The Future of the
Message-Passing Interface

William Gropp
www.cs.illinois.edu/~wgropp

MPI and Supercomputing

e The Message Passing Interface (MPI) has been
amazingly successful

¢ First released in 1992, it is still the dominant
programming system used to program the world’s fastest
computers

¢ The most recent version, MPI 3.0, released in September
2012, contains many features to support systems with
>100K processes and state-of-the-art networks
e Supercomputing (and computing) is reaching a
critical point as the end of Dennard scaling has
forced major changes in processor architecture.

e This talk looks at the future of MPI from the point
of view of Extreme scale systems
][¢ That technology will be used in single rack systems

, PARALLEL@ILLINOIS

Likely Exascale Architectures

()
(Low Capacity, High Bandwidth)

4)
3D Stacked (High Capacity,
Memory Low Bandwidth)

" MY S E

'Thir‘1 Cores /Acceler'atoré

==

Integrated NIC
for Off-Chip
Communication

Note: not fully
cache coherent

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

e From “Abstract Machine Models and Proxy
j Architectures for Exascale Computing Rev 1.1,"]

i Ang et al ; PARALLEL@ILLINOIS

More Details: Processor

e Memory bandwidths from 1200GB/s
(core-L1lcache) to 60GB/s (off-chip
conventional DRAM)

e 64-256 cores/chip; 2-64 threads/core;
4-8 wide SIMD, 8-128 outstanding refs
per core

e Atomic ops, including transactional
memory

e Documents silent on memory latencies
¢ Probably because numbers are uninspiring

4 PARALLEL@ILLINOIS

More Details: Memory

e Multilevel
¢ DRAM on chip (64GB), off chip (2TB)

¢ NVRAM (higher density — 16TB, but
requires larger access units (=1KB))

¢ Stacked memory
e Compute near memory

¢ "Extended memory semantics”

¢ Full/empty bits; gather/scatter;
stream compute; ...

5 PARALLEL@ILLINOIS

More Details: Network

100-400 GB/s injection BW

Topology anyone’s guess (SlimFly,
perhaps?)

250M message/s two-sided

1000M messages/s one-sided
Latency:

¢ 0.5-1.4 usec two-sided nearest neighbor
¢ 0.4-0.6 usec one-sided nearest neighbor

¢ 3-5 usec cross machine
¢ Note: about the same as current systems

6 PARALLEL@ILLINOIS

Systems for both Ops and Memory

Most Predict Heterogeneous

Table 1. Estimated Performance for Leadership-class Systems

Nodes
Feature Derived Stream | PIMparal- rate GFLOPS GFLOPS GFLOPS Processor Node per Total
size parallelism parallelism lelism GHz FMAs (Scalar) (Stream) (PIM) pernode (TFLOP) system (PFLOPS)
2012 22 16 512 0 2 128 1,024 0 2 1 10,000 23
2020 12 54 1,721 0 2.8 1,210 | 4,819 0 2 6 20,000 241
2023 8 122 3,873 512 3.1 3,026 | 12,006 1,587 4 17 20,000 1,330
2030 4 486 15,489 1,024 4 31,104 | 61,956 | 8,192 16 101 20,000 | 32,401

Feature size is the size of a logic gate in a semiconductor, in nanometers. Derived parallelism is the amount of concurrency, given processor cores with a
constant number of components, on a semiconductor chip of fixed size. Stream and PIM parallelism are the number of specialized processor cores for
stream and processor-in-memory processing, respectively. FMA is the number of floating-point multiply-add units available to each processor core. From
these values, the performance in GigaFLOPS is computed for each processor and node, as well as the total peak performance of a leadership-scale system.

Another estimate, from “CFD Vision 2030 Study:
A Path to Revolutionary Computational
Aerosciences,” Slotnick et al, 2014

; PARALLEL@ILLINOIS

What About a Homogeneous
System?

e IBM BlueGene was the only
homogenous* system at this scale, but

¢ "Both CORAL awards leverage the IBM
Power Architecture, NVIDIA's Volta GPU and
Mellanox’s Interconnected technologies to
advance key research initiatives ...”
e * Try to use the very wide SIMD on
BlueGenes. Homogeneously
heterogeneous

g PARALLEL@ILLINOIS

What This (might) Mean for
MPI

e | ots of innovation in the processor
and the node

e More complex memory hierarchy;
no chip-wide cache coherence

e Tightly integrated NIC
e Execution model becoming more

complex

¢ Achieving performance, reliability
targets requires exploiting new
features

—
x —
()
~

5 PARALLEL@ILLINOIS

What This (might) Mean for
Applications

e Weak scaling limits the range of problems
¢ Latency may be critical (also, some applications
nearing limits of spatial parallelism)
e Rich execution model makes performance
portability unrealistic

¢ Applications will need to be flexible with both their
use of abstractions and their implementation of
those abstractions

e One Answer: Programmers will need help with
performance issues, whatever parallel

programming system is used

¢ Much of this is independent of the internode
][parallelism, and can use DSLs, annotations, source-

to-source transformations.
10 PARALLEL@ILLINOIS

Where Is MPI Today?

e Applications already running at
large scale:

System __________[Cores

Tianhe-2 3,120,000 (most in Phi)
Sequoia 1,572,864
Blue Waters 792,064* + 1/6 acc
Mira 786,432
K computer 705,024
Julich BG/Q 458,752
Titan 299,008* + acc
][* 2 cores share a wide FP unit

» PARALLEL@ILLINOIS

Some Experiments over 1M
MPI Processes

e ROSS Parallel Discrete Event Simulator

¢ Used over 7.8M MPI processes on 2
combined BG/Q systems at LLNL, 4 ranks
per core

¢ "Warp Speed: Executing Time Warp on
1,966,080 Cores,” Barnes, Carothers
Jefferson, LaPre, PADS 2013

e FG-MPI implements MPI ranks as
coroutines
¢ Wagner at UBC
][¢ Over 100M MPI ranks on 6,480 cores

. PARALLEL@ILLINOIS

MPI+X

e Many reasons to consider MPI+X

¢ Major: We always have:
e MPI+C, MPI+Fortran

¢ Both C11 and Fortran include support of
parallelism (shared and distributed memory)

e Abstract execution models becoming
more complex

¢ Experience has shown that the programmer
must be given some access to performance
features

][¢ Options are (a) add support to MPI and (b) let

X support some aspects
) PARALLEL@ILLINOIS

X = MPI (or X = &)

e MPI 3.0 features esp. important for
Exascale
¢ Generalize collectives to encourage post
BSP programming:
e Nonblocking collectives
e Neighbor - including nonblocking - collectives

¢ Enhanced one-sided (recall AMM targets)

e Precisely specified (see "Remote Memory Access
Programming in MPI=3,” Hoefler et at, to appear
in ACM TOPC)

e Many more operations in cluding RMW

«j[¢ Enhanced thread safety
. PARALLEL@ILLINOIS

X = Programming with Threads

e Many choices, different user
targets and performance goals
¢ Libraries: Pthreads, TBB

¢ Languages: OpenMP 4, C11/C++11

e C11 provides an adequate (and
thus complex) memory model to
write portable thread code

¢ Also needed for MPI-3 shared
memory

i5 PARALLEL@ILLINOIS

X=UPC (or CAF or ...)

e MPI Processes are UPC (- :)
programs (not : \Memory] \Memory]
threads), spanning ce] cp] [cpu cey] [cp [cru
multiple coherence - Y,
domains. This model ((~ , V)
is the closest {Memoryq {Memoryq
counterpart to the MPI A CRU] [CPY [P cpu| |cry] [Py)
+OpenMP model, using p o
PGAS to extend the [Memory]} [Memory]}
"process" beyond a e e e
single coherence %)
domain.

e Could be PGAS across UL.|MPI Process/

][chip UPC Program

6 PARALLEL@ILLINOIS

What are the Issues?

1867

e [sn’t the beauty of MPI + X that
MPI and X can be learned (by
users) and implemented (by
developers) independently?
¢ Yes (sort of) for users
¢ No for developers

e MPI and X must either partition or
share resources

¢ User must not blindly oversubscribe

¢ Developers must negotiate .. 1clalllNoOlS

More Effort needed on the “"+”

e MPI+X won't be enough for Exascale if
the work for "+" is not done very well

¢ Some of this may be language
specification:

e User-provided guidance on resource
allocation, e.g., MPI_Info hints; thread-based
endpoints

¢ Some is developer-level standardization

e A simple example is the MPI ABI specification
— users should ignore but benefit from
T developers supporting

s PARALLEL@ILLINOIS

Some Resources to Negotiate

1867

e CPU resources

¢
¢
¢

e Memory resources

¢

e NIC resources
Threads and contexts ¢ Collective groups
Cores (incl placement) ¢ Routes

Cache ¢ Power

e OS resources

Prefetch, outstanding ¢ Synchronization
load/stores hardware

Pinned pages or ¢ Scheduling
equivalent NIC needs ¢ Virtual memory

Transactional memory
regions

Memory use (buffers)

9 PARALLEL

LLINOIs

Which MPI?

e Many new features in MPI-3 &=
¢ Many programs still use subsets

Using Advanced MPI

Of M PI = 1 Modern Features of the

Message-Passing Interface

e MPI implementations still
improving
¢ A long process — harmed by
non-standard shortcuts
e MPI Forum is active and
considering new features
relevant for Exascale
I ¢ MPI 3.1 expected in September
20 PARALLEL@]LLINOIS

Fault Tolerance

e Often raised as a major issue for Exascale systems

¢ Experience has shown systems more reliable than simple
extrapolations assumed

e Hardly surprising — reliability is costly, so systems
engineered only to the reliability needed
e Major question: What is the fault model?
¢ Process failure (why)

e Software - then program is buggy. Recovery may not make
sense

e Hardware — Where (CPU/Memory/NIC/Cables)? Recovery
may be easy or impossible

¢ Silent data corruption

e Unsolved problem - impact of faults on X (and +)
J§ in MPI+X

’ PARALLEL@ILLINOIS

Fault Tolerance

e Most effort in MPI Forum is on process fail-
stop faults

e Other faults may be more important

¢ I/0 failover faults. How long should an I/O operation
wait before failing, and should the operation be
safely restartable? Who is responsible?

¢ Silent data corruption.

e Data in numeric values. Often easy to define restart.
State of program is correct, except for the affected
data (and tainted data)

e Data in code, pointers, key data structures. State of
program may be unknown. Restart needed from
known good state

. PARALLEL@ILLINOIS

Separate Coherence Domains
and Address Spaces

e Already many systems without cache
coherence and with separate address spaces

¢ GPUs best example; unlikely to change even when
integrated on chip

¢ OpenACC an “X” that supports this

e MPI designed for this case

¢ Despite common practice, MPI definition of
MPI_Get_address supports, for example, segmented
address spaces

e MPI RMA "“separate” memory model also fits

this case

¢ 'Separate” model defined in MPI-2 to support the
‘j[World’s fastest machines, including NEC SX series

and Earth Simulator
- PARALLEL@ILLINOIS

Towards MPI-4

e Many extensions being considered, either by the Forum
or as Research, including

e Other communication paradigms

¢ Active messages

e Toward Asynchronous and MPI-Interoperable Active Messages,
Zhao et al, CCGrid'13

¢ Streams

e Tighter integration with threads
¢ Endpoints

e Data centric
¢ More flexible datatypes
¢ Faster datatype implementations

e Unified address space handling

][¢ E.g., GPU memory to GPU memory without CPU processing

LLINOIs

2 PARALLEL@

MPI and Execution Models

1867

e MPI's Execution model is...

¢ Blissfully simple: Communicating Sequential

Processes

e Some complexity in communication, esp. MPI-3
one-sided

¢ Process operations are copy, pointwise
arithmetic/logic/bit, read/write (I/O)

¢ MPI adds two-party and group
synchronization and operations

¢ No performance guarantees
¢ Deliberately vague on progress

25 PARALLEL

LLINOIs

MPI and Exascale Execution
Models

e End of Dennard scaling, end of
Moore’s law, forcing new, more
complex execution models

¢ Some can be buried in the “X”, e.qg.,
stream programming

¢ Some can be buried in the “"+”, e.qg.,
limited resources for implementing
runtimes and programming systems

¢ Some may need to be exposed to the
T MPI programmer

2% PARALLEL@ILLINOIS

MPI is not a BSP system

e BSP = Bulk Synchronous Programming

¢ Programmers like the BSP model, adopting it even
when not necessary (see FIB)

¢ Unlike most programming models, designed with a
performance model to encourage quantitative design
in programs

e MPI makes it easy to emulate a BSP system
¢ Rich set of collectives, barriers, blocking operations

e MPI (even MPI-1) sufficient for dynamic
adaptive programming
¢ The main issues are performance and “progress”

¢ Improving implementations and better HW support
][for integrated CPU/NIC coordination the answer

. PARALLEL@ILLINOIS

Some Remaining Issues

1867

e | atency and overheads

¢ Libraries add overheads

e Several groups working on applying compiler
techniques to MPI and to using annotations to
transform user’s code; can address some issue

e Execution model mismatch

¢ How to make it easy for the programmer to
express operations in a way that makes it
easy to exploit innovative hardware or
runtime features?

¢ Especially important for Exascale, as
innovation essential in meeting 20MW,
MTBF, total memor;g, etc. PARAI.I_EI_ ”.I.lNOlS

Summary

1867

e MPI a viable component in an
Exascale software stack

e But addresses only part of the
problem

e More work is needed on effective
combination of systems (the “+")

e More work is needed on
automation for performance and
for performance portability

29 PARALLEL@ILLINOIS

