Thinking About Parallelism and

Programming
William Gropp

wgropp.cs.illinois.edu

NcsA National Center for Supercomputing Applications
University of lllinois at Urbana—Champaign

Embrace the community

Ken is best known for his contributions to parallel compilers and improving
the productivity of parallel programming

Less well known is that MPI started because of Ken

He organized a Workshop on Standardization of Message Passing Libraries
(Williamsburg, Summer 1992)

» To find out if there could be a standard so that parallel compiler work could focus
on building compilers rather than adapting to each vendor’s internode
communication

 We were pretty sure we knew the answer at the end — No
« Ken knew the answer was yes, and challenged us to solve the problem

Lesson — Find solutions that work — independent of what you think

» The emergence of the MPl message passing standard for parallel computing, R Hempel and
D Walker, Computer Standards & Interfaces, 21:1, May 25, 1999, p 51-62
NCSA

Training students to think precisely and
quantitatively about parallel computing

« Parallel programming is hard

 We need to be scientific about solving these problems

« We would all like parallel programming to be eaiser and more fun,
but to accomplish that, we need to focus on the real problems

* And we must set a good example for our students.

« What follows are some examples of fuzzy thinking that we, as a
community, must strive to improve

» We can do this by insisting that our students be rigorous and to follow
the scientific method

 We must remind each other to separate opinion from fact ...

Quotes from “Enabling Technologies for
Petaflops Computing” (MIT Press 1995)

e “The software for the current generation of 100 GF machines is not
adequate to be scaled to a TF...”

e “The Petaflops computer is achievable Except that software was
available in about 20 years [2014].” adequate not only for

e (estimated clock speed in 2004 — 7000 TeraFLOP but for PetaFLOP

* Software technology for MPP's must 54 g)most certainly ExaFLOP
that is portable across a wide variety C. ce.ipuc. o ciiicccaa. oo) e

can the small but important MPP sector of the computer hardware market
leverage the massive investment that is being applied to commercial
software for the business and commodity computer market.”

e “To address the inadequate state of software productivity, there is a need
to develop language systems able to integrate software components that
use different paradigms and language dialects.”

Quotes from “Enabling Technologies for
Petaflops Computing” (MIT Press 1995)

e “The software for the current generation of 100 GF machines is not
adequate to be scaled to a TF...”

e “The Petaflops computer is achievable at reasonable cost with
technology available in about 20 years [2014].”
e (estimated clock speed in 277+ 7onfnatI=Y
« “Software technology for Mpp’ ThiS clock speed estimate was 4.
that is portable across a wide ' dead on target — IBM BG/L ran then
can the small but important M at this speed, and this ket

leverage the massive investme prediction was based on
software for the business and

e “To address the inadequate st_ quantltatlve prOJeCtlonS . _ . 2ed

to develop language systems able to mtegrate software components that
use different paradigms and language dialects.”

Scalability — What does it tell you?

« Should | use algorithm 1 or 1000000

algorithm 27 e Algorithm 1
100000

e Algorithm 2

10000
Q
=]
1000
Q.
n
100
10

1
1 10 100 1000 10000 1000001000000

Processors

Scalability — What does it tell you?

« Should | use algorithm 1 or
algorithm 27?

* Here's the same data, only
showing time instead of speedup

* |Its time to solution that is
important

* You can always improve
scalability by:

» Decreasing per-core performance

« Using a more computationally
intensive algorithm

Time

10000000

1000000

100000

10000

1000

100

10

1

0.1

@ Algorithm 1

— Agorithm 2

100 00 1000000

Processors

How should you evaluate speedup?

 When measured, you need to

| H Theoretical Peak H Oper. Issue Peak

* Understand the algorithm and 6000 —— —
options 5000 1]
« Some are not obvious — accurate 3000]
n-body force calculations can be 2000
done in O(n), not O(n?) time; s
Broadcast of n words takes O(n), * T Power4(L3GHn Pentium 4 Xeon (2.4 GH)
et O leig)) W. K. Anderson, William D. Gropp, D.
« Evaluate implementation quality K. Kaushik, D. E. Keyes, and B. F.
° Can use Simple quantitative Sm|th AChIeVIng hlgh SUStained
performance model performance in an unstructured

mesh CFD application, SC99 (Gordon

 For many apps, STREAM is _
A Bell Prize)

aRpropriate

How do you compare two programming
models?

First — are you comparing programming models, programming
systems, or implementations of programming systems?

« Answer — Almost always implementations

Implication — No paper should be accepted that claims to compare X to

Y when all it does is compare an implementation of X on Z to an
implementation of Y on Z

Second — what conclusions can you draw from the comparison?

« Example (drawn from a real We're Better than MPI!

vendor document) 1.00E+08

Intended message: use our
non-standard method — its faster!

amme\/P|
1.00E+06

Bandwidth

emms\/endorX

1.00E+04
tual message: We have no clue 1E+00 1.E+02

1.E+04
ant MP

A comparison of implementations

Collaborative Filtering (Weak scaling, 250 M edges/node)

—@®- aan~T -B-Combblas —e—Graphlab -—&—Socialite -®=-Giraph

Some MPI
implementation

— -

S 1000 —— —— -

Q

@ — Factor of
R e e —— 100!

(]

'00_3 10 o— — = —— @

g

. 1

.'Ig' 1 2 4 8 16 32 64

Number of nodes

Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets
Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo, Jongsoo Park,
M. Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep Dubey

Reproducibility and significant digits

* A keystone of science is the reproducible experiment
« Part of this is measuring and reporting only what is reproducible
 There are many challenges in making experiments reproducible
» Complete description of the apparatus (e.g., system, compiler version/
options, source code, ...)
« But some are (relatively easy)

« Don'’t report overly precise measurements

* Or, don’t use output from %e in your paper; even %.2e is often
better

» Describe your test environment
ake the code and data available

What’s in a name?

* In science, rigor and precision are important
 Example:

* “Programming exascale systems requires moving beyond the

BSP programming model; we need to replace MPI with <some
new thing>."

* What is wrong with this statement?
« “...exascale systems requires moving beyond BSP”

* This is a hypothesis. How would you test or demonstrate it?
« But there is a more subtle error...

MPI is not a BSP system

« BSP = Bulk Synchronous Programming

* Programmers like the BSP model, adopting it even when not necessary
(see FIB)

* Unlike most programming models, designed with a performance model
to encourage quantitative design in programs

 MPI makes it easy to emulate a BSP system
* Rich set of collectives, barriers, blocking operations

 MPI (even MPI-1) sufficient for dynamic adaptive programming
« The main issues are performance and “progress”

* Improving implementations and better HW support for integrated CPU/
NIC coordination more effective at supporting need

Understand what you ask for

« Current I/O performance is often appallingly poor
« Even relative to what current systems can achieve
* Part of the problem is the I/O interface semantics
« Many applications need to rethink their approach to 1/0O
* Not sufficient to “fix” current I/O implementations
« HPC Centers have been complicit in causing this problem
« By asking users the wrong question
» By using their response as an excuse to keep doing the same thing
« What is that question that causes so much trouble?
* Do you want/need POSIX I/O?

Just how bad Is current I/O performance?

1 TB/s

1 GB/s

-

MB/s

/0 Throughput

1 KB/s

Application's Max I/0O Throughput

25% 50% . 75%
Applications

Sustained
maximum
I/0

bandwidth

platform

== BlueWaters
== Edison

== |ntrepid

== Mira

“A Multiplatform Study of I/O Behavior on Petascale Supercomputers,” Huong
Luu, Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin ,
Harms, Prabhat, Suren Byna, and Yushu Yao, proceedings of HPDC'15. I

What are some of the problems?

« POSIX I/O has a strong consistency model
« Extremely hard to cache effectively

« Applications need to transfer block-aligned and sized data to
achieve performance

« Complexity adds to fragility of file system, the major cause of
failures on large scale HPC systems

* Files as I/O objects add metadata “choke points”
» Serialize operations, even with “independent” files

« Burst buffers will not fix these problems — must change
the semantics of the operations

Other communities have matched their data
systems to their needs

« “Big Data” file systems have very different consistency
models and metadata structures, designed for their
application needs

 Why doesn’t HPC?

 There have been some efforts, such as PVFS, but the
requirement for POSIX has held up progress

Why is the question “wrong”?

* To almost all application developers, asking if they need
POSIX I/O means (to them)

* Do you need open/seek/read/write/close?

* And if they answer “no”, the implication is
« They will need to rewrite their application and reformat their files

« With this interpretation, no-one would ever answer “no”
to “Do you need POSIX |[/O?”

* Questions to which only one answer is reasonable don't tell you
anything

No science application code needs POSIX
IIO semantics

Many are single reader or single writer
» Eventual consistency is fine
« Some are disjoint reader or writer
« Eventual consistency is fine, but must handle non-block-aligned writes
 Some applications use the file system as a simple data base
+ Use a data base — we know how to make these fast and reliable
« Some applications use the file system to implement interprocess mutex
+ Use a mutex service — even MPI point-to-point
« A few use the file system as a bulletin board
* Most likely better off using RDMA
* Only need release or eventual consistency

» Correct Fortran codes do not require POSIX in any form

« Standard requires unique open, enabling correct and aggressive client and/or server-
ide caching

Where’s the hope?

| firmly believe that a rigorous, scientific approach is the only way to
solve the great challenges facing us in making better, more productive

use of parallel computing

 And look where it has gotten us already
« Computing power in a single system has increased one billion fold over
my career. Data capacity and networking bandwidths have seen similar
increases
 We have been able to program these systems
« Often the real challenge is in single core or single node performance

« We can accelerate this progress by (training our students in)
challenging conventional wisdom and being rigorous in applying the

ethod

Thanks!

For funding from
» National Science Foundation
* Department of Energy
 ExxonMobile and JumpLabs
« State of lllinois

My co-workers at Yale, Argonne, and lllinois
* My colleagues around the world
* My students

* And especially Ken Kennedy, for his contributions and for the
example he set as a scholar and gentleman

