
DAME: A Runtime-Compiled Engine for Derived
Datatypes

Tarun Prabhu William Gropp

University of Illinois, Urbana-Champaign



What is DAME?

DAME is a language and interpreter specifically designed for data
movement



What does it do?

A DAME program lets a user declaratively describe a data layout.
The interpreter can then perform pack/unpack operations on this

data layout in the most efficient manner possible
A DAME program can also be compiled using a JIT approach for

even greater efficiency



Where is it used?

We patched MPICH to use the DAME interpreter as its datatype
processing engine



Do we really need a data-movement language?

I Writing packing loops by hand can be cumbersome

I Hand-optimized packing loop nests may not have
performance-portability

I Declarative loops allow user to specify only the high-level data
layout and allow the runtime to pick the most efficient way of
performing the packing



An example: Matrix transpose

do i = 1, 5 do i = 1, 5
do j = 1, 4 do j = 1, 4
b(i,j) = a(j,i) b(j,i) = a(i,j)

I One implementation has sequential writes and strided reads,
the other has strided writes and sequential reads.

I Relative performance is platform-dependent

I Neither efficient for cache-based systems.



MPI Datatypes

long disps[] = { 0, 8, 16, 24 };
MPI Type vector(5, 1, 4, MPI DOUBLE, &c);
MPI Type create hindexed block

(4, 1, disps, c, &t ddt);
MPI Type commit(&t ddt);

...
MPI Pack(matrix, 1, t ddt, transpose, ..);

I Bit more verbose, but implementation can choose between
strided writes and sequential writes



Are MPI datatypes always better?
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Figure: Communication speedup over manual packing



Why is the performance poor?

I Interpretation overhead

I No optimizations? (in manual packing, compiler can perform
some optimizations)

I Poor choice of intermediate representation?

I . . .

These are just some possibilities.



So why runtime compilation?

I Reduce interpretation overhead

I Exploit runtime information. For instance knowing loop
bounds can help compiler make better optimization decisions

I Let the compiler handle platform-specific information, e.g.,
cache sizes, instead of having the programmer do it all

I MPI datatypes are typically created once and reused often.
Compilation overhead can be amortized



Design considerations

I Reduce interpretation overhead

I Maximize ability of compiler to optimize code. Expose as
much as possible of user’s program to compiler

I Simplify partial packing/unpacking as much as possible
I Data may be transfered in packets; thus the pack/unpack code

must be able to pause and resume. Keeping this requirement
from impacting performance is key.

I Support for memory access optimizations

I Support for runtime compilation



DAME

DAME is a primitive-based language with an interpreter organized
as a stack machine



Matrix transpose revisited

EXIT
BLOCKINDEXED1(4,1,[0,8,16,24],40)
VECTORFINAL(5,1,4,8)
CONTIGFINAL(8)

BOTTOM

I EXIT and BOTTOM are control primitives

I The Final primitives indicate the innermost types. Exposes
at least a doubly-nested loop to the compiler

I CONTIGFINAL simplifies partial packing
I Not executed unless partial pack (or unpack)



DAME interpreter

1. Begins at first primitive after EXIT

2. Each primitive is “pushed” onto the interpreter stack

3. At each non-final primitive, only pointers are updated

4. Actual data is moved at each Final primitive. If packing can
only be partially done, the maximum amount of data is
packed including partial blocks

5. Terminate when EXIT is encountered



DAME — Optimizations made possible

I EXIT simplifies termination checks

I CONTIGFINAL simplifies resuming from partial packs
because control jumps directly to this primitive to complete
the last partially packed block

I In partial packing, the interpretation stack contains the entire
state and resuming is as simple as restoring this stack

I Memory access optimizations can be done by shuffling
primitives as desired. This is done at “commit” time.

I Other optimizations such as normalization, displacement
sorting and merging can also easily be performed at
commit-time.



Additional optimizations possible

I Alignment can be determined most accurately and appropriate
instructions can be chosen

I Prefetching can be done more accurately because the sizes of
the types and the cache are all known

I The main switch statement at the heart of interpretation
loops is eliminated



Implementation I: DAME-L

First implementation using LLVM

I All the work of code generation, JIT’ted code management
handled by LLVM’s MCJIT API.

I Plenty of optimizations available

I Overhead was terrible (commit-time was ≈100000x slower
than non-JIT’ted DAME)



Implementation II: DAME-X

Alternate implementation using XED1

I Custom opcode generator with support for a very limited
subset of x86

I Much lower compile overhead (1000x faster than DAME-L)

I Limited optimizations enabled and will only work on x86

1XED is a part of PIN - a binary instrumentation tool



Evaluation

I Evaluated using DDTBench by Schneider et al2

I DAME implementation was MPICH patched to use DAME as
the datatype processing engine

I Test machine was the Taub cluster at the University of Illinois
consisting of 12-core Xeon E5 X5650 processors with an
InfiniBand interconnect

I Cray MPICH was tested on Blue Waters to compare
performance over manual packing

2T. Schneider, F. Kjolstad and T. Hoefler. MPI datatype processing using
runtime compilation. EuroMPI ’13



Datatype create/free overheads

Create(µs) Free(µs)
OM DM D-L D-X OM DM D-L D-X

FFT2 11 12 153946 967 5 7 834 10
LAMMPS 816 72 439408 2636 99 13 1383 15
MILC 5 3 87115 462 0 1 308 2
NAS LU x 1 1 31624 235 0 1 110 1
NAS LU y 2 2 77356 425 1 1 232 2
NAS MG x 7 3 74376 464 3 0 248 2
NAS MG y 2 2 81799 432 1 0 258 2
NAS MG z 2 1 77971 431 1 1 230 2

Figure: OpenMPI, DAME, Dame+LLVM, Dame+XED respectively



Communication speedup (p=2)
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Communication speedup over manual packing (p=2)
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Overall speedup in mini-app: FFT23
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3T. Hoefler and S.GottLieb. Parallel zero-copy algorithms for fast fourier
transform and conjugate gradient using MPI datatypes. EuroMPI ’10



Effect of compiler optimizations (DAME-L with FFT2)

256 512 768 1024 1536 2048 4096

FFT2: Impact of optimizations on total runtime (p=2)
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Figure: Bar graph is execution-time speedup over O0. Line graph is
commit-time slowdown (inverse speedup)



Conclusions

I Implemented DAME, a JIT-enabled language for data
movement as the datatype processing engine in MPICH

I Experiments with DDTBench — a suite of datatype
benchmarks taken from real applications — shows consistent
improvement in communication performance over existing
MPI implementations

I JIT compilation improves the performance of DAME even
further in many cases.

I A comparatively low-overhead special-purpose JIT compiler is
beneficial and not impractical to implement
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