
Engineering for Performance in 
High Performance Computing 

William Gropp 
www.cs.illinois.edu/~wgropp  



2 

Doesn’t Everyone Already Do This? 

•  Doesn’t everyone design for 
performance? 
♦ Sadly, no 

•  Why? 
♦ Not always necessary (people time more 

important than machine time) 
♦ Too hard 

•  Performance hard to predict 
♦ Can fix after the fact using tuning tools 

•  Why isn’t that good enough? 



3 

Practical Performance 
Engineering is Essential 

•  One recent high-profile performance 
disaster: the US Affordable Care Act 
(“Obamacare”) Web site 
♦ See one analysis at 

http://apmblog.compuware.com/
2013/10/22/diagnosing-obamacare-
website-performance-issues-with-apm-
tools/ 

•  A post mortem analysis (but many 
problems predictable a priori) 
♦ E.g., Points out loads 55 JS and 11 CSS (!!) 

files just to display registration page 



4 

Would Simple Performance 
Modeling Have Helped? 

•  Fixes to ACA Website 
should have been 
predictable in 
advance 

•  Initial report hints at 
that 
♦  http://

www.healthreformgps
.org/wp-content/
uploads/
healthcare.gov-
progress-report.pdf  

 EMBARGOED UNTIL Sunday, December 1, 2013, 9:00 AM EST 
 

5 
 

 

 

•  An example of where we 
should be: Performance 
Evaluation and Model 
Checking Join Forces 
•  http://cacm.acm.org/

magazines/2010/9/98021-
performance-evaluation-
and-model-checking-join-
forces/fulltext  



5 

Performance is Key 

•  Parallelism is (usually) used to get more 
performance 
♦ How do you know if you are making good 

(not even best) use of a parallel system? 
•  Even measurement-based approaches 

can be (and all to often are) performed 
without any real basis of comparison 
♦ The key questions are 

• Where is most of the time spent? 
• What is the achievable performance, and how do 

I get there? 
♦ This latter is often overlooked, leading to 

erroneous conclusions based on the 
(immature) state of compiler / runtime / 
code implementations 



6 

How Do We Know if there is 
a Performance Problem? 

• My application scales well! 
♦ So what!   

• Is it efficient?   
• Making the scalar code more efficient 

decreases scalability 
♦ How can we know? 
♦ To what do we compare? 



7 

Tuning A Parallel Code 

•  Typical Approach 
♦  Profile code.  Determine where most time is being 

spent 
♦  Study code.  Measure absolute performance, look at 

performance counters, compare FLOP rates 
♦  Improve code that takes a long time, reduce time 

spent in “unproductive” operations 
•  Why this isn’t the right Approach: 

♦  How do you know when you are done? 
♦  How do you know how much performance 

improvement you can obtain?  
•  Why is it hard to know? 



8 

Systems are Increasingly 
Complicated 

•  End of Denard 
scaling, slow 
down in reduction 
of feature size, 
stagnation in 
latency imply 
improvements 
come from 
specializations, 
other tradeoffs 

•  Example: Blue Waters 
♦  22,640 nodes with 2 AMD 

Interlagos 
♦  4,224 nodes with 1 AMD 

Interlagos, 1 NVIDIA 
Kepler K20X 

♦  24x24x24 mesh topology 
♦  I/O system with 

intermingled service 
nodes 

♦  Hierarchical storage 
system (1.4PB DRAM, 26 
PB disk, 320 PB Tape) 



9 

Why Performance Modeling? 

• What is the goal? 
♦ It is not precise predictions 
♦ It is insight into whether a code is 

achieving the performance it could, 
and if not, how to fix it 

• Performance modeling can be used  
♦ To estimate the baseline performance 
♦ To estimate the potential benefit of a 

nontrivial change to the code 
♦ To identify the critical resource 



10 

What do I mean by 
Performance Modeling? 

•  Two different models 
♦  First, an analytic expression based on the application 

code 
♦  Second, an analytic expression based on the 

application’s algorithm and data structures 
•  Note that a series of measurements from 

benchmarks is not a performance model  
•  Why this sort of modeling 

♦  The obvious: extrapolation to other systems, such as 
scalability in nodes or different interconnect 

♦  Also: comparison of the two models with observed 
performance can identify 

•  Inefficiencies in compilation/runtime 
•  Mismatch in developer expectations 



11 

Different Philosophies for 
Performance Models 

•  Simulation: 
♦ Very accurate prediction, little insight  

•  Traditional Performance Modeling (PM): 
♦  Focuses on accurate predictions 
♦ Tool for computer scientists, not application 

developers 
•  PM as part of the software engineering process 

(our view) 
♦  PM for design, tuning and optimization 
♦  PMs are developed with algorithms and used in 

each step of the development cycle 
Ø Performance Engineering 



12 

Our Methodology 

•  Combine analytical methods and performance 
measurement tools 
♦  Programmer specifies parameterized expectation  

•  E.g., T = a+b*N3 

♦  Estimate coefficients with appropriate benchmarks 
♦  We derive the scaling analytically and fill in the 

constants with empirical measurements 
♦  Focus on upper and lower bounds rather than precise 

predictions 
•  Models must be as simple and effective as possible 

♦  Simplicity increases the insight 
♦  Precision needs to be just good enough to drive action. 

•  An example: Sparse matrix-vector multiply 



13 

Preview: The Process 

•  Model algorithm and data structures 
♦  E.g., loads, stores, messages, operations 

•  Calibrate model 
♦  E.g., stream, pingpong 

•  Optional Step: Adjust algorithm, data 
structure choices 

•  Measure application; compare to model 
envelope; explore discrepancies 
♦  Model missed something 
♦  Implementation missed something 

•  Decide if code fast enough (for expected 
environment and inputs) 



14 

Sparse Matrix-Vector Product 

• Common operation for optimal (in 
floating-point operations) solution of 
linear systems 

• Sample code (common CSR format): 
for row=1,n 
    m   = i[row] - i[row-1]; 
    sum = 0; 
    for k=1,m 
        sum += *a++ * x[*j++]; 
    y[i] = sum; 

• Data structures are a[nnz], j[nnz], 
i[n], x[n], y[n] 



15 

Simple Performance Analysis 

•  Memory motion: 
♦  nnz (sizeof(double) + sizeof(int)) +  

n (2*sizeof(double) + sizeof(int))  
♦  Assume a perfect cache (never load same data twice) 

•  Computation 
♦  nnz multiply-add (MA) 

•  Roughly 12 bytes per MA 
•  Typical node can move 1-4 bytes/MA 

♦  Maximum performance is 8-33% of peak 
♦  Use STREAM benchmark to get sustained memory 

bandwidth 
•  Similar analysis gives bound based on instruction issue 

rate 
•  Implementation improvements (tricks) cannot improve 

on these limits 
•  W. K. Anderson, William D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. 

Achieving high sustained performance in an unstructured mesh CFD application, 
SC’99 (Gordon Bell Prize) 



16 

Realistic Measures of  Peak Performance 
Sparse Matrix Vector Product 

One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120 

Thanks to Dinesh Kaushik;  
ORNL and ANL for compute time 

Note excellent match to simple performance 
model.  Current systems show similar results 
(but there is a difference to be discussed later) 



17 

But the problem is so big! 

•  Real applications are much larger – isn’t it 
hard to do this for the entire application? 

•  Yes, but it doesn’t matter for runnable 
apps.  Look at the parts that take the 
most time.  Break the problem into 
digestible parts 

•  Contributions to performance issues 
from: 
♦ Single thread and node performance 
♦ Node and the Network 
♦ Placement in the Network 



18 

Processes and Memory 

•  For many computations, sustained memory 
performance is the limiting resource 
♦  As in sparse matrix-vector multiply 

•  What is the appropriate sustained rate? 
♦  Memory bus bandwidth is nearly irrelevant – it is the 

sustained rate that is usually important 
♦  What about other ways to increase effective 

sustained performance, such as prefetch? 
•  Prefetch hardware can detect regular accesses 

and prefetch data, making use of otherwise 
idle memory bus time. 
♦  However, the hardware must be presented with 

enough independent data streams 



19 

STREAM per “core” 

•  Bandwidth per core 
depends on the 
number of cores 
using memory 

•  Can often be 
approximated by 
rate = max(R1/c,R2) 

•  Note xx vs rxx – 
these are inline with 
static data vs routine 
in a separate file 
(with const/restrict, 
for optimization) 

0.00E+00%

1.00E+03%

2.00E+03%

3.00E+03%

4.00E+03%

5.00E+03%

6.00E+03%

7.00E+03%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

copy%%%%%
scale%%%%
add%%%%%%
triad%%%%
rcopy%%%%
rscale%%%
radd%%%%%
rtriad%

Per Core Performance (rate is 
operations/second, not 
memory motion).  Blue Waters 
AMD Interlagos node, using 
one process/core module 



20 

SpMV on a Multicore Node 

•  Blue Waters AMD 
Interlagos node 

•  Performance qualitatively 
similar to separate STREAM 
benchmarks 

•  Quantitative performance 
under STREAM Bound 
♦  That’s ok; that’s a bound 
♦  But within factor of 2 of 

bound 
♦  Close if using xxr numbers 



21 

Streamed Compressed 
Sparse Row (S-CSR) format 

•  S-CSR format partitions the sparse matrix into blocks along rows with size of 
bs. Zeros are added in to keep the number of elements the same in each row 
of a blockThe first rows of all blocks are stored first, then second, third … and 
bs-th rows.  

•  For the sample matrix in the following Figure, NNZ =  29. Using a block size 
of bs = 4, it generates four equal length streams R, G, B and P.  This new 
design only adds 7 zeros every 4 rows. 

0

0 0

0 0

•Partition	  the	  sparse	  matrix	  into	  blocks	  along	  rows	  with	  size	  of	  bs.	  Add	  in	  ZEROs	  to	  keep	  the	  amount	  of	  stored	  values	  is	  
the	  same	  for	  every	  row	  in	  each	  block.	  Store	  the	  first	  rows	  of	  all	  blocks	  	  first,	  then	  second,	  third	  	  …	  and	  bs-‐th rows.	  

•using	  bs =4	  block	  for	  example,	  it	  will	  generate	  R,	  G,	  B	  and	  P	  four	  equal	  length	  streams.	  In	  the	  above	  matrix,	  NNZ	  =	  	  29.	  
Design	  III	  only	  adds	  in	  7	  zeros.	  However,	  if	  4x4	  block	  is	  employed,	  144-‐29	  =	  115	  zeros	  have	  to	  be	  included.

•This	  format	  adds	  in	  	  the	  same	  	  or	  less	  amount	  	  of	  ZEROs	  	  than	  blocking	  format,	  but	  more	  index	  for	  vector	  X	  than	  the	  
traditional	  CSR	  format.	  

R

G

B

P

A	  sparse	  matrix	  (N	  =	  12,	  NNZ=	  29)

Design	  III

0

0

Streamed	  Compressed	  Sparse	  Row	  format
(S-‐CSR)	  

2 2

0 4 6 9p tr

v a l in d
0	  	  	  4	  	  	  	  8	  	  	  11 2	  	  	  6	  	  	  10

2	  	  	  6	  	  10	  10	  	  	  4	  	  	  8	  	  	   3	  	  	  5	  	  	  	  9

1	  	  	  8	  	  	  8	  	  	  	  	  8	  	  	  6	  	  	  6	  	  	  	  1	  	  	  	  6	  	  10

4	  	  	  6	  	  	  6	  	  	  	  	  6	  	  	  8	  	  11	  	  	  0	  	  	  	  5	  	  11



22 

Performance Ratio Compared to 
CSR Format  

•  S-CSR format is better than CSR format for all (on Power 5 and 6) or Most (on Power 4) 
matrices 

•  S-BCSR format is better than BCSR format for all (on Power 6) or Most (on Power 4 and 
5) matrices 

•  Blocked format performance from ½ to 3x CSR. 



23 

Combining With Other 
Optimizations 

•  We can further 
modify the S-CSR 
and S-BCSR to 
match the 
requirements for 
vectorization 

•  We can use OSKI 
to optimize 
“within the loops” 

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

Pe
rf
or
m
an
ce
	  R
at
io

stream_un2

BLK12-‐VSX

S-‐CSR-‐2

S-‐CSR-‐4

S-‐CSR-‐2-‐VSX

S-‐CSR-‐4-‐VSX

SpMV on	  	  BlueBiou



24 

Hybrid Sparse Matrix 
Representations 

•  Match hardware (for GPU, includes coalesced 
memory references) 

•  Adapt to matrix structure 
♦  May not be one best format for entire matrix 
♦  Not new, but penalties high in current systems 

0.00 

5.00 

10.00 

15.00 

20.00 

25.00 

30.00 

G
FL

O
P/

s 

EVC-HYB 

CUSPARSE 
CSR 



25 

Processes and SMP nodes 

•  HPC users typically believe that their code 
“owns” all of the cores all of the time 
♦  The reality is that was never true, but they did have 

all of the cores the same fraction of time when there 
was one core /node 

•  We can use a simple performance model to 
check the assertion and then use 
measurements to identify the problem and 
suggest fixes. 

•  Based on this, we can tune a state-of-the-art 
LU factorization…. 



26 

Happy Medium Scheduling 

Page 34

Best performance of CALU on multicore architectures

•   Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Page 34

Best performance of CALU on multicore architectures

•   Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Performance irregularities introduce load-
imbalance. 
Pure dynamic has significant overhead; pure 
static too much imbalance. 
Solution: combined static and dynamic 
scheduling 
 
Communication Avoiding LU factorization 
(CALU) algorithm, S. Donfack, L .Grigori, V. 
Kale, WG, IPDPS ‘12 

Scary Consequence: Static 
data decompositions will not 
work at scale. 
Corollary: programming 
models with static task 
models will not work at scale  



27 

Integrating Locality With 
Thread Scheduling 

•  Model performance, costs 
(especially data motion) 

•  Can also use information 
from MPI waits to tune 
dynamic fraction 

•  Goal is not optimal – goal 
is better/near optimal 

1000, 10k, 100k bodies 

0"
0.2"
0.4"
0.6"
0.8"
1"

1.2"
1.4"
1.6"
1.8"

dyn" sd" guided" sds"

Sp
ee
du

p&

Strategy&

Bh&.&&16&cores&

1000"bodies"

10000"bodies"

100000"bodies"

!!!!!!!!!

T0 T1 T3 T2 T3T2T2T0T1T1T2T0.
.. 

dynamic  static 

Work of Vivek Kale 



28 

Changing Requirements for 
Data Decomposition 

•  Paraphrasing either Lincoln or PT Barnum: 
 
You own some of the cores all of the time and 
all of the cores some of the time, but you 
don’t own all of the cores all of the time 
 

•  Translation: a priori data decompositions that 
were effective on single core processors are no 
longer effective on multicore processors 

•  We see this in recommendations to “leave one 
core to the OS” 

♦  What about other users of cores, like … the runtime 
system? 



29 

Data Motion Can Dominate Cost 

• This is not new 
♦ Even though floating point operations 

are still the way computations are 
usually compared 

• Minimizing time may require more 
computations 

• Many examples 
♦ Lesson here is that simple cost 

models are often sufficient 



30 

AMG Performance Model 

•  What if a model is 
too difficult?  We can 
establish upper and 
lower bounds and 
compare 
performance 

•  Includes contention, 
bandwidth, 
multicore penalties 

•  82% accuracy on 
Hera, 98% on Zeus 

•  Gahvari, Baker, 
Schulz, Yang, 
Jordan, Gropp 
(ICS’11)  

0 1 2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Hera, 128 processors

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Hera, 1024 processors

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Hera, 3456 processors

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

0 1 2 3 4 5 6 7
10

−5

10
−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Zeus, 512 processors

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties



31 

Using Redundant Solvers 

•  AMG requires a solve on the coarse grid 
 
 
 
 
 

•  Options: 
♦ Solve in parallel (too little work) 
♦ Solve in serial and distribute (Amdahl 

bottleneck + communication) 
♦ Solve redundantly 

Redundant Solution

At some level, gather the unknowns onto every process. That level and
coarser ones then require no communication:

serial AMG!
coarse solve!

all-gather!
at level l!

smooth,!
form residual!

restrict to!
level i+1!

prolong to!
level i-1!

smooth!

An analysis17 suggests that this can be of some benefit; we will examine
this further

17
W. Gropp, “Parallel Computing and Domain Decomposition,” 1992

Gahvari (University of Illinois) Scaling AMG November 3, 2011 22 / 54



32 

Redundant Solution 

•  Replace communication at levels ≥L 
with Allgather 

•  Every process now has complete 
information; no further communication 
needed 
♦ Solution is computed redundantly 

•  Performance analysis (based on Gropp 
& Keyes 1989) can guide selection of L 
♦ Must be modified by characteristics of 

modern CPUs and networks 



33 

Redundant Solves 
Redundant Solution

When applied to model problem on Hera, there is a speedup region like for
additive AMG:

 128 1024 3456

8

7

6

5

4

3

2

Processes

R
e

d
u

n
d

a
n

t 
L

e
ve

l

Modeled Speedups for Redundant AMG on Hera

 

 

0.13

1.31

1.90

1.40

1.03

1.00

0.02

0.12

1.54

1.60

1.07

1.00

1.00

0.01

0.03

0.31

1.40

1.07

1.01

1.00

0.0

0.5

1.0

1.5

2.0

 128 1024 3456

8

7

6

5

4

3

2

Processes

R
e

d
u

n
d

a
n

t 
L

e
ve

l

Actual Speedups for Redundant AMG on Hera

 

 

1.18

1.62

1.25

1.40

1.42

1.07

0.25

1.27

1.04

0.0

0.5

1.0

1.5

2.0

Diagonal pattern of speedup region, however, still persists. LLNL is
currently in the process of putting redundant solve/setup in hypre.

Gahvari (University of Illinois) Scaling AMG November 3, 2011 42 / 54

•  Applied to Hera at LLNL, provides significant 
speedup 

•  Lesson: More work can be faster 
•  Key idea is to compute performance envelope 
•  Thanks to Hormozd Gahvari 



34 

Gauging the Benefit of 
Hybrid Programming 

•  Simple model: 
♦  Using OpenMP avoids some MPI 

communication 
♦  Using OpenMP introduces some 

additional costs 
♦  Compute the trade-off point 

•  These guide choices 
♦  Real performance depends on 

additional factors 
•  Reveals short comings in some 

implementations 
•  These models roughly matched 

measurements on real systems 
(for the values tried) 

•  Work of Hormozd Gahvari 

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percent of Cycle Time Spent in Computation

C
o
m

m
u
n
ic

a
tio

n
 R

e
d
u
ct

io
n
 f
ro

m
 O

p
e
n
M

P

OpenMP Improvement Regions, Eos

 

 

16 OMP
8 OMP
4 OMP
2 OMP

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percent of Cycle Time Spent in Computation

C
o
m

m
u
n
ic

a
tio

n
 R

e
d
u
ct

io
n
 f
ro

m
 O

p
e
n
M

P

OpenMP Improvement Regions, Vulcan

 

 

64 OMP
32 OMP
16 OMP
8 OMP
4 OMP
2 OMP



35 

How often do you hear 
 “MPI Communication is too Slow” 
•  Often the real problem is 

that some process is 
“late” to a collective call 
or some send or receive 
is issued late 

•  “Fix” (used in PETSc and 
FPMPI2) 
♦  Test using 

•  MPI_Barrier(comm) 
MPI_Allreduce(…,comm); 

♦  If Barrier time is too 
long (what’s that), 
hypothesis is that 
there is load 
imbalance 



36 

Is It Communication Avoiding Or 
Minimum Solution Time? 

•  Example: non minimum collective 
algorithms 

•  Work of Paul Sack; see “Faster topology-
aware collective algorithms through non-
minimal communication”, Best Paper, 
PoPP 2012 
♦ Key ideas 

•  Shortest messages should travel the longer 
distances 

•  Shuffle of data in network can improve overall times 

•  Lesson: minimum communication need 
not be optimal 



37 

Evaluation: 
Intrepid BlueGene/P at ANL 

• 40k-node system 
♦ Each is 4 x 850 MHz PowerPC 450 

• 512+ nodes is 3d torus; fewer is 
3d mesh 

• xlc -O4 
• 375 MB/s delivered per link 

♦ 7% penalty using all 6 links both 
ways 



38 
3
8

Allgather Performance 



39 

Notes on Allgather 

• Bucket algorithm (not described 
here) exploits multiple 
communication engines on BG 

• Analysis shows performance near 
optimal 

• Alternative to reorder data step is 
in-memory move; analysis shows 
similar performance and 
measurements show reorder step 
faster on tested systems 



40 

Not Just Collectives 

•  So why do people see slow communication with 
regular mesh codes? 

•  One common culprit is the mapping of process 
topology to physical topology (network 
interconnect) 
♦  Note that this may be quite complex 
♦  We have used modeling to determine that a certain kind 

of random mapping is often preferable for Blue Waters 
♦  Avoiding hot-spots on two-level direct networks, Abhinav 

Bhatele, Nikhil Jain, William Gropp and Laxmikant V. 
Kale, submitted 

•  One common case is a halo exchange… 



41 

Communication Cost Includes More 
than Latency and Bandwidth 

•  Communication does not 
happen in isolation 

•  Effective bandwidth on shared 
link is ½ point-to-point 
bandwidth 
♦  But link bw may exceed injection 

bw, so impact may be less 
•  Real patterns can involve 

many more (integer factors) 
•  (Loosely) synchronous 

algorithms ensure 
communication cost is worst 
case 



42 

Halo Exchange on  
BG/P and Cray XT4 

•  2048 doubles to each neighbor 
•  Rate is MB/Sec (for all tables) 

BG/P 4 Neighbors 8 Neighbors 

Irecv/Send Irecv/Isend Irecv/Send Irecv/Isend 

World 208 328 184 237 

Even/Odd 219 327 172 243 

Cart_create 301 581 242 410 

Cray XT4 4 Neighbors 8 Neighbors 

Irecv/Send Irecv/Isend Phased Irecv/Send Irecv/Isend 

World 311 306 331 262 269 

Even/Odd 257 247 279 212 206 

Cart_create 265 275 266 236 232 



43 

Halo Exchange on  
BG/Q and Cray XE6 

BG/Q 8 Neighbors 
Irecv/Send Irecv/Isend 

World 662 1167 
Even/Odd 711 1452 
1 sender 2873 

•  2048 doubles to each neighbor 
•  Rate is MB/sec (for all tables) 

Cray XE6 8 Neighbors 
Irecv/Send Irecv/Isend 

World 352 348 
Even/Odd 338 324 
1 sender 5507 



44 

Discovering Performance 
Opportunities 

•  Lets look at a single process sending to its neighbors.   
•  Based on our performance model, we expect the rate to be 

roughly twice that for the halo (since this test is only 
sending, not sending and receiving) 

System 4 neighbors 8 Neighbors 

Periodic Periodic 

BG/L 488 490 389 389 

BG/L, VN 294 294 239 239 

BG/P 1139 1136 892 892 

BG/P, VN 468 468 600 601 

XT3 1005 1007 1053 1045 

XT4 1634 1620 1773 1770 
XT4 SN 1701 1701 1811 1808 



45 

Discovering Performance 
Opportunities 

•  Ratios of a single sender to all processes sending (in rate) 
•  Expect a factor of roughly 2 (since processes must also 

receive) 

System 4 neighbors 8 Neighbors 

Periodic Periodic 

BG/L 2.24 2.01 

BG/P 3.8 2.2 

BG/Q 1.98 

XT3 7.5 8.1 9.08 9.41 

XT4 10.7 10.7 13.0 13.7 
XE6 15.6 15.9 

§  BG gives roughly double the halo rate.  XTn and XE6 are much higher. 
§  It should be possible to improve the halo exchange on the XT/E/K by 

scheduling the communication 
§  Or improving the MPI implementation 



46 

Scaling PCG 

We see that the updated models predict that the single reduction methods will outperform the two
reduction methods on large core counts. Both non-blocking methods are best up to about 32k cores,
with NBPCG outperforming PIPECG up to 16k cores. Once again, additional tests will be needed
to figure out if these predictions are reasonable or accurate.

9 Future Plans

These are my rough plans for this fall that I plan to use to continue this work and produce a
paper.

Verify PCG routines and models:
Revisit each method and verify that all key computations are included in model and that memory
accesses are as optimal as possible. Make sure PETSc code accesses memory as e�ciently as
possible. Possibly contribute optimized versions of the di↵erent PCG routines to the PETSc team
to add to the master PETSc branch.

Develop and run tests on Blue Waters:
Explore di↵erent linear systems to test with di↵erent characteristics, including much larger linear
systems. Use performance models to predict if any of these di↵erent linear systems will result in
significantly di↵erent performance results. In particular, are there certain linear systems that work
better for 1 allreduce and others that work better for two allreduces. Also determine if using a more
complicated preconditioner than Jacobi will a↵ect which variation of PCG is the best.

Run tests for selected linear system on a variety of core counts for each PCG variation. Run each

14

•  PCG often considered 
not scalable due to 
the Allreduce 

•  Various 
reformulations trade 
work for 
communication 

•  Model shows benefit 
of combined vector 
operations and 
overlapped Allreduce  

•  Work of Paul Eller 

Method Dot Prod AXPYs Vec Load Vec Store Col Flops
PCG 2 3 14 5 6

L56PCG 1 4 14 6 7
PIPECG 1 8 14 10 11
NBPCG 2 5 13 7 8

This table shows that with proper optimization of memory accesses, all four methods have a similar
number of memory accesses. However there are more significant di↵erences in the number of stores
and computations for the rearranged methods.

4 Non-blocking Allreduce

These methods rely on having an e�cient implementation of a non-blocking allreduce. Tests were
developed to determine if the implementation was e�cient. Mira did not support a non-blocking
allreduce. Blue Waters supported a non-blocking allreduce, but required testing to determine the
e�ciency of the allreduce. The following tests were run on Blue Waters.

Test1:
timer()
MPI Iallreduce(...)
MatVec(...)
MPI Wait(...)
timer()

Test2:
timer()
MPI Iallreduce(...)
timer()
MatVec(...)
timer()
MPI Wait(...)
timer()
MPI Allreduce(...)
timer()

The first test tries to overlap a non-blocking allreduce and a MatVec. The second test adds addi-
tional timers and a blocking allreduce to try to compute times using a blocking and non-blocking
allreduce using the same time for the MatVec. These tests showed no noticeable overlapping of
communication and computation. I discussed this issue with some people at the NCSA. They made
some suggestions to try to overlap communication and computation, but none of their suggestions
resulted in clear evidence of overlapping communication and computation. I conclude that at this
point, there is not an e↵ective non-blocking allreduce on Blue Waters. Therefore I have focused my
e↵ort on performance modeling.

6



47 

The Importance of Memory 
Motion Optimization 

We see that the non-blocking PCG methods outperform the blocking PCG methods. NBPCG
outperforms PIPECG up to about 16k cores but then is unable to continue scaling well. PIPECG
continues to scale better for larger core counts. Additional tests will be needed on larger core counts
and we will need to verify if the assumptions on the non-blocking allreduce are reasonable.

The third graph shows updated predictions modifying the models to take into account the optimized
memory accesses for each method.

13

We see that the updated models predict that the single reduction methods will outperform the two
reduction methods on large core counts. Both non-blocking methods are best up to about 32k cores,
with NBPCG outperforming PIPECG up to 16k cores. Once again, additional tests will be needed
to figure out if these predictions are reasonable or accurate.

9 Future Plans

These are my rough plans for this fall that I plan to use to continue this work and produce a
paper.

Verify PCG routines and models:
Revisit each method and verify that all key computations are included in model and that memory
accesses are as optimal as possible. Make sure PETSc code accesses memory as e�ciently as
possible. Possibly contribute optimized versions of the di↵erent PCG routines to the PETSc team
to add to the master PETSc branch.

Develop and run tests on Blue Waters:
Explore di↵erent linear systems to test with di↵erent characteristics, including much larger linear
systems. Use performance models to predict if any of these di↵erent linear systems will result in
significantly di↵erent performance results. In particular, are there certain linear systems that work
better for 1 allreduce and others that work better for two allreduces. Also determine if using a more
complicated preconditioner than Jacobi will a↵ect which variation of PCG is the best.

Run tests for selected linear system on a variety of core counts for each PCG variation. Run each

14

Left: methods as described 
Right: methods with merged vector operations 
Lessons:  
•  Don’t count FLOPS! 
•  Don’t count DAXPY/BLAS – minimum memory references 
•  No solution, but real improvements 



48 

Summary 

•  Isn’t this just a collection of tricks? 
•  Yes and no 

♦ Yes, a number of different approaches have 
been applied 

♦ No, the same quantitative approach, based 
on getting performance estimates for the 
resources under consideration and 
emphasizing a simple model that estimates 
bounds, is applied 

♦ Quantitative Thinking 
• … must be based on having a hypothesis 

(model), not just measurements 



49 

Why is Performance Modeling 
the Key to Extreme Scale? 

•  Measuring yesterday’s applications, even with 
today’s runtimes, is often irrelevant 
♦  Look at some of the CPU/GPU comparison (Vuduc et 

al) 
•  Focus on achievable performance at scale 

♦  Architectures are changing rapidly 
•  Further reduces value of measurements on existing 

codes 
♦  Models permit quantitative evaluation of different 

approaches and a priori estimation of possible 
benefit to a major change  

♦  Only way to evaluate radical (and necessary!) 
architectural changes! 



50 

Thanks 

•  Torsten Hoefler 
♦  Performance modeling 

advocate; MPI datatype 
•  Paul Sack 

♦  Optimize alltoall/allgather 
•  Dahai Guo 

♦  Streamed format exploiting 
prefetch 

•  Paul Eller 
♦  Nonblocking PCG 

•  Marc Snir and William 
Kramer 
♦  Performance model 

advocates 

•  Vivek Kale 
♦  SMP work partitioning 

•  Abhinav Bhatele 
♦  Process/node mapping 

•  Hormozd Gahvari 
♦  AMG application modeling 

•  Funding provided by: 
♦  Blue Waters project (State of 

Illinois and the University of 
Illinois) 

♦  Department of Energy, Office of 
Science 

♦  National Science Foundation 


