MPI+X on The Way to Exascale

William Gropp
http://wgropp.cs.illinois.edu

PYNCSA

Some Likely Exascale Architectures

|Mai memory IM memory
(Low Capacity, High Bandwidth)
NN T
MC [TTTT MC LITT] (High Capacity,
LT o H L e [| Low Bandwidth)
—— cluster ——f H— i
MPE MPE
Group Group
S ——— 2 —)
=~ =+
I I 1024 64-bit RISC cores
Group Group 64MB on-chip SRAM
1024 programmable 10s
MPE MPE
T e H B CPE il Figure 2.1: Abstract Machine Model of an exascale Node Architecture
MC T MC T[T
[TT11 el e e

I Main memory I Main memory

Sunway TaihuLight From “Abstract Machine Adapteva Epiphany-V
« Heterogeneous ,Iz\/locrl].etls ?”d P]';Oxy - 1024 RISC
rchitectures for FOCESSOrS
processors (MPE, Exascale Computing . 22
CPE) " x32 mesh
Rev 1.1,” J Ang et al :
« No data cache * Very high power
efficiency

IINCSA -

MPI (The Standard) Can Scale Beyond Exascale

* MP| implementations already supporting more than 1M

processes
» Several systems (including Blue Waters) with over 0.5M independent cores

* Many Exascale designs have a similar number of nodes as
today’s systems
* MPI as the internode programming system seems likely

* There are challenges
« Connection management
» Buffer management
* Memory footprint
* Fast collective operations
* And no implementation is as good as it needs to be, but

* There are no intractable problems here - MP| implementations can
be engineered to support Exascale systems, even in the MPI-
everywhere

IYNCSA

Applications Still Mostly MPI-Everywhere

* “the larger jobs (> 4096 nodes) mostly use message
passing with no threading.” - Blue Waters Workload study,
https://arxiv.org/ftp/arxiv/papers/1703/1703.00924 .pdf

 Benefit of programmer-managed locality
* Memory performance nearly stagnant

 Parallelism for performance implies locality must be managed
effectively

* Benefit of a single programming system
 Often stated as desirable but with little evidence

« Common to mix Fortran, C, Python, etc.

 But...Interface between systems must work well, and often don’t

* E.g., for MPI+OpenMP, who manages the cores and how is that
negotiated?

IYNCSA

Why Do Anything Else?

* Performance
« May avoid memory (though usually not cache) copies

- Easier load balance
« Shift work among cores with shared memory

* More efficient fine-grain algorithms
» Load/store rather than routine calls

 Option for algorithms that include races (asynchronous
iteration, ILU approximations)

* Adapt to modern node architecture...

IYNCSA

SMP Nodes: One Model

.

/ MPI Process

N

\ MPI Process

' MPI Process

77

: MPI Process

' MPI Process

: MPI Process

: MPI Process

K:MPI Process

N

\

Vs
.

MPI Process\:

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

APV ININNNN

MPI Process

Ve

.

’

MPI Process/:

IYNCSA

Classic Performance Model

es+rn
« Sometimes called the “postal model”
* Model combines overhead and network latency (s)

and a single communication rate 1/r for n bytes of
data

* Good fit to machines when it was introduced

* But does it match modern SMP-based machines?

* Let’s look at the the communication rate per process
with processes communicating between two nodes

IYNCSA

Rates Per MPI| Process

é * Ping-pong between 2
~~ = nodes using 1-16

< =
3 P = cores on each node
g yd = <Top is BG/Q, bottom
At — Cray XEG6
. *"Classic” model
= . predicts a single curve
= - rates independent of
= — the number of
3 = communicating
S —X processes

Why this Behavior?

*The T = s + r n model predicts the same
performance independent of the number of
communicating processes

* What is going on?
* How should we model the time for communication?

/:MPI Process D ;{ MPI Process\j
: MPI Process]\ MPI Process
: MPI Process }\x //{ MPI Process
: MPI Process]\ /[MPI Process
: MPI Process]/ MPI Process
: MPI Process }// \\{ MPI Process
: MPI Process]/ \[MPI Process
\MPI Process / \ MPI Process/

IYNCSA

Modeling the Communication

« Each link can support a rate r, of data
« Data is pipelined (Logp model)

 Store and forward analysis is different

*Overhead is completely parallel

* K processes sending one short message each takes the
same time as one process sending one short message

A Slightly Better Model

* For k processes sending messages, the sustained
rate is
* Min(Ryic-nics K Reorenic)
* Thus

*T=s+kn/min(Ryc.nic KReorenic)

*Note if Ry c.nic IS very large (very fast network), this
reduces to
*T=s+kn/(kRcorenic) = S + N/Reorenic

IYNCSA

How Well Does this Model Work?

 Tested on a wide range of systems:
* Cray XE6 with Gemini network
* IBM BG/Q
* Cluster with InfiniBand
e Cluster with another network

* Results Iin

* Modeling MPI Communication Performance on SMP

Nodes: Is it Time to Retire the Ping Pong Test
W Gropp, L Olson, P Samfass

» Proceedings of EuroMPI 16
* https://doi.org/10.1145/2966884.2966919

* Cray XEG results follow

IYNCSA

Cray: Measured Data

I\
i\

—~e~ e~~~ e~~~

TCOOCOTOCOCOOOCOA0O0000 |

ppppppppp0123456
AANNTNONOO A

PTI98 0 008

////////
,,,___,
<
N[
N
i

10°

N

10° 10* 10
message length [bytes]

102

10t

10°

o

—
o
—

(<)) [ee] ~ O

o o o
— — —

[puodas/sa1Aq] yipimpueq aAI11D3))a a1ebaibbe

10

IYNCSA

Cray: 3 parameter (new) model

| e A BT E
L\ Tlacancdddddelll B
\\ |
N .

//// . 40

AN 5
AN 5
AN
g

—l

[puod3as/sa1Aq] yipimpueq aAI303)40 aiebalbbe

IYNCSA

message length [bytes]

Cray: 2 parameter model

[puodas/sa1Aq] yipimpueq aAI11D3))a a1ebaibbe

| ///M//z/— ’ muwmmmmmwmmmmmmmu
N 1158dd 15
e / 1999999) |
LN
R .
/%// |
NN
N\)
L z_i E
AN
N
///// 'S
N
Vi
N ks
AN\ “

message length [bytes]

IYNCSA

Implications

» Simple “BSP” style programming will often be
communication limited

* MPI supports many more flexible and general
communication approaches
» But users must use them

* (Relatively) Simple

» Use communication/computation overlap
« MPI must implement at least limited asynchronous progress

« Exercise care in mapping MPI processes to cores/chips/nodes

» Use one-sided programming
* Mostly non-blocking by design
 MPI Forum continuing to look at extensions, such as one-sided
notification and non-blocking synchronization

» Use lightweight threads with over-decomposition
 Let thread scheduler switch between communication and compute

IANCSA ¢

What To Use as X in MP| + X?

* Threads and Tasks
* OpenMP, pthreads, TBB, OmpSs, StarPU, ...

« Streams (esp for accelerators)
* OpenCL, OpenACC, CUDA, ...

* Alternative distributed memory system
« UPC, CAF, Global Arrays, GASPI/GPI

* MP| shared memory

X =MPI (or X = @)

* MPI 3.1 features esp. important for Exascale

» Generalize collectives to encourage post BSP (Bulk
Synchronous Programming) approach:
« Nonblocking collectives
* Neighbor — including nonblocking — collectives

 Enhanced one-sided

* Precisely specified (see “Remote Memory Access Programming
in MPI-3,” Hoefler et at, in ACM TOPC)

* http://dl.acm.org/citation.cfm?doid=2780584
* Many more operations including RMW

« Enhanced thread safety

IYNCSA

X = Programming with Threads

* Many choices, different user targets and
performance goals
 Libraries: Pthreads, TBB
» Languages: OpenMP 4, C11/C++11

*C11 provides an adequate (and thus complex)
memory model to write portable thread code

 Also needed for MPI-3 shared memory; see “Threads
cannot be implemented as a library”,
http://www.hpl.hp.com/techreports/2004/
HPL-2004-209.html

IYNCSA

What are the Issues?

*|sn’t the beauty of MPI| + X that MPI and X can be
learned (by users) and implemented (by
developers) independently?

* Yes (sort of) for users
* No for developers

 MPI and X must either partition or share resources
« User must not blindly oversubscribe
* Developers must negotiate

IYNCSA

More Effort needed on the “+”

MPI+X won’t be enough for Exascale if the
work for “+” is not done very well

« Some of this may be language specification:

« User-provided guidance on resource allocation, e.g., MPI_Info
hints; thread-based endpoints

* Some is developer-level standardization

« A simple example is the MPI ABI specification — users should
ignore but benefit from developers supporting

IYNCSA

Some Resources to Negotiate

« CPU resources * NIC resources
* Threads and contexts * Collective groups
 Cores (incl placement) * Routes
» Cache * Power
* Memory resources * OS resources
* Prefetch, outstanding load/ » Synchronization hardware
stores » Scheduling
* Pinned pages or equivalent * Virtual memory
NIC needs » Cores (dark silicon)
» Transactional memory
regions

* Memory use (buffers)

IYNCSA

Summary

* Multi- and Many-core nodes require a new
communication performance model

* Implies a different approach to algorithms and increased
emphasis on support for asynchronous progress

* Intra-node communication with shared memory
can improve performance, but

* Locality remains critical

* Fast memory synchronization, signaling essential

* Implementation is tricky, for example:

* Most (all?) current MPI implementations have very slow intra-
node MPI_Barrier.

IYNCSA

Thanks!

* Philipp Samfass

 Luke Olson

« Pavan Balaji, Rajeev Thakur, Torsten Hoefler
« ExxonMobile Upstream Research

* Blue Waters Sustained Petascale Project, supported by the
National Science Foundation (award number OCI| 07—
25070) and the state of lllinois.

* Cisco Systems for access to the Arcetri UCS Balanced
Technical Computing Cluster

IYNCSA

