
Hybrid Programming:
Preparing for Exascale

William Gropp
www.cs.illinois.edu/~wgropp

2

What This Talk is Not

•  A tutorial on using the Hybrid Model
•  A comprehensive discussion of MPI and

OpenMP issues (I will use MPI+OpenMP
to illustrate the issues)

•  A pitch for a new programming model
(even though there are cool things in
MPI-3)

Rather, this talk is about
•  Why hybrid models are important for HPC
•  Opportunities and issues with hybrid

programming
•  What you should start doing (if you

haven’t already)

3

What is a Hybrid Model?

•  Combination of several parallel
programming models or systems in the
same program
♦ May be mixed in the same source
♦ May be combinations of components or

routines, each of which is in a single parallel
programming model

•  MPI + Threads or MPI + OpenMP is the
most familiar hybrid model that involves
MPI
♦ There are other interesting choices for which

we should prepare, including combinations of
so-called domain specific languages

4

Why a Hybrid Model:
The Hardware

•  Scale of machines to come encourage the use of
different programming models to address issues such as
♦  Declining memory per core
♦  Multiple threads/core
♦  Load balance
♦  Algorithmic issues

•  Hardware will be specialized for cost/power/reliability
reasons
♦  No evidence that we can pretend a system is uniform and

still get good performance from it
•  Hardware will be (roughly) hierarchical

♦  Number of “nodes” similar to current (10-100k)
♦  Multiple levels of hierarchy (“sea of functional units”)
♦  Number of “cores” per node will be 1k-100k

5

Why a Hybrid Model:
The Software

•  Already common and effective
♦ MPI is already a hybrid programming model

(MPI + C; MPI + Fortran)
•  Adding a third programming model is not a major

change…
♦ Many applications are multilingual, built

from pieces in C, C++, Python, Matlab, …
•  Developers use the best tool for each

part of their program
•  Complexity (if well designed) is additive

♦ Putting everything in one model either limits
capability or has greater complexity
(multiplicative).

6

Why We Can’t Pretend
Everything is Simple

•  It would be nice to adopt a simple homogenous
abstraction, even though the hardware is more
complex, and let the “system” handle the details,
and let the scientists concentrate on the science.

•  Unfortunately, we don’t know how to do this.
Worse: We know that we don’t know – in much
simpler situations, we have given up already
♦  BLAS – why are there any optimized BLAS? Can’t the

compiler handle them?
♦  The answer, terrifyingly, is no

•  We must make virtue of necessity – can use use
a compositional/hybrid approach to help solve
these problems

7

Myths About MPI

•  MPI is a programming model
♦  No. Message passing is a programming model. MPI

is a programming system that implements message
passing and other programming models

•  MPI is a bulk synchronous programming model
(or system)
♦  No. This was never true. However, data parallel and

bulk synchronous programming are one route to high
productivity programming (just look at MapReduce)

•  Asynchronous Put/Get is something that MPI
doesn’t have
♦  No. Defined in MPI 2.0; significantly extended in

MPI 3.0. Unlike some put/get systems, MPI’s has
well-defined semantics

8

Myths About the MPI + OpenMP
Hybrid Model

1.  Never works
•  Examples from FEM assembly, others show benefit

2.  Always works
•  Examples from NAS, EarthSim, others show MPI

everywhere often as fast (or faster!) as hybrid models
3.  Requires a special thread-safe MPI

•  In many cases does not; in others, requires a level
defined in MPI-2

4.  Harder to program
•  Harder than what?
•  Really the classic solution to complexity - divide problem

into separate problems
•  10000-fold coarse-grain parallelism + 100-fold fine-grain

parallelism gives 1,000,000-fold total parallelism

9

Special Note
•  Because neither 1 nor 2 are true, and 4 isn't entirely false,

it is important for applications to engineer codes for the
hybrid model. Applications must determine their:
♦  Memory bandwidth requirements
♦  Memory hierarchy requirements
♦  Load Balance

•  Don't confuse problems with getting good performance out
of OpenMP with problems with the Hybrid programming
model (“Use MPI + OpenMP well”)

•  See Using OpenMP by Barbara Chapman,
Gabriele Jost and Ruud van der Pas,
Chapters 5 and 6, for programming
OpenMP for performance
♦  See pages 207-211 where they discuss the

hybrid model

10

Where Does the MPI + OpenMP
Hybrid Model Work Well?

• Compute-bound loops
♦ Many operations per memory load

• Memory bound loops
• Fine-grain parallelism

♦ (New) Algorithms that are latency-
sensitive

• Load balancing
♦ Similar to fine-grain parallelism; ease of

moving data/tasks + overdecomposition

11

Implications for Exascale Hybrid
Programming Systems

•  Off-node programming system between nodes.
♦  Focus on scaling, locality, RDMA

•  On-node programming system within node/sea
of functional units
♦  Focus on exploiting memory, ILP, direct hardware

access to resources
•  Challenges include

♦  Hybrid models must work well together (sharing
resources)

♦  Managing user data structures
•  Most complaints about MPI usability are about what

MPI doesn’t have: support for distributed data
structures

12

Where is Pure MPI Better?

•  Trying to use OpenMP + MPI on very regular,
memory-bandwidth-bound computations is likely
to lose because of the better, programmer-
enforced memory locality management in the pure
MPI version.

•  Another reason to use more than one MPI process
- if a single process (or thread) can't saturate the
interconnect - then use multiple communicating
processes or threads.

•  Another option: MPI-3 with shared memory
♦  MPI 3 permits processes to share memory directly;

allows load/store access to data
♦  This is still a hybrid model – just implemented within

a single programming system (MPI-3)

13

Locality is Critical

•  Placement of processes and threads is
critical for performance
♦ Placement of processes impacts use of

communication links; poor placement creates
more communication

♦ Placement of threads within a process on
cores impacts both memory and intranode
performance
•  Threads must bind to preserve cache
•  In multi-chip nodes, some cores closer than others –

same issue as processes

•  MPI has limited, but useful, features for
placement

14

Importance of ordering processes/
threads within a multichip node

•  2x4 processes in a mesh
•  How should they be

mapped onto this single
node?

•  Round robin (by chip)?
♦  Labels are coordinates of

process in logical
computational mesh

♦  Results in 3x interchip
communication than the
natural order

♦  Same issue results if there
is 1 process with 4 threads
on each chip, or 1 process
with 8 threads on the node

core core

core core

core core

core core

0,0 2,0

0,1 2,1

1,0 3,0

1,1 3,1

15

Challenges for
Programming Models

•  Parallel programming models need to provide ways to
coordinate resource allocation
♦  Numbers of cores/threads/functional units
♦  Assignment (affinity) of cores/threads
♦  Intranode memory bandwidth
♦  Internode memory bandwidth

•  They must also provide clean ways to share data
♦  Consistent memory models
♦  Decide whether its best to make it easy and transparent

for the programmer (but slow) or fast but hard (or
impossible, which is often the current state)

•  Remember, parallel programming is about performance
♦  You will always get higher programmer productivity with a

single threaded code

16

Challenges for Developers

•  Performance issues cannot be ignored
♦  Must deal at least with an abstraction of a hierarchical

or sea of functional units system
♦  Model and algorithm must be chosen with awareness of

the impact on performance
•  Make tradeoffs here, but know that you do

•  Immature systems require dialog with developers
and standard community
♦  A good time to talk to OpenMP, MPI committees

•  Growing complexity of code will require adopting
approaches that distance you from the final code
♦  Source to source transformation system
♦  Abstract Data Structure Specific Languages (the name

that should be used for DSL)

17

Conclusions

•  Hybrid programming models exploit
complementary strengths
♦  In many cases today, can use OpenMP or OpenACC
♦  Algorithms will need to (approximately) match

hardware capabilities
•  Evolutionary Path to Hybrid Models

♦  Short term - better support for resource sharing
♦  Medium term - better support for interoperating

components
•  We need to ensure that communication infrastructures

can cooperate
•  Consider extensions to make implementations aware

that they are in a hybrid model program
♦  Long term - Generalized model, efficient sharing of

communication and computation infrastructure

