
The Future of the
Message-Passing Interface

William Gropp
www.cs.illinois.edu/~wgropp

2

MPI and Supercomputing
•  The Message Passing Interface (MPI) has been

amazingly successful
♦  First released in 1992, it is still the dominant

programming system used to program the world’s fastest
computers

♦  The most recent version, MPI 3.0, released in September
2012, contains many features to support systems with
>100K processes and state-of-the-art networks

•  Supercomputing (and computing) is reaching a
critical point as the end of Dennard scaling has
forced major changes in processor architecture.

•  This talk looks at the future of MPI from the point
of view of Extreme scale systems
♦  That technology will be used in single rack systems

3

Likely Exascale Architectures

•  From “Abstract Machine Models and Proxy
Architectures for Exascale Computing Rev 1.1,” J
Ang et al

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache

6

Note: not fully
cache coherent

4

More Details: Processor

•  Memory bandwidths from 1200GB/s
(core-L1cache) to 60GB/s (off-chip
conventional DRAM)

•  64-256 cores/chip; 2-64 threads/core;
4-8 wide SIMD, 8-128 outstanding refs
per core

•  Atomic ops, including transactional
memory

•  Documents silent on memory latencies
♦ Probably because numbers are uninspiring

5

More Details: Memory

• Multilevel
♦ DRAM on chip (64GB), off chip (2TB)
♦ NVRAM (higher density – 16TB, but

requires larger access units (≥1KB))
♦ Stacked memory

• Compute near memory
♦ “Extended memory semantics”
♦ Full/empty bits; gather/scatter;

stream compute; …

6

More Details: Network

•  100-400 GB/s injection BW
•  Topology anyone’s guess (SlimFly,

perhaps?)
•  250M message/s two-sided
•  1000M messages/s one-sided
•  Latency:

♦ 0.5-1.4 usec two-sided nearest neighbor
♦ 0.4-0.6 usec one-sided nearest neighbor
♦ 3-5 usec cross machine
♦ Note: about the same as current systems

7

Most Predict Heterogeneous
Systems for both Ops and Memory

CFD Vision 2030 Study: A Path To Revolutionary Computational Aerosciences 49

between 16 to 32 exaFLOPS may be achievable by 2030.
Note that there are many assumptions in this estimate, and
many yet unsolved engineering problems must be overcome
to maintain the targets in the ITRS roadmap. In addition, we
have assumed lower clock rates in the stream and processor-
in-memory elements, reflecting a different optimization point
for speed and energy use.

It is important to note that these predictions are sensitive to a
number of hard-to-forecast values. For example, energy and
power dissipation problems could reduce the number of pro-
cessing units that can be assembled into a single system, re-
ducing total performance.5 Conversely, new 3D fabrication
and packaging could increase the density of components,
allowing even greater parallelism. The major conclusion that
should be drawn from this table is that current trends will
yield significantly faster systems than we have today, but not
ones that are as fast as the past 20 years of development
would suggest.

Another important feature of an HPC system in this time
frame we expect to see are even more levels of memory than
we currently have. Current systems have up to three levels of
cache, and then main memory. Systems with accelerators
have additional memory attached to the accelerator. In 2030,
main memory itself might be composed of different levels,
with portions being very fast, but small, and other portions
larger and slower. Combined with the concept of processing
in memory, that is, having some computing capability em-
bedded within the memory subsystem, this will lead to an
even more complex overall system.

Programming a 2030 HPC system
Software has a much longer lifespan than hardware, and as
pointed out earlier, the expectation is that there will be only
evolutionary changes to the programming model in the 2020-
2023 timeframe. For 2030, the likelihood that some major,
revolutionary changes to the programming models will occur
is higher because of the extra development time. It is im-
portant to point out that this is not a guarantee, as many pro-
gramming languages and models have shown a surprising
level of sustainability. In addition, as we pointed out in the
discussion on the validity of petascale projections, software

advances are much tougher to predict than hardware advanc-
es.

Future programming models will be driven by dealing with
locality, whether they are new or extensions of existing pro-
gramming models. Programmers need to be able to express
locality and relationships between data abstractly. NVIDIA’s
CUDA programming language is an example of a newer
programming model that forces programmers to deal directly
and explicitly with locality. This illustrates the need for the
expression of locality while also showcasing the need for
ways to express this information about locality more abstract-
ly and portable.

As discussed above, we pointed out that the memory system
will probably become much more complex, both with the
introduction of processing in memory (PIM) as well as with
more levels of memory architectures. While some of this
complexity will be hidden from the developers, a lot of it will
not. The developers need to be able to express what compu-
ting should be done by the slower processing elements inside
the memory subsystem, and what needs to be done by the
fast scalar processor or the streaming elements. The pro-
cessing elements within the memory subsystem will have
significantly higher bandwidth to memory. One of the easiest
uses to imagine of this processing is to perform calculations
for prefetching of data (gather), and scatter the results of cal-
culations back into the final locations in the memory subsys-
tem. Because of the processing power and bandwidth envi-
sioned in the memory subsystems, these can be significantly
more complex than possible within the processors, which
will be especially useful for software with complex memory
access patterns, for example, unstructured CFD codes.

We do not believe that there will ever be a programming
model that completely hides the complexity of the underlying
HPC system from the programmer while achieving the nec-
essary performance. Nevertheless, we do think that great
advances can be made to allow the programmer better to
express her or his intent and to provide guidance to the com-
piler, runtime system, operating system, and even the under-
lying hardware. This will require significant research and that

Table 1. Estimated Performance for Leadership-class Systems

Year
Feature

size
Derived

parallelism
Stream

parallelism
PIM paral-

lelism

Clock
rate
GHz FMAs

GFLOPS
(Scalar)

GFLOPS
(Stream)

GFLOPS
(PIM)

Processor
per node

Node
(TFLOP)

Nodes
per

system
Total

(PFLOPS)
2012 22 16 512 0 2 2 128 1,024 0 2 1 10,000 23

2020 12 54 1,721 0 2.8 4 1,210 4,819 0 2 6 20,000 241

2023 8 122 3,873 512 3.1 4 3,026 12,006 1,587 4 17 20,000 1,330

2030 4 486 15,489 1,024 4 8 31,104 61,956 8,192 16 101 20,000 32,401

Feature size is the size of a logic gate in a semiconductor, in nanometers. Derived parallelism is the amount of concurrency, given processor cores with a

constant number of components, on a semiconductor chip of fixed size. Stream and PIM parallelism are the number of specialized processor cores for

stream and processor-in-memory processing, respectively. FMA is the number of floating-point multiply-add units available to each processor core. From

these values, the performance in GigaFLOPS is computed for each processor and node, as well as the total peak performance of a leadership-scale system.

Another estimate, from “CFD Vision 2030 Study:
A Path to Revolutionary Computational
Aerosciences,” Slotnick et al, 2014

8

What About a Homogeneous
System?

•  IBM BlueGene was the only
homogenous* system at this scale, but
…
♦  “Both CORAL awards leverage the IBM

Power Architecture, NVIDIA’s Volta GPU and
Mellanox’s Interconnected technologies to
advance key research initiatives …”

•  * Try to use the very wide SIMD on
BlueGenes. Homogeneously
heterogeneous

9

What This (might) Mean for
MPI

• Lots of innovation in the processor
and the node

• More complex memory hierarchy;
no chip-wide cache coherence

• Tightly integrated NIC
• Execution model becoming more

complex
♦ Achieving performance, reliability

targets requires exploiting new
features

10

What This (might) Mean for
Applications

•  Weak scaling limits the range of problems
♦  Latency may be critical (also, some applications

nearing limits of spatial parallelism)
•  Rich execution model makes performance

portability unrealistic
♦  Applications will need to be flexible with both their

use of abstractions and their implementation of
those abstractions

•  One Answer: Programmers will need help with
performance issues, whatever parallel
programming system is used
♦  Much of this is independent of the internode

parallelism, and can use DSLs, annotations, source-
to-source transformations.

11

Where Is MPI Today?

• Applications already running at
large scale:
System Cores
Tianhe-2 3,120,000 (most in Phi)
Sequoia 1,572,864
Blue Waters 792,064* + 1/6 acc
Mira 786,432
K computer 705,024
Julich BG/Q 458,752
Titan 299,008* + acc

* 2 cores share a wide FP unit

12

Some Experiments over 1M
MPI Processes

•  ROSS Parallel Discrete Event Simulator
♦ Used over 7.8M MPI processes on 2

combined BG/Q systems at LLNL, 4 ranks
per core

♦  “Warp Speed: Executing Time Warp on
1,966,080 Cores,” Barnes, Carothers
Jefferson, LaPre, PADS 2013

•  FG-MPI implements MPI ranks as
coroutines
♦ Wagner at UBC
♦ Over 100M MPI ranks on 6,480 cores

13

MPI+X

•  Many reasons to consider MPI+X
♦ Major: We always have:

• MPI+C, MPI+Fortran
♦ Both C11 and Fortran include support of

parallelism (shared and distributed memory)
•  Abstract execution models becoming

more complex
♦ Experience has shown that the programmer

must be given some access to performance
features

♦ Options are (a) add support to MPI and (b) let
X support some aspects

14

X = MPI (or X = ϕ)

•  MPI 3.0 features esp. important for
Exascale
♦ Generalize collectives to encourage post

BSP programming:
• Nonblocking collectives
• Neighbor - including nonblocking - collectives

♦ Enhanced one-sided (recall AMM targets)
•  Precisely specified (see “Remote Memory Access

Programming in MPI=3,” Hoefler et at, to appear
in ACM TOPC)

• Many more operations in cluding RMW

♦ Enhanced thread safety

15

X = Programming with Threads

• Many choices, different user
targets and performance goals
♦ Libraries: Pthreads, TBB
♦ Languages: OpenMP 4, C11/C++11

• C11 provides an adequate (and
thus complex) memory model to
write portable thread code
♦ Also needed for MPI-3 shared

memory

16

X=UPC (or CAF or …)
•  MPI Processes are UPC

programs (not
threads), spanning
multiple coherence
domains. This model
is the closest
counterpart to the MPI
+OpenMP model, using
PGAS to extend the
"process" beyond a
single coherence
domain.

•  Could be PGAS across
chip

Memory
CPU CPU CPU

Memory
CPU CPU CPU

Memory
CPU CPU CPU

Memory
CPU CPU CPU

Memory
CPU CPU CPU

Memory
CPU CPU CPU

MPI Process/
UPC Program

17

What are the Issues?

•  Isn’t the beauty of MPI + X that
MPI and X can be learned (by
users) and implemented (by
developers) independently?
♦ Yes (sort of) for users
♦ No for developers

• MPI and X must either partition or
share resources
♦ User must not blindly oversubscribe
♦ Developers must negotiate

18

More Effort needed on the “+”

• MPI+X won’t be enough for Exascale if
the work for “+” is not done very well
♦ Some of this may be language

specification:
• User-provided guidance on resource

allocation, e.g., MPI_Info hints; thread-based
endpoints

♦ Some is developer-level standardization
• A simple example is the MPI ABI specification

– users should ignore but benefit from
developers supporting

19

Some Resources to Negotiate

•  CPU resources
♦  Threads and contexts
♦  Cores (incl placement)
♦  Cache

•  Memory resources
♦  Prefetch, outstanding

load/stores
♦  Pinned pages or

equivalent NIC needs
♦  Transactional memory

regions
♦  Memory use (buffers)

•  NIC resources
♦  Collective groups
♦  Routes
♦  Power

•  OS resources
♦  Synchronization

hardware
♦  Scheduling
♦  Virtual memory

20

Which MPI?

•  Many new features in MPI-3
♦ Many programs still use subsets

of MPI-1
•  MPI implementations still

improving
♦ A long process – harmed by

non-standard shortcuts
•  MPI Forum is active and

considering new features
relevant for Exascale
♦ MPI 3.1 expected in September

21

Fault Tolerance

•  Often raised as a major issue for Exascale systems
♦  Experience has shown systems more reliable than simple

extrapolations assumed
•  Hardly surprising – reliability is costly, so systems

engineered only to the reliability needed

•  Major question: What is the fault model?
♦  Process failure (why)

•  Software – then program is buggy. Recovery may not make
sense

•  Hardware – Where (CPU/Memory/NIC/Cables)? Recovery
may be easy or impossible

♦  Silent data corruption

•  Unsolved problem – impact of faults on X (and +)
in MPI+X

22

Fault Tolerance

•  Most effort in MPI Forum is on process fail-
stop faults

•  Other faults may be more important
♦  I/O failover faults. How long should an I/O operation

wait before failing, and should the operation be
safely restartable? Who is responsible?

♦  Silent data corruption.
•  Data in numeric values. Often easy to define restart.

State of program is correct, except for the affected
data (and tainted data)

•  Data in code, pointers, key data structures. State of
program may be unknown. Restart needed from
known good state

23

Separate Coherence Domains
and Address Spaces

•  Already many systems without cache
coherence and with separate address spaces
♦  GPUs best example; unlikely to change even when

integrated on chip
♦  OpenACC an “X” that supports this

•  MPI designed for this case
♦  Despite common practice, MPI definition of

MPI_Get_address supports, for example, segmented
address spaces

•  MPI RMA “separate” memory model also fits
this case
♦  “Separate” model defined in MPI-2 to support the

World’s fastest machines, including NEC SX series
and Earth Simulator

24

Towards MPI-4

•  Many extensions being considered, either by the Forum
or as Research, including

•  Other communication paradigms
♦  Active messages

•  Toward Asynchronous and MPI-Interoperable Active Messages,
Zhao et al, CCGrid’13

♦  Streams
•  Tighter integration with threads

♦  Endpoints
•  Data centric

♦  More flexible datatypes
♦  Faster datatype implementations

•  Unified address space handling
♦  E.g., GPU memory to GPU memory without CPU processing

25

MPI and Execution Models

•  MPI’s Execution model is…
♦ Blissfully simple: Communicating Sequential

Processes
•  Some complexity in communication, esp. MPI-3

one-sided
♦ Process operations are copy, pointwise

arithmetic/logic/bit, read/write (I/O)
♦ MPI adds two-party and group

synchronization and operations
♦ No performance guarantees
♦ Deliberately vague on progress

26

MPI and Exascale Execution
Models

• End of Dennard scaling, end of
Moore’s law, forcing new, more
complex execution models
♦ Some can be buried in the “X”, e.g.,

stream programming
♦ Some can be buried in the “+”, e.g.,

limited resources for implementing
runtimes and programming systems

♦ Some may need to be exposed to the
MPI programmer

27

MPI is not a BSP system

•  BSP = Bulk Synchronous Programming
♦  Programmers like the BSP model, adopting it even

when not necessary (see FIB)
♦  Unlike most programming models, designed with a

performance model to encourage quantitative design
in programs

•  MPI makes it easy to emulate a BSP system
♦  Rich set of collectives, barriers, blocking operations

•  MPI (even MPI-1) sufficient for dynamic
adaptive programming
♦  The main issues are performance and “progress”
♦  Improving implementations and better HW support

for integrated CPU/NIC coordination the answer

28

Some Remaining Issues

•  Latency and overheads
♦  Libraries add overheads

•  Several groups working on applying compiler
techniques to MPI and to using annotations to
transform user’s code; can address some issue

•  Execution model mismatch
♦ How to make it easy for the programmer to

express operations in a way that makes it
easy to exploit innovative hardware or
runtime features?

♦ Especially important for Exascale, as
innovation essential in meeting 20MW,
MTBF, total memory, etc.

29

Summary

• MPI a viable component in an
Exascale software stack

• But addresses only part of the
problem

• More work is needed on effective
combination of systems (the “+”)

• More work is needed on
automation for performance and
for performance portability

