
National Center for Supercomputing Applications
University of Illinois at Urbana–Champaign

Thinking About Parallelism and
Programming
William Gropp
wgropp.cs.illinois.edu

Embrace the community
•  Ken is best known for his contributions to parallel compilers and improving

the productivity of parallel programming
•  Less well known is that MPI started because of Ken
•  He organized a Workshop on Standardization of Message Passing Libraries

(Williamsburg, Summer 1992)
•  To find out if there could be a standard so that parallel compiler work could focus

on building compilers rather than adapting to each vendor’s internode
communication

•  We were pretty sure we knew the answer at the end – No
•  Ken knew the answer was yes, and challenged us to solve the problem

•  Lesson – Find solutions that work – independent of what you think
•  The emergence of the MPI message passing standard for parallel computing, R Hempel and

D Walker, Computer Standards & Interfaces, 21:1, May 25, 1999, p 51-62

Training students to think precisely and
quantitatively about parallel computing
•  Parallel programming is hard
•  We need to be scientific about solving these problems
•  We would all like parallel programming to be eaiser and more fun,

but to accomplish that, we need to focus on the real problems
•  And we must set a good example for our students.

•  What follows are some examples of fuzzy thinking that we, as a
community, must strive to improve

•  We can do this by insisting that our students be rigorous and to follow
the scientific method

•  We must remind each other to separate opinion from fact …

Quotes from “Enabling Technologies for
Petaflops Computing” (MIT Press 1995)
•  “The software for the current generation of 100 GF machines is not

adequate to be scaled to a TF…”
•  “The Petaflops computer is achievable at reasonable cost with technology

available in about 20 years [2014].”
•  (estimated clock speed in 2004 — 700MHz)*

•  “Software technology for MPP’s must evolve new ways to design software
that is portable across a wide variety of computer architectures. Only then
can the small but important MPP sector of the computer hardware market
leverage the massive investment that is being applied to commercial
software for the business and commodity computer market.”

•  “To address the inadequate state of software productivity, there is a need
to develop language systems able to integrate software components that
use different paradigms and language dialects.”

Except that software was
adequate not only for
TeraFLOP but for PetaFLOP
and almost certainly ExaFLOP

Quotes from “Enabling Technologies for
Petaflops Computing” (MIT Press 1995)
•  “The software for the current generation of 100 GF machines is not

adequate to be scaled to a TF…”
•  “The Petaflops computer is achievable at reasonable cost with

technology available in about 20 years [2014].”
•  (estimated clock speed in 2004 — 700MHz)

•  “Software technology for MPP’s must evolve new ways to design software
that is portable across a wide variety of computer architectures. Only then
can the small but important MPP sector of the computer hardware market
leverage the massive investment that is being applied to commercial
software for the business and commodity computer market.”

•  “To address the inadequate state of software productivity, there is a need
to develop language systems able to integrate software components that
use different paradigms and language dialects.”

This clock speed estimate was
dead on target – IBM BG/L ran
at this speed, and this
prediction was based on
quantitative projections

Scalability – What does it tell you?

•  Should I use algorithm 1 or
algorithm 2?

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000
Sp

ee
du

p

Processors

Algorithm 1

Algorithm 2

Scalability – What does it tell you?

•  Should I use algorithm 1 or
algorithm 2?

•  Here’s the same data, only
showing time instead of speedup

•  Its time to solution that is
important

•  You can always improve
scalability by:

•  Decreasing per-core performance
•  Using a more computationally

intensive algorithm 0.1

1

10

100

1000

10000

100000

1000000

10000000

1 100 10000 1000000
Ti

m
e

Processors

Algorithm 1

Algorithm 2

How should you evaluate speedup?

•  When measured, you need to
•  Understand the algorithm and

options
•  Some are not obvious – accurate

n-body force calculations can be
done in O(n), not O(n2) time;
Broadcast of n words takes O(n),
not O(n log p)

•  Evaluate implementation quality
•  Can use simple quantitative

performance model
•  For many apps, STREAM is

appropriate

0

1000

2000

3000

4000

5000

6000

Power 4 (1.3 GHz) Pentium 4 Xeon (2.4 GHz)

Theoretical Peak Oper. Issue Peak
Mem BW Peak Observed

W. K. Anderson, William D. Gropp, D.
K. Kaushik, D. E. Keyes, and B. F.
Smith. Achieving high sustained
performance in an unstructured
mesh CFD application, SC99 (Gordon
Bell Prize)

How do you compare two programming
models?
•  First – are you comparing programming models, programming

systems, or implementations of programming systems?
•  Answer – Almost always implementations
•  Implication – No paper should be accepted that claims to compare X to

Y when all it does is compare an implementation of X on Z to an
implementation of Y on Z

•  Second – what conclusions can you draw from the comparison?
•  Example (drawn from a real

vendor document)
•  Intended message: use our

non-standard method – its faster!
•  Actual message: We have no clue

how to implement MPI correctly

1.00E+04

1.00E+06

1.00E+08

1.E+00 1.E+02 1.E+04 1.E+06
B

an
dw

id
th

Data Size

We're Better than MPI!

MPI

VendorX

3X!

A comparison of implementations

and is close to native performance (geometric mean of 1.1-1.2X
for pagerank, BFS and collaborative filtering, and 2.5X for triangle
counting). (3) Giraph, on the other hand, is 2-3 orders of magnitude
slower than native code (4) CombBLAS and GraphLab perform
well on average. CombBLAS is very good for all algorithms except
for Triangle Counting, where it ran out of memory for real-world
inputs while computing the A2 matrix product. This is an express-
ibility problem in CombBLAS. GraphLab is 3-9X off from native
code, but performs reasonably consistently across algorithms. (5)
SociaLite performance is typically comparable to GraphLab (some-
times slightly better and sometimes slightly worse).

Finally, note that the trends on the synthetic dataset are in line
with real-world data, showing that our synthetic generators are ef-
fective in modeling real-world data.

5.3 Multi node results
We first show our scaling results of our frameworks on multiple

nodes. A major reason for using multiple nodes to process graph
data is to store the data in memory across the nodes. Hence a com-
mon use case is weak-scaling, where the data per node is kept con-
stant (and hence total data set size increases with number of nodes).
If we obtain perfect performance scaling, then the runtime should
be constant as we increase node count and data set size. In this
study, we include CombBLAS, GraphLab, SociaLite and Giraph
frameworks. Galois is currently only a single node framework and
we hence do not include results here.

Figures 4(a), 4(b), 4(c) and 4(d) show the results of multi node
runs on synthetically generated data sets for our benchmarks. The
data sizes are chosen so that all frameworks could complete without
running out of memory. Figure 5 shows the corresponding perfor-
mance results for larger real-world graphs. We run each algorithm
using one large dataset – we use the Twitter dataset [20] for Pager-
ank, BFS and Triangle Counting and the Yahoo Music KDDCup
dataset 2011 dataset for Collaborative Filtering [7].

Algorithm CombBLAS GraphLab SociaLite Giraph
PageRank 2.5 12.1 7.9 74.4

BFS 7.1 29.5 18.9 494.3
Coll. Filtering 3.5 7.1 7.0 87.9

Triangle Count. 13.1 3.6 1.5 54.4

Table 6: Summary of performance differences for multi node bench-
marks on different frameworks. Each entry is a slowdown factor from
native code, hence lower numbers indicate better performance.

As a convenient summary of performance, Table 6 shows the
geometric mean of the performance differences between our frame-
works combining real-world and synthetic datasets at different scales.
The table shows performance slowdowns of different frameworks
for specific algorithms compared to the native code for that algo-
rithm – hence lower numbers are better.

We note the following trends in our multi-node results. (1) There
is wide variability in our multi node results; as an example, na-
tive code performs anywhere between 2X to more than 560X better
than other frameworks on multi node runs (still up to 30X discount-
ing Giraph runtimes). (2) Giraph performs worse by far than other
frameworks and is frequently 2-3 orders magnitude off from na-
tive performance. (3) CombBLAS is competitive for Pagerank (ge-
omean of 2.5X native performance), BFS (7.1X off native) and Col-
laborative Filtering (3.5X off native). However, it performs poorly
on Triangle Counting due to extra computations performed as a re-
sult of framework expressibility issues. CombBLAS also runs out
of memory for the Twitter data set and hence this data point is not
plotted. (4) GraphLab performs well for Triangle Counting, due
to data structure optimizations performed for this case, namely the

1

10

100

at
io
n�
(se

co
nd

s)

Pagerank�(Weak�scaling,�128M�edges/node)

Native Combblas Graphlab Socialite Giraph

0.1

1

1 2 4 8 16 32 64Ti
m
e�p

er
�it
er
a

Number�of�nodes
(a) PageRank

10

100

1000

tim
e�(

se
co
nd

s)

BFS�(Weak�scaling,�128M�undirected�edges/node)

Native Combblas Graphlab Socialite Giraph

0

1

1 2 4 8 16 32 64
Ov

er
al
l�

Number�of�nodes
(b) Breadth-First Search

100

1000

10000

at
io
n�
(se

co
nd

s)

Collaborative�Filtering�(Weak�scaling,�250�M�edges/node)

Native Combblas Graphlab Socialite Giraph

1

10

1 2 4 8 16 32 64Ti
m
e�p

er
�it
er
a

Number�of�nodes
(c) Collaborative Filtering

10

100

1000

m
e�(

se
co
nd

s)

Triangle�Counting�(Weak�scaling,�32M�edges/node)

Native Combblas Graphlab Socialite Giraph

0

1
1 2 4 8 16 32 64Ov

er
al
l�T
im

Number�of�nodes
(d) Triangle Counting

Figure 4: Performance results for different algorithms on large scale
synthetic graphs. The y-axis represents runtime in log-scale. We per-
form weak-scaling, where the amount of graph data per node is kept
constant, (a) 128 M edges/node for pagerank, (b) 128 M edges/node for
BFS, (c) 256M ratings/node for SGD, and (d) 32M edges/node for tri-
angle counting. Horizontal lines represent perfect scaling.

986

Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets
Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo, Jongsoo Park,
M. Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep Dubey

Factor of
100!

MPI Some MPI
implementation

Reproducibility and significant digits

•  A keystone of science is the reproducible experiment
•  Part of this is measuring and reporting only what is reproducible

•  There are many challenges in making experiments reproducible
•  Complete description of the apparatus (e.g., system, compiler version/

options, source code, …)
•  But some are (relatively easy)

•  Don’t report overly precise measurements
•  Or, don’t use output from %e in your paper; even %.2e is often

better
•  Describe your test environment
•  Make the code and data available

What’s in a name?

•  In science, rigor and precision are important
•  Example:

•  “Programming exascale systems requires moving beyond the
BSP programming model; we need to replace MPI with <some
new thing>.”

•  What is wrong with this statement?
•  “…exascale systems requires moving beyond BSP”
•  This is a hypothesis. How would you test or demonstrate it?
•  But there is a more subtle error…

MPI is not a BSP system

•  BSP = Bulk Synchronous Programming
•  Programmers like the BSP model, adopting it even when not necessary

(see FIB)
•  Unlike most programming models, designed with a performance model

to encourage quantitative design in programs
•  MPI makes it easy to emulate a BSP system

•  Rich set of collectives, barriers, blocking operations
•  MPI (even MPI-1) sufficient for dynamic adaptive programming

•  The main issues are performance and “progress”
•  Improving implementations and better HW support for integrated CPU/

NIC coordination more effective at supporting need

Understand what you ask for

•  Current I/O performance is often appallingly poor
•  Even relative to what current systems can achieve
•  Part of the problem is the I/O interface semantics

•  Many applications need to rethink their approach to I/O
•  Not sufficient to “fix” current I/O implementations

•  HPC Centers have been complicit in causing this problem
•  By asking users the wrong question
•  By using their response as an excuse to keep doing the same thing
•  What is that question that causes so much trouble?

•  Do you want/need POSIX I/O?

Just how bad Is current I/O performance?
Sustained
maximum
I/O
bandwidth

“A Multiplatform Study of I/O Behavior on Petascale Supercomputers,” Huong
Luu, Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin
Harms, Prabhat, Suren Byna, and Yushu Yao, proceedings of HPDC’15.

What are some of the problems?
•  POSIX I/O has a strong consistency model

•  Extremely hard to cache effectively
•  Applications need to transfer block-aligned and sized data to

achieve performance
•  Complexity adds to fragility of file system, the major cause of

failures on large scale HPC systems

•  Files as I/O objects add metadata “choke points”
•  Serialize operations, even with “independent” files

•  Burst buffers will not fix these problems – must change
the semantics of the operations

Other communities have matched their data
systems to their needs
•  “Big Data” file systems have very different consistency

models and metadata structures, designed for their
application needs
•  Why doesn’t HPC?

•  There have been some efforts, such as PVFS, but the
requirement for POSIX has held up progress

Why is the question “wrong”?

•  To almost all application developers, asking if they need
POSIX I/O means (to them)
•  Do you need open/seek/read/write/close?

•  And if they answer “no”, the implication is
•  They will need to rewrite their application and reformat their files

•  With this interpretation, no-one would ever answer “no”
to “Do you need POSIX I/O?”
•  Questions to which only one answer is reasonable don’t tell you

anything

No science application code needs POSIX
I/O semantics

•  Many are single reader or single writer
•  Eventual consistency is fine

•  Some are disjoint reader or writer
•  Eventual consistency is fine, but must handle non-block-aligned writes

•  Some applications use the file system as a simple data base
•  Use a data base – we know how to make these fast and reliable

•  Some applications use the file system to implement interprocess mutex
•  Use a mutex service – even MPI point-to-point

•  A few use the file system as a bulletin board
•  Most likely better off using RDMA
•  Only need release or eventual consistency

•  Correct Fortran codes do not require POSIX in any form
•  Standard requires unique open, enabling correct and aggressive client and/or server-

side caching
•  MPI-IO would be better off without POSIX

Where’s the hope?
•  I firmly believe that a rigorous, scientific approach is the only way to

solve the great challenges facing us in making better, more productive
use of parallel computing

•  And look where it has gotten us already
•  Computing power in a single system has increased one billion fold over

my career. Data capacity and networking bandwidths have seen similar
increases

•  We have been able to program these systems
•  Often the real challenge is in single core or single node performance

•  We can accelerate this progress by (training our students in)
challenging conventional wisdom and being rigorous in applying the
scientific method

Thanks!

•  For funding from
•  National Science Foundation
•  Department of Energy
•  ExxonMobile and JumpLabs
•  State of Illinois

•  My co-workers at Yale, Argonne, and Illinois
•  My colleagues around the world
•  My students
•  And especially Ken Kennedy, for his contributions and for the

example he set as a scholar and gentleman

