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What do applications need? 

•  How do most applications developers view the system? 
•  This impact how they write their programs 

•  What programming approaches might they use? 
•  And how do they work together 

•  How must they model performance 
•  And how do communication optimizations impact that 

•  What features don’t they use but could or should? 
•  Often a chicken-and-egg problem 



The Most Common Application View 

MPI Process NIC MPI Process NIC 

•  The MPI everywhere model 
•  Matches the “postal” performance model T = s + r n 
•  Variations include multi-threaded processes 



A Better Model: MPI Everywhere on SMPs 
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Reality: Likely Exascale Architectures 

•  From “Abstract Machine Models and Proxy Architectures 
for Exascale Computing Rev 1.1,” J Ang et al 
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Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache
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Another Pre-Exascale Architecture 
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Figure 1: Core Group for Node 

 
 
Figure 2: Basic Layout of a Node 

Sunway TaihuLight 
•  Heterogeneous 

processors 
(MPE, CPE) 

•  No data cache 



Programming Models and Systems 

•  Programming Model: an abstraction of a way 
to write a program 
•  Many levels 

•  Procedural or imperative? 
•  Single address space with threads? 
•  Vectors as basic units of programming? 

•  Programming model often expressed with pseudo 
code 

•  Programming System: (My terminology) 
•  An API that implements parts or all of one or more 

programming models, enabling the precise 
specification of a program 



Why the Distinction? 

•  In parallel computing, 
•  Message passing is a programming model 

•  Abstraction: A program consists of processes that communication by 
sending messages.  See “Communicating Sequential Processes”, CACM 
21#8, 1978, by C.A.R. Hoare. 

•  The Message Passing Interface (MPI) is a programming system 
•  Implements message passing and other parallel programming models, 

including: 
•  Bulk Synchronous Programming  
•  One-sided communication 
•  Shared-memory (between processes) 

•  CUDA/OpenACC/OpenCL are systems implementing a “GPU 
Programming Model” 

•  Execution model involves teams, threads, synchronization primitives, 
different types of memory and operations 



Bandwidth, Latency, And All That 
•  Bandwidth is easy (and thus gratifying) 

•  Asymptotic Bandwidth – its just money 

•  Latency is more important for productivity and 
often for performance 

•  Latency and overhead have many components 
•  Propagation delay (because controlled by physics) 

•  Quick question: How big is your favorite system 
measured in clock ticks? 

•  Which latency and bandwidth terms are 
important? 
•  You mean there are more than one… 



Classic Performance Model 

•  s + rn 
•  Model combines overhead and network latency 

(s) and a single communication rate 1/r 
•  Good fit to machines when it was introduced 
•  But does it match modern SMP-based 

machines? 
•  Lets look at the the communication rate per process 

with processes communicating between two nodes 



Rate per MPI Process, Node-to-node 

•  Top is Cray XE6, bottom 
is IBM Blue Gene/Q 

•  Rate is measured 
between 1-k MPI 
processes on one node, 
sending to the same 
number of MPI processes 
on another node 

•  If processes did not 
impact each other, 
there’d be a single curve 

•  Note short (eager) mostly 
independent of k 



SMP Nodes: One Model 
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A Slightly Better Model 

•  Assume that the sustained 
communication rate is limited by both 
•  The maximum rate along any shared 

link 
• The link between NICs 

•  The aggregate rate along parallel links 
• Each of the “links” from an MPI process to/

from the NIC 



A Slightly Better Model 

•  For k processes sending messages, the 
sustained maximum rate is 
•  min(RNIC-NIC, k RCORE-NIC) 

•  Thus 
•  T = s + k n/min(RNIC-NIC, k RCORE-NIC) 

•  Note if RNIC-NIC is very large (very fast 
network), this reduces to 
•  T = s + k n/(k RCORE-NIC) = s + n/RCORE-NIC 



Example: 4 parameter model values for Cray 
XE6 (Blue Waters)   
•  4th parameter uses a different rate for the first 

process to send and the 2nd etc. processes 
•  Does improve fit, but only a little because RN/RC is small 

•  RN = RNIC ; RC = RCORE-NIC 
•  Short regime 

•  s = 4 usec, RCb = 0.63 GB/s, RCi=-0.18GB/s, RN=∞ 

•  Eager regime 
•  s = 11 usec, RCb = 1.7GB/s, RCi = 0.062GB/s, RN=∞ 

•  Rendezvous regime 
•  s = 20 usec, RCb = 3.6 GB/s, RCI=0.61GB/s, RN = 5.5 GB/s 



Cray: Measured Data 



Cray: 3 parameter model 



Cray: 2 parameter model (the standard) 



Programming System Overhead 

•  Overhead (as distinct from latency) comes from many 
sources 

•  Examples from MPI: 
•  MPI as a library adds library overhead 

•  Call overhead 
•  Runtime evaluation (e.g, how long is an MPI_INTEGER?) 

•  Message-passing adds data to move and interpret 
•  Message “envelope”, typically including: 

•  Tag, source rank, communicator context, message length, protocol 
(e.g., eager or rendezvous) 

•  How many bits do you use for each? 
•  How does that impact message latency?  Note message 

match performance is more than just tag matching 



Example: Message Matching in Real 
Applications 

•  Case: Messages for multigrid 
coarse grid exchange 

•  1/k of messages sent/received 
at a time – k=1 is “natural” case 

•  You can model this (quadratic 
queue search) but unnatural for 
application developer 

•  Yes, can use RMA, but for 
irregular mesh/matrix, 
computation of target requires 
care 

•  Thanks to Amanda Bienz and 
Luke Olson for the data 



Remote Direct Memory Access and Update 

•  MPI defines a rich set of read-modify-write operations, 
including a lower-runtime overhead (read: simpler calling 
sequence) version (Get_accumulate vs. Fetch_and_op) 
•  What happens when the same location is the target of different 

operations? 
•  What is the atomicity of updates? Element? Block? CacheLine? 

•  The programming system requires all combinations to 
interact correctly 
•  If not, may have to always fall back to software (!! :( ) 
•  MPI is willing to make informed restrictions to enable 

performance if there is modest impact on generality 
•  Help us! 



Collective Communication and Scalability 
•  Some of the most efficient algorithms for solving large 

systems of equations make use of an Allreduce 
operation 
•  These are Krylov algorithms, including conjugate gradient and 

GMRES 
•  Yes, there are alternate algorithms, but usually have worse time-

to-solution; there are sound mathematical reasons for this 

•  The following analysis is from Paul Fischer, taken from 
his Nek5000 CFD code 
•  Demonstrated scalability to over 100k processes – but with the 

right communications support 
•  Analysis based on communication time < computation time 

•  Can make true by making problem big enough 
•  But science problems usually not arbitrarily large 



Scaling Estimates:  Conjugate Gradients   

❑  The inner-products in CG, which give it its optimality, drive up the 
minimal effective granularity because of the log P scaling of 
all_reduce. 

❑  On BG/L, /P, /Q, however, all_reduce is effectively P-independent. 

Thanks to Paul Fischer 



Eliminating log P term in CG 
•  On BG/L, /P, /Q, all_reduce is nearly P-independent. 
•  For P=524288, all_reduce(1) is only 4α !	
 

all_reduce 

½ ping-pong 

      BG/Q hardware all_reduce 

all_reduce 
P=16 - 524288 

½ ping-pong 

      BG/Q software all_reduce 

Message size m (64-bit words)                                  Message size m (64-bit words) 
 

Thanks to Paul Fischer 



Eliminating log P term in CG 

❑  On BG/L, /P, /Q, CG is effectively P-independent because 
of hardware supported all_reduce. 

❑  In this (admittedly simple) exascale model, net result is a 
10x improvement in granularity  (n/P=1200 vs. 12,000). 

à 10x faster run, but no reduction in power consumption. 

2 x 4 

Thanks to Paul Fischer 



The overhead of the “+” in MPI + X 
•  How do you combine different communications paths 

(e.g., network + shared memory)? 
•  Functionality isn’t enough – what is the performance cost? 

•  Often the only correct solution is to poll 
•  Note issue with Active Message work – many results used either 

poll (fast) or interrupt (responsive) 

•  Thread-safety 
•  Do you need memory barriers?  Critical sections? 
•  How do you handle the issues described in “Threads Cannot be 

Implemented as a Library”? 
•  Without forcing pthread lock/unlock everywhere (ask me how I 

know :) ) ? 
•  Many (but not all) current systems struggle to give good 

performance 



Results for Multithreaded Ping Pong Benchmark  
Coarse-Grained Locking 

Measurements for single-threaded 
benchmark 

Measurements for multi-threaded 
benchmark 



Results for Multithreaded Ping Pong Benchmark  
Fine-Grained Locking 

Measurements for single-threaded 
benchmark 

Measurements for multi-threaded 
benchmark 



Overlap of Communication and 
Computation 

•  Example: “Halo Exchange” 
•  Send surface of a data cube to neighbor processes 
•  By now, have trained MPI programmers to use  

•  Do (all neighbors) MPI_Isend(…) 
Do (all neighbors) MPI_Irecv(…) 
MPI_Waitall(…) 

•  But this is no longer sufficient for acceptable 
performance in most cases… 



Halo Exchange on BG/P and Cray XT4 
•  2048 doubles to each neighbor 
•  Rate is MB/Sec (for all tables) 

BG/P 4 Neighbors 8 Neighbors 

Irecv/Send Irecv/Isend Irecv/Send Irecv/Isend 

World 208 328 184 237 

Even/Odd 219 327 172 243 

Cart_create 301 581 242 410 

Cray XT4 4 Neighbors 8 Neighbors 

Irecv/Send Irecv/Isend Phased Irecv/Send Irecv/Isend 

World 311 306 331 262 269 

Even/Odd 257 247 279 212 206 

Cart_create 265 275 266 236 232 



Halo Exchange on BG/Q and Cray XE6 

BG/Q 8 Neighbors 
Irecv/Send Irecv/Isend 

World 662 1167 
Even/Odd 711 1452 
1 sender 2873 

•  2048 doubles to each neighbor 
•  Rate is MB/sec (for all tables) 

Cray XE6 8 Neighbors 
Irecv/Send Irecv/Isend 

World 352 348 
Even/Odd 338 324 
1 sender 5507 



How Fast “should” it be? 
•  Lets look at a single process sending to its neighbors.   
•  Based on our performance model, we expect the rate to be roughly 

twice that for the halo (since this test is only sending, not sending 
and receiving) 

System 4 neighbors 8 Neighbors 

Periodic Periodic 

BG/L 488 490 389 389 

BG/L, VN 294 294 239 239 

BG/P 1139 1136 892 892 

BG/P, VN 468 468 600 601 

XT3 1005 1007 1053 1045 

XT4 1634 1620 1773 1770 
XT4 SN 1701 1701 1811 1808 



Comparing Rates 
•  Ratios of a single sender to all processes sending (in rate) 
•  Expect a factor of roughly 2 (since processes must also receive) 

System 4 neighbors 8 Neighbors 

Periodic Periodic 

BG/L 2.24 2.01 

BG/P 3.8 2.2 

BG/Q 1.98 

XT3 7.5 8.1 9.08 9.41 

XT4 10.7 10.7 13.0 13.7 
XE6 15.6 15.9 

§  BG gives roughly double the halo rate.  XTn and XE6 are much higher. 
§  Explanation: RN << k RC on Cray  



Does Communication Overlap Help? (BG/Q) 

•  Graph show performance advantage to using overlap as a 
function of work size (message size = 1/10 work) 



Does Communication Overlap Help? (Cray XE6) 



Data to be moved is not always contiguous 

•  MPI datatypes provide a way to compactly represent many data patterns 
•  High performance is possible with proper care 
•  MPI_Type_commit provides opportunity to optimize (compile code in our 

case) 
Communication speedup over manual packing (p=2)
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DAME: A Runtime-Compiled Engine for Derived Datatypes, Tarun 
Prabhu and William Gropp, Proceedings of the 22nd European 
MPI Users' Group Meeting, 4:1–4:10, 2015 



Dynamic Membership 
•  MPI has a collective model for dynamically changing the number of 

processes in a parallel job 
•  MPI’s API intended to support scale (add hundreds – thousands of 

nodes/processes quickly) 
•  Unimplemented – why?  What needs to be done?  Is the MPI API a 

problem, or is it a chicken and egg problem (no demand because it 
doesn’t work because there is no demand) 

•  A similar capability is needed for some approaches to fault tolerance 
•  A related (perhaps) issue is startup efficiency. A parallel job should 

be able to start in < 1sec even one 100K nodes 
•  Time to send code with broadcast algorithm < 1sec 
•  On demand connection + implicit info, distributed tables should remove 

serial bottlenecks 
•  Etc. :) 



Sharing with Others 
•  Applications rarely have the entire machine to 

themselves 
•  Thus their communication performance may be impacted 

by other users or the system 
•  Other users, if messages must share communication links 
•  The system, e.g., for I/O operations including backup 

•  How should jobs be laid out on a system to provide 
•  Good application performance 
•  Good system utilization 

•  Not easy, even with simple interconnect topologies 
•  Example: Topology-Aware Scheduling for Blue Waters 

(Cray XE6/XK7; Torus interconnect) 
•  Thanks to Jeremy Enos and his team 



Scaling effect example (MILC) 

39 Topology Aware Scheduler 
Report 

1.45x speedup at 
576 nodes 
 
Near linear scaling 
only possible with 
TAS placement 



Summary 
What do Applications Want? 

•  Performance and productivity 
•  Low Latency is very important 

•  Consider n1/2 as a figure of merit 
•  Fast key collectives esp. MPI_Allreduce 

•  Full performance from node 
•  Communication/computation overlap, progress 
•  Efficient handling of intra-node and inter-node communication at 

the same time (the “+” in MPI+X) 

•  Predictable performance 
•  Minimal impact from other jobs (may require topology aware 

scheduling) 

•  Support for efficient non-contiguous data moves 
•  Support for fast remote RMW operations  


