
MPI+X on The Way to Exascale

William Gropp
http://wgropp.cs.illinois.edu

Some Likely Exascale Architectures

2

June 19, 2016 2

Figure 1: Core Group for Node

Figure 2: Basic Layout of a Node Sunway TaihuLight
•  Heterogeneous

processors (MPE,
CPE)

•  No data cache

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache

6

From “Abstract Machine
Models and Proxy
Architectures for
Exascale Computing
Rev 1.1,” J Ang et al

Adapteva Epiphany-V
•  1024 RISC

processors
•  32x32 mesh
•  Very high power

efficiency

MPI (The Standard) Can Scale Beyond Exascale

• MPI implementations already supporting more than 1M
processes

•  Several systems (including Blue Waters) with over 0.5M independent cores
• Many Exascale designs have a similar number of nodes as
today’s systems

• MPI as the internode programming system seems likely
• There are challenges

• Connection management
• Buffer management
• Memory footprint
•  Fast collective operations
• …
• And no implementation is as good as it needs to be, but
•  There are no intractable problems here – MPI implementations can

be engineered to support Exascale systems, even in the MPI-
everywhere

Applications Still Mostly MPI-Everywhere

• “the larger jobs (> 4096 nodes) mostly use message
passing with no threading.” – Blue Waters Workload study,
https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf

• Benefit of programmer-managed locality
• Memory performance nearly stagnant
• Parallelism for performance implies locality must be managed

effectively
• Benefit of a single programming system

• Often stated as desirable but with little evidence
• Common to mix Fortran, C, Python, etc.
• But…Interface between systems must work well, and often don’t

•  E.g., for MPI+OpenMP, who manages the cores and how is that
negotiated?

Why Do Anything Else?

• Performance
• May avoid memory (though usually not cache) copies

• Easier load balance
• Shift work among cores with shared memory

• More efficient fine-grain algorithms
• Load/store rather than routine calls
• Option for algorithms that include races (asynchronous
iteration, ILU approximations)

• Adapt to modern node architecture…

SMP Nodes: One Model

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

Classic Performance Model

• s + r n
• Sometimes called the “postal model”

• Model combines overhead and network latency (s)
and a single communication rate 1/r for n bytes of
data

• Good fit to machines when it was introduced
• But does it match modern SMP-based machines?

• Let’s look at the the communication rate per process
with processes communicating between two nodes

Rates Per MPI Process

• Ping-pong between 2
nodes using 1-16
cores on each node

• Top is BG/Q, bottom
Cray XE6

• “Classic” model
predicts a single curve
– rates independent of
the number of
communicating
processes

B
an

dw
id

th

B
an

dw
id

th

Why this Behavior?

• The T = s + r n model predicts the same
performance independent of the number of
communicating processes

• What is going on?
• How should we model the time for communication?

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NI
C

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NI
C

Modeling the Communication

• Each link can support a rate rL of data
• Data is pipelined (Logp model)

• Store and forward analysis is different
• Overhead is completely parallel

• k processes sending one short message each takes the
same time as one process sending one short message

A Slightly Better Model

• For k processes sending messages, the sustained
rate is

• min(RNIC-NIC, k RCORE-NIC)
• Thus

• T = s + k n/min(RNIC-NIC, k RCORE-NIC)
• Note if RNIC-NIC is very large (very fast network), this
reduces to

• T = s + k n/(k RCORE-NIC) = s + n/RCORE-NIC

How Well Does this Model Work?

• Tested on a wide range of systems:
• Cray XE6 with Gemini network
• IBM BG/Q
• Cluster with InfiniBand
• Cluster with another network

• Results in
• Modeling MPI Communication Performance on SMP
Nodes: Is it Time to Retire the Ping Pong Test

•  W Gropp, L Olson, P Samfass
•  Proceedings of EuroMPI 16
•  https://doi.org/10.1145/2966884.2966919

• Cray XE6 results follow

Cray: Measured Data

Cray: 3 parameter (new) model

Cray: 2 parameter model

Implications

• Simple “BSP” style programming will often be
communication limited

• MPI supports many more flexible and general
communication approaches

• But users must use them
• (Relatively) Simple

• Use communication/computation overlap
•  MPI must implement at least limited asynchronous progress

•  Exercise care in mapping MPI processes to cores/chips/nodes
• Use one-sided programming

• Mostly non-blocking by design
• MPI Forum continuing to look at extensions, such as one-sided

notification and non-blocking synchronization
• Use lightweight threads with over-decomposition

•  Let thread scheduler switch between communication and compute

16

What To Use as X in MPI + X?

• Threads and Tasks
• OpenMP, pthreads, TBB, OmpSs, StarPU, …

• Streams (esp for accelerators)
• OpenCL, OpenACC, CUDA, …

• Alternative distributed memory system
• UPC, CAF, Global Arrays, GASPI/GPI

• MPI shared memory

X = MPI (or X = ϕ)

• MPI 3.1 features esp. important for Exascale
• Generalize collectives to encourage post BSP (Bulk
Synchronous Programming) approach:

• Nonblocking collectives
• Neighbor – including nonblocking – collectives

• Enhanced one-sided
• Precisely specified (see “Remote Memory Access Programming

in MPI-3,” Hoefler et at, in ACM TOPC)
•  http://dl.acm.org/citation.cfm?doid=2780584
• Many more operations including RMW

• Enhanced thread safety

X = Programming with Threads

• Many choices, different user targets and
performance goals

• Libraries: Pthreads, TBB
• Languages: OpenMP 4, C11/C++11

• C11 provides an adequate (and thus complex)
memory model to write portable thread code

• Also needed for MPI-3 shared memory; see “Threads
cannot be implemented as a library”,
http://www.hpl.hp.com/techreports/2004/
HPL-2004-209.html

What are the Issues?

• Isn’t the beauty of MPI + X that MPI and X can be
learned (by users) and implemented (by
developers) independently?

• Yes (sort of) for users
• No for developers

• MPI and X must either partition or share resources
• User must not blindly oversubscribe
• Developers must negotiate

More Effort needed on the “+”

• MPI+X won’t be enough for Exascale if the
work for “+” is not done very well
• Some of this may be language specification:

• User-provided guidance on resource allocation, e.g., MPI_Info
hints; thread-based endpoints

• Some is developer-level standardization
• A simple example is the MPI ABI specification – users should

ignore but benefit from developers supporting

Some Resources to Negotiate

• CPU resources
•  Threads and contexts
• Cores (incl placement)
• Cache

• Memory resources
• Prefetch, outstanding load/

stores
• Pinned pages or equivalent

NIC needs
•  Transactional memory

regions
• Memory use (buffers)

• NIC resources
• Collective groups
• Routes
• Power

• OS resources
• Synchronization hardware
• Scheduling
• Virtual memory
• Cores (dark silicon)

Summary

• Multi- and Many-core nodes require a new
communication performance model

• Implies a different approach to algorithms and increased
emphasis on support for asynchronous progress

• Intra-node communication with shared memory
can improve performance, but

• Locality remains critical
• Fast memory synchronization, signaling essential

•  Implementation is tricky, for example:
• Most (all?) current MPI implementations have very slow intra-

node MPI_Barrier.

Thanks!

• Philipp Samfass
• Luke Olson
• Pavan Balaji, Rajeev Thakur, Torsten Hoefler
• ExxonMobile Upstream Research
• Blue Waters Sustained Petascale Project, supported by the
National Science Foundation (award number OCI 07–
25070) and the state of Illinois.

• Cisco Systems for access to the Arcetri UCS Balanced
Technical Computing Cluster

