-node system 
♦ Each is 4 x 850 MHz PowerPC 450 

• 512+ nodes is 3d torus; fewer is 
3d mesh 

• xlc -O4 
• 375 MB/s delivered per link 

♦ 7% penalty using all 6 links both 
ways 
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2
9


Allgather Performance 
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Notes on Allgather 

• Bucket algorithm (not described 
here) exploits multiple 
communication engines on BG 

• Analysis shows performance near 
optimal 

• Alternative to reorder data step is 
in-memory move; analysis shows 
similar performance and 
measurements show reorder step 
faster on tested systems 
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Latency Tolerance 
Everywhere 

• Communication, even to local 
memory, takes 10s to 100s of 
cycles 
♦ 1000 to 10,000s in big machines to 

remote nodes 
• Time waiting is lost 
• Needs algorithmic help 

♦ Many algorithms have dependencies 
that are latency intolerant 
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Scaling Problems 

•  Simple, data-parallel algorithms easy to 
reason about but inefficient 
♦  True for decades, but ignored (memory) 
♦  Log p terms can dominate at p = 106  

•  One solution: fully asynchronous methods 
♦  Very attractive (parallel efficiency high), yet solution 

efficiency is low and there are good reasons for that 
♦  Blocking (synchronizing) communication can be due 

to fully collective (e.g., Allreduce) or neighbor 
communications (halo exchange) 

♦  Can we save methods that involve global, 
synchronizing operations? 
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Saving Allreduce  

•  One common suggestion is to avoid using 
Allreduce 
♦  But algorithms with dot products are among the best 

known 
♦  Can sometimes aggregate the data to reduce the 

number of separate Allreduce operations 
♦  But better is to reduce the impact of the 

synchronization by hiding the Allreduce behind other 
operations (in MPI-3, using  MPI_Iallreduce) 

•  We can adapt CG to nonblocking Allreduce 
with some added floating point (but perhaps 
little time cost) 
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The Conjugate Gradient 
Algorithm 

•  While (not converged)  
  niters += 1; 
  s     = A * p; 
  t     = p' *s; 
  alpha = gmma / t; 
  x     = x + alpha * p; 
  r     = r - alpha * s; 
  if rnorm2 < tol2 ; break ; end 
  z     = M * r; 
  gmmaNew = r' * z; 
  beta  = gmmaNew / gmma; 
  gmma = gmmaNew; 
  p     = z + beta * p; 
end 
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The Conjugate Gradient 
Algorithm 
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A Nonblocking Version of CG 

•  While (not converged)  
 niters += 1; 
 s     = Z + beta * s; 
 Begin p'*s 
 S     = M * s; 
 Complete t      = p' *s; 
 alpha = gmma / t; 
 x     = x + alpha * p; 
 r     = r - alpha * s; 
 if rnorm2 < tol2 ; break ; end 
 z     = z - alpha * S; 
 Begin r'*z here (also begin r'*r for convergence test) 
 Z     = A * z; 
 Complete gmmaNew = r' * z; 
 beta  = gmmaNew / gmma; 
 gmma  = gmmaNew; 
 p     = z + beta * p; 
end 
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CG Reconsidered 
•  By reordering operations, nonblocking dot products 

(MPI_Iallreduce in MPI-3) can be overlapped with other 
operations 

•  Trades extra local work for overlapped communication 
♦  On a pure floating point basis, the nonblocking version 

requires 2 more DAXPY operations 
♦  A closer analysis shows that some operations can be 

merged (in terms of memory references) 
•  Count memory motion, not floating point 

•  Other approaches possible; see “Hiding global 
synchronization latency in the preconditioned Conjugate 
Gradient algorithm,” P. Ghysels and W. Vanroose, 
submitted 

•  More work does not imply more time 
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Processes and SMP nodes 

•  HPC users typically believe that their code 
“owns” all of the cores all of the time 
♦  The reality is that was never true, but they did have 

all of the cores the same fraction of time when there 
was one core /node 

•  We can use a simple performance model to 
check the assertion and then use 
measurements to identify the problem and 
suggest fixes. 

•  Based on this, we can tune a state-of-the-art 
LU factorization…. 
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Happy Medium Scheduling 

Page 34

Best performance of CALU on multicore architectures

•   Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Page 34

Best performance of CALU on multicore architectures

•   Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Performance irregularities introduce load-
imbalance. 
Pure dynamic has significant overhead; pure 
static too much imbalance. 
Solution: combined static and dynamic 
scheduling 
 
Communication Avoiding LU factorization 
(CALU) algorithm, S. Donfack, L .Grigori, V. 
Kale, WG, IPDPS ‘12 

Scary Consequence: Static 
data decompositions will not 
work at scale. 
Corollary: programming 
models with static task 
models will not work at scale  
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Changing Requirements for 
Data Decomposition 

•  Paraphrasing either Lincoln or PT Barnum: 
 
You own some of the cores all of the time and 
all of the cores some of the time, but you 
don’t own all of the cores all of the time 
 

•  Translation: a priori data decompositions that 
were effective on single core processors are no 
longer effective on multicore processors 

•  We see this in recommendations to “leave one 
core to the OS” 

♦  What about other users of cores, like … the runtime 
system? 
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Match Data Structure to 
Hardware 

• Processors include hardware to 
address performance challenges 
♦ “Vector” function units 
♦ Memory latency hiding/prefetch 
♦ Atomic update features for shared 

memory 
♦ Etc.  

• Both algorithms and data 
structures must be designed to 
work well with real hardware 
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Sparse Matrix-Vector Multiply 

Barriers to faster code 
•  “Standard” formats 

such as CSR do not 
meet requirements 
for prefetch or 
vectorization 

•  Modest changes to 
data structure 
enable both 
vectorization, 
prefetch, for 
20-80% 
improvement on P7  
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Prefetch results in Optimizing Sparse Data 
Structures for Matrix Vector Multiply  
http://hpc.sagepub.com/content/25/1/115 
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What Does This Mean For 
You? 

•  It is time to rethink data structures and 
algorithms to match the realities of memory 
architecture 
♦  For SpMV, we have results for x86 where the benefit 

is smaller but still significant 
♦  Even more important for GPUs 
♦  Better match of algorithms to prefetch hardware is 

necessary to overcome memory performance 
barriers 

•  Similar issues come up with heterogeneous 
processing elements (someone needs to 
design for memory motion and concurrent and 
nonblocking data motion) 
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Summary 

• Extreme scale architecture forces 
us to confront architectural 
realities 

• Even approximate (yet realistic) 
performance models can guide 
development 
♦  “All models are wrong; some are 

useful” 
• Opportunities abound 
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Implications (1) 

•  Restrict the use of separate computational 
and communication “phases” 
♦ Need more overlap of communication and 

computation to achieve latency tolerance (and 
energy reduction) 

♦ Adds pressure to be memory efficient 
•  May need to re-think entire solution stack 

♦ E.g., Nonlinear Schwarz instead of 
approximate Newton 

♦ Don’t reduce everything to Linear Algebra 
(sorry Gene!) 
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Implications (2) 

•  Use aggregates that match the hardware 
•  Limit scalars to limited, essential control 

♦ Data must be in a hierarchy of small to 
large  

•  Fully automatic fixes unlikely 
♦ No vendor compiles the simple code for 

DGEMM and uses that for benchmarks 
♦ No vendor compiles simple code for a 

shared memory barrier and uses that (e.g., 
in OpenMP) 

♦ Until they do, the best case is a human-
machine interaction, with the compiler 
helping 
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Implications (3) 

•  Use mathematics as the organizing principle 
♦  Continuous representations, possibly adaptive, 

memory-optimizing  representation, lossy (within 
accuracy limits) but preserves essential properties 
(e.g., conservation) 

•  Manage code by using abstract-data-structure-
specific languages (ADSL) to handle operations 
and vertical integration across components 
♦  So-called “domain specific languages” are really 

abstract-data-structure specific languages – they 
support more applications but fewer algorithms. 

♦  Difference is important because a “domain” almost 
certainly requires flexibility with data structures and 
algorithms 
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Implications (4) 

•  Adaptive program models with a multi-
level approach 
♦  Lightweight, locality-optimized for fine grain 
♦ Within node/locality domain for medium 

grain 
♦ Regional/global for coarse grain 
♦ May be different programming models 

(hierarchies are ok!) but they must work 
well together 

•  Performance annotations to support a 
complex compilation environment 

•  Asynchronous and multilevel algorithms 
to match hardware 
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Conclusions 

•  Planning for extreme scale systems 
requires rethinking both algorithms and 
programming approaches 

•  Key requirements include 
♦ Minimizing memory motion at all levels 
♦ Avoiding unnecessary synchronization at all 

levels 
•  Decisions must be informed by 

performance modeling / understanding 
♦ Not necessarily performance estimates – 

the goal is to guide the decisions 
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Recommended Reading 

•  Bit reversal on uniprocessors (Alan Karp, SIAM 
Review, 1996) 

•  Achieving high sustained performance in an 
unstructured mesh CFD application (W. K. 
Anderson, W. D. Gropp, D. K. Kaushik, D. E. 
Keyes, B. F. Smith, Proceedings of 
Supercomputing, 1999) 

•  Experimental Analysis of Algorithms 
(Catherine McGeoch, Notices of the American 
Mathematical Society, March 2001) 

•  Reflections on the Memory Wall (Sally McKee, 
ACM Conference on Computing Frontiers, 
2004) 
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•  Abhinav Bhatele 
♦  Process/node mapping 

•  Van Bui 
♦  Performance model-based 

evaluation of programming 
models 

•  Collaborators including 
♦  Kirk Jordan, Martin Schultz, 

Ulrike Yang, Todd Gablin, 
Bronis de Supinski, … 

•  Funding provided by: 
♦  Blue Waters project (State of 

Illinois and the University of 
Illinois) 

♦  Department of Energy, Office of 
Science 

♦  National Science Foundation 


