
National Center for Supercomputing Applications
University of Illinois at Urbana–Champaign

Meeting the Communication
Needs of Scalable Applications
William Gropp
wgropp.cs.illinois.edu

What do applications need?

•  How do most applications developers view the system?
•  This impact how they write their programs

•  What programming approaches might they use?
•  And how do they work together

•  How must they model performance
•  And how do communication optimizations impact that

•  What features don’t they use but could or should?
•  Often a chicken-and-egg problem

The Most Common Application View

MPI Process NIC MPI Process NIC

•  The MPI everywhere model
•  Matches the “postal” performance model T = s + r n
•  Variations include multi-threaded processes

A Better Model: MPI Everywhere on SMPs

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

Reality: Likely Exascale Architectures

•  From “Abstract Machine Models and Proxy Architectures
for Exascale Computing Rev 1.1,” J Ang et al

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache

6

Note: not fully cache
coherent

Another Pre-Exascale Architecture

June 19, 2016 2

Figure 1: Core Group for Node

Figure 2: Basic Layout of a Node

Sunway TaihuLight
•  Heterogeneous

processors
(MPE, CPE)

•  No data cache

Programming Models and Systems

•  Programming Model: an abstraction of a way
to write a program
•  Many levels

•  Procedural or imperative?
•  Single address space with threads?
•  Vectors as basic units of programming?

•  Programming model often expressed with pseudo
code

•  Programming System: (My terminology)
•  An API that implements parts or all of one or more

programming models, enabling the precise
specification of a program

Why the Distinction?

•  In parallel computing,
•  Message passing is a programming model

•  Abstraction: A program consists of processes that communication by
sending messages. See “Communicating Sequential Processes”, CACM
21#8, 1978, by C.A.R. Hoare.

•  The Message Passing Interface (MPI) is a programming system
•  Implements message passing and other parallel programming models,

including:
•  Bulk Synchronous Programming
•  One-sided communication
•  Shared-memory (between processes)

•  CUDA/OpenACC/OpenCL are systems implementing a “GPU
Programming Model”

•  Execution model involves teams, threads, synchronization primitives,
different types of memory and operations

Bandwidth, Latency, And All That
•  Bandwidth is easy (and thus gratifying)

•  Asymptotic Bandwidth – its just money

•  Latency is more important for productivity and
often for performance

•  Latency and overhead have many components
•  Propagation delay (because controlled by physics)

•  Quick question: How big is your favorite system
measured in clock ticks?

•  Which latency and bandwidth terms are
important?
•  You mean there are more than one…

Classic Performance Model

•  s + rn
•  Model combines overhead and network latency

(s) and a single communication rate 1/r
•  Good fit to machines when it was introduced
•  But does it match modern SMP-based

machines?
•  Lets look at the the communication rate per process

with processes communicating between two nodes

Rate per MPI Process, Node-to-node

•  Top is Cray XE6, bottom
is IBM Blue Gene/Q

•  Rate is measured
between 1-k MPI
processes on one node,
sending to the same
number of MPI processes
on another node

•  If processes did not
impact each other,
there’d be a single curve

•  Note short (eager) mostly
independent of k

SMP Nodes: One Model

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

A Slightly Better Model

•  Assume that the sustained
communication rate is limited by both
•  The maximum rate along any shared

link
• The link between NICs

•  The aggregate rate along parallel links
• Each of the “links” from an MPI process to/

from the NIC

A Slightly Better Model

•  For k processes sending messages, the
sustained maximum rate is
•  min(RNIC-NIC, k RCORE-NIC)

•  Thus
•  T = s + k n/min(RNIC-NIC, k RCORE-NIC)

•  Note if RNIC-NIC is very large (very fast
network), this reduces to
•  T = s + k n/(k RCORE-NIC) = s + n/RCORE-NIC

Example: 4 parameter model values for Cray
XE6 (Blue Waters)
•  4th parameter uses a different rate for the first

process to send and the 2nd etc. processes
•  Does improve fit, but only a little because RN/RC is small

•  RN = RNIC ; RC = RCORE-NIC
•  Short regime

•  s = 4 usec, RCb = 0.63 GB/s, RCi=-0.18GB/s, RN=∞

•  Eager regime
•  s = 11 usec, RCb = 1.7GB/s, RCi = 0.062GB/s, RN=∞

•  Rendezvous regime
•  s = 20 usec, RCb = 3.6 GB/s, RCI=0.61GB/s, RN = 5.5 GB/s

Cray: Measured Data

Cray: 3 parameter model

Cray: 2 parameter model (the standard)

Programming System Overhead

•  Overhead (as distinct from latency) comes from many
sources

•  Examples from MPI:
•  MPI as a library adds library overhead

•  Call overhead
•  Runtime evaluation (e.g, how long is an MPI_INTEGER?)

•  Message-passing adds data to move and interpret
•  Message “envelope”, typically including:

•  Tag, source rank, communicator context, message length, protocol
(e.g., eager or rendezvous)

•  How many bits do you use for each?
•  How does that impact message latency? Note message

match performance is more than just tag matching

Example: Message Matching in Real
Applications

•  Case: Messages for multigrid
coarse grid exchange

•  1/k of messages sent/received
at a time – k=1 is “natural” case

•  You can model this (quadratic
queue search) but unnatural for
application developer

•  Yes, can use RMA, but for
irregular mesh/matrix,
computation of target requires
care

•  Thanks to Amanda Bienz and
Luke Olson for the data

Remote Direct Memory Access and Update

•  MPI defines a rich set of read-modify-write operations,
including a lower-runtime overhead (read: simpler calling
sequence) version (Get_accumulate vs. Fetch_and_op)
•  What happens when the same location is the target of different

operations?
•  What is the atomicity of updates? Element? Block? CacheLine?

•  The programming system requires all combinations to
interact correctly
•  If not, may have to always fall back to software (!! :()
•  MPI is willing to make informed restrictions to enable

performance if there is modest impact on generality
•  Help us!

Collective Communication and Scalability
•  Some of the most efficient algorithms for solving large

systems of equations make use of an Allreduce
operation
•  These are Krylov algorithms, including conjugate gradient and

GMRES
•  Yes, there are alternate algorithms, but usually have worse time-

to-solution; there are sound mathematical reasons for this

•  The following analysis is from Paul Fischer, taken from
his Nek5000 CFD code
•  Demonstrated scalability to over 100k processes – but with the

right communications support
•  Analysis based on communication time < computation time

•  Can make true by making problem big enough
•  But science problems usually not arbitrarily large

Scaling Estimates: Conjugate Gradients

❑  The inner-products in CG, which give it its optimality, drive up the
minimal effective granularity because of the log P scaling of
all_reduce.

❑  On BG/L, /P, /Q, however, all_reduce is effectively P-independent.

Thanks to Paul Fischer

Eliminating log P term in CG
•  On BG/L, /P, /Q, all_reduce is nearly P-independent.
•  For P=524288, all_reduce(1) is only 4α !	

all_reduce

½ ping-pong

 BG/Q hardware all_reduce

all_reduce
P=16 - 524288

½ ping-pong

 BG/Q software all_reduce

Message size m (64-bit words) Message size m (64-bit words)

Thanks to Paul Fischer

Eliminating log P term in CG

❑  On BG/L, /P, /Q, CG is effectively P-independent because
of hardware supported all_reduce.

❑  In this (admittedly simple) exascale model, net result is a
10x improvement in granularity (n/P=1200 vs. 12,000).

à 10x faster run, but no reduction in power consumption.

2 x 4

Thanks to Paul Fischer

The overhead of the “+” in MPI + X
•  How do you combine different communications paths

(e.g., network + shared memory)?
•  Functionality isn’t enough – what is the performance cost?

•  Often the only correct solution is to poll
•  Note issue with Active Message work – many results used either

poll (fast) or interrupt (responsive)

•  Thread-safety
•  Do you need memory barriers? Critical sections?
•  How do you handle the issues described in “Threads Cannot be

Implemented as a Library”?
•  Without forcing pthread lock/unlock everywhere (ask me how I

know :)) ?
•  Many (but not all) current systems struggle to give good

performance

Results for Multithreaded Ping Pong Benchmark
Coarse-Grained Locking

Measurements for single-threaded
benchmark

Measurements for multi-threaded
benchmark

Results for Multithreaded Ping Pong Benchmark
Fine-Grained Locking

Measurements for single-threaded
benchmark

Measurements for multi-threaded
benchmark

Overlap of Communication and
Computation

•  Example: “Halo Exchange”
•  Send surface of a data cube to neighbor processes
•  By now, have trained MPI programmers to use

•  Do (all neighbors) MPI_Isend(…)
Do (all neighbors) MPI_Irecv(…)
MPI_Waitall(…)

•  But this is no longer sufficient for acceptable
performance in most cases…

Halo Exchange on BG/P and Cray XT4
•  2048 doubles to each neighbor
•  Rate is MB/Sec (for all tables)

BG/P 4 Neighbors 8 Neighbors

Irecv/Send Irecv/Isend Irecv/Send Irecv/Isend

World 208 328 184 237

Even/Odd 219 327 172 243

Cart_create 301 581 242 410

Cray XT4 4 Neighbors 8 Neighbors

Irecv/Send Irecv/Isend Phased Irecv/Send Irecv/Isend

World 311 306 331 262 269

Even/Odd 257 247 279 212 206

Cart_create 265 275 266 236 232

Halo Exchange on BG/Q and Cray XE6

BG/Q 8 Neighbors
Irecv/Send Irecv/Isend

World 662 1167
Even/Odd 711 1452
1 sender 2873

•  2048 doubles to each neighbor
•  Rate is MB/sec (for all tables)

Cray XE6 8 Neighbors
Irecv/Send Irecv/Isend

World 352 348
Even/Odd 338 324
1 sender 5507

How Fast “should” it be?
•  Lets look at a single process sending to its neighbors.
•  Based on our performance model, we expect the rate to be roughly

twice that for the halo (since this test is only sending, not sending
and receiving)

System 4 neighbors 8 Neighbors

Periodic Periodic

BG/L 488 490 389 389

BG/L, VN 294 294 239 239

BG/P 1139 1136 892 892

BG/P, VN 468 468 600 601

XT3 1005 1007 1053 1045

XT4 1634 1620 1773 1770
XT4 SN 1701 1701 1811 1808

Comparing Rates
•  Ratios of a single sender to all processes sending (in rate)
•  Expect a factor of roughly 2 (since processes must also receive)

System 4 neighbors 8 Neighbors

Periodic Periodic

BG/L 2.24 2.01

BG/P 3.8 2.2

BG/Q 1.98

XT3 7.5 8.1 9.08 9.41

XT4 10.7 10.7 13.0 13.7
XE6 15.6 15.9

§  BG gives roughly double the halo rate. XTn and XE6 are much higher.
§  Explanation: RN << k RC on Cray

Does Communication Overlap Help? (BG/Q)

•  Graph show performance advantage to using overlap as a
function of work size (message size = 1/10 work)

Does Communication Overlap Help? (Cray XE6)

Data to be moved is not always contiguous

•  MPI datatypes provide a way to compactly represent many data patterns
•  High performance is possible with proper care
•  MPI_Type_commit provides opportunity to optimize (compile code in our

case)
Communication speedup over manual packing (p=2)

524288 2097152 4718592 8388608 18874368

FFT2

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt
e
r)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

106368 143552 195968

LAMMPS_full

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt
e
r)

0
.0

0
.5

1
.0

1
.5

2
.0

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt
e
r)

480 1320 2560 4080 6480 16320 40800

NAS_LU_y

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt
e
r)

0
.0

0
.5

1
.0

1
.5

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt
e
r)

43428 55272 63168 75012 90804

WRF_y_vec

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt
e
r)

0
5

1
0

1
5

2
0

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt
e
r)

MPICH MVAPICH Cray−MPICH OpenMPI DAME DAME−L DAME−X

DAME: A Runtime-Compiled Engine for Derived Datatypes, Tarun
Prabhu and William Gropp, Proceedings of the 22nd European
MPI Users' Group Meeting, 4:1–4:10, 2015

Dynamic Membership
•  MPI has a collective model for dynamically changing the number of

processes in a parallel job
•  MPI’s API intended to support scale (add hundreds – thousands of

nodes/processes quickly)
•  Unimplemented – why? What needs to be done? Is the MPI API a

problem, or is it a chicken and egg problem (no demand because it
doesn’t work because there is no demand)

•  A similar capability is needed for some approaches to fault tolerance
•  A related (perhaps) issue is startup efficiency. A parallel job should

be able to start in < 1sec even one 100K nodes
•  Time to send code with broadcast algorithm < 1sec
•  On demand connection + implicit info, distributed tables should remove

serial bottlenecks
•  Etc. :)

Sharing with Others
•  Applications rarely have the entire machine to

themselves
•  Thus their communication performance may be impacted

by other users or the system
•  Other users, if messages must share communication links
•  The system, e.g., for I/O operations including backup

•  How should jobs be laid out on a system to provide
•  Good application performance
•  Good system utilization

•  Not easy, even with simple interconnect topologies
•  Example: Topology-Aware Scheduling for Blue Waters

(Cray XE6/XK7; Torus interconnect)
•  Thanks to Jeremy Enos and his team

Scaling effect example (MILC)

39 Topology Aware Scheduler
Report

1.45x speedup at
576 nodes

Near linear scaling
only possible with
TAS placement

Summary
What do Applications Want?

•  Performance and productivity
•  Low Latency is very important

•  Consider n1/2 as a figure of merit
•  Fast key collectives esp. MPI_Allreduce

•  Full performance from node
•  Communication/computation overlap, progress
•  Efficient handling of intra-node and inter-node communication at

the same time (the “+” in MPI+X)

•  Predictable performance
•  Minimal impact from other jobs (may require topology aware

scheduling)

•  Support for efficient non-contiguous data moves
•  Support for fast remote RMW operations

