
Software Challenges for
Extreme-Scale Computing

William Gropp
www.cs.illinois.edu/~wgropp

2

Quotes from “Enabling Technologies for
Petaflops Computing” (MIT Press 1995)

•  “The software for the current generation of 100 GF
machines is not adequate to be scaled to a TF…”

•  “The Petaflops computer is achievable at reasonable cost with
technology available in about 20 years [2014].”
♦  (estimated clock speed in 2004 — 700MHz)*

•  “Software technology for MPP’s must evolve new ways to
design software that is portable across a wide variety of
computer architectures. Only then can the small but
important MPP sector of the computer hardware market
leverage the massive investment that is being applied to
commercial software for the business and commodity
computer market.”

•  “To address the inadequate state of software productivity,
there is a need to develop language systems able to integrate
software components that use different paradigms and
language dialects.”

3

Quotes from “Enabling Technologies for
Petaflops Computing” (MIT Press 1995)

•  “The software for the current generation of 100 GF machines
is not adequate to be scaled to a TF…”

•  “The Petaflops computer is achievable at reasonable cost with
technology available in about 20 years [2014].”
♦  (estimated clock speed in 2004 — 700MHz)*

•  “Software technology for MPP’s must evolve new ways to
design software that is portable across a wide variety of
computer architectures. Only then can the small but
important MPP sector of the computer hardware market
leverage the massive investment that is being applied to
commercial software for the business and commodity
computer market.”

•  “To address the inadequate state of software
productivity, there is a need to develop language
systems able to integrate software components that
use different paradigms and language dialects.”

4

Top Three Challenges

•  Algorithms for Extreme Scale
♦  Must match/work with features of the architecture:

•  Heterogeneous, “vectors” (optimized hardware)
•  Latency hiding; communication/computation overlap
•  Small memory per “core”
•  High memory locality (in part to reduce energy use of

algorithm)
•  Large degree of concurrency (~106 “cores”)
•  Resilience

♦  Algorithm changes; e.g., higher-order approximations in
numerical codes; more compact representations in
general

♦  Current software systems provide little support/help for
programming these algorithms
♦  Esp locality, performance, resilience

5

Top Three Challenges

•  Software for realizing algorithms
♦ Must avoid the false choice of a single

approach for everyone
• Wrong on two levels – mismatch with skill and

with needs
♦  Low Level: Must allow skilled programmers

to realize full potential of machine
•  These programmers need help; better tools to

analyze performance and correctness;
performance as a first-class property in the
language/runtime

♦ Higher Levels: Must provide higher levels of
abstraction, even at the cost of generality

6

Top Three Challenges

• An execution model that provides
access to performance,
correctness, reliability, and
composability
♦ And to performance (else get a

smaller, simpler machine)
♦ Composability to allow multiple

software components to work
efficiently together

7

Are We Up to These
Challenges?

•  Those are three big challenges
•  How much needs to change?

♦  Algorithms
•  More dynamic, less BSP, more latency tolerant
•  Bonus: Also better for current machines

♦  Execution models
•  Hardest part; depends on technology choices and

implementation
•  To start:

-  Different kinds of parallelism (vector, SMT, core, chip, node)
-  Different kinds of memory (register, cache, shared, SRAM, DRAM,

NVRAM)
-  I/O operations and semantics (POSIX will be a huge mistake here)

♦  Software for programming
•  Actually the easiest
•  Plan A: New, general purpose, high productivity programming

language and environment

8

Plan B
•  MPI + OpenMP + …

♦  UPC, CAF, etc.
•  Exploit hierarchy to handle level of concurrency
•  E.g., UPC program is MPI “process”

♦  Languages/models with dynamic concurrency
•  Provide adaptive load balance, latency hiding

♦  MPI 3 extensions
•  “I don’t know what it will be, but it will be called Fortran MPI”

•  Algorithms are enhancements of current approaches
♦  Adds hierarchy to avoid fine-grain data decomposition and

larger numbers of MPI processes
♦  Adds non-blocking collectives, RMA for latency hiding
♦  Uses user-directed, in-memory encoded checkpoints for

resiliency
•  Higher level programming models through community-

driven, domain (really algorithm)-specific tools

9

Where Is MPI Today?

• Applications already running at
large scale:
System Cores
Tianhe-2 3,120,000 (most in Phi)
Sequoia 1,572,864
Blue Waters 792,064* + 59,136smx
Mira 786,432
K computer 705,024
JUQUEEN 458,752
Titan 299,008* + 261,632smx

* 2 cores share a wide FP unit

10

MPI is not a BSP system

•  BSP = Bulk Synchronous Programming
♦  Programmers like the BSP model, adopting it even

when not necessary (see “functionally irrelevant
barriers”)

♦  Unlike most programming models, designed with a
performance model to encourage quantitative design
in programs

•  MPI makes it easy to emulate a BSP system
♦  Rich set of collectives, barriers, blocking operations

•  MPI (even MPI-1) sufficient for dynamic
adaptive programming
♦  The main issues are performance and “progress”
♦  Improving implementations and better HW support for

integrated CPU/NIC coordination is the right answer

11

Plan B and Algorithms

Issue Programming Support Options
Heterogeneous
processing elements

“Domain” specific
languages, annotations
for composition

DSL, s2s,
Open{X}, …

Latency hiding/
overlap

Virtual tasks; non-
blocking communication

MPI, OpenMP4,
Charm++, …

Small memory/core RMA features (avoid
copies)

MPI, PGAS,…

Memory locality Hierarchical models;
explicit locality
management

MPI+X, DSL,
s2s, …

Concurrency Hierarchical models MPI+X+Y
Resilience Hierarchical models ?

12

Observations

•  MPI can work on extreme (and Exascale)
systems
♦  Current MPI implementations will need some

changes
♦  Productivity limitations related mostly to lack of

distributed data structure support
•  Fixing this doesn’t require a new programming model

♦  Real issues include library overhead, cost of
abstraction, static partitioning/degree of concurrency

•  Quest for a single universal software solution
is the single biggest reason that we have the
software crisis (at least in HPC)

•  Algorithms need at least as much attention!

