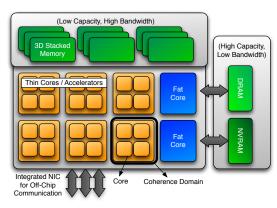

MPI+X on The Way to Exascale


William Gropp http://wgropp.cs.illinois.edu

/ Exascale Architectures

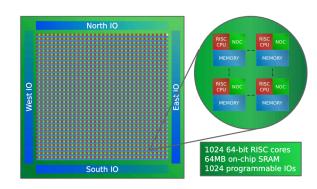


Figure 2.1: Abstract Machine Model of an exascale Node Architecture

Sunway TaihuLight

- Heterogeneous processors (MPE, CPE)
- No data cache

From "Abstract Machine Models and Proxy Architectures for Exascale Computing Rev 1.1," J Ang et al Adapteva Epiphany-V

- 1024 RISC processors
- 32x32 mesh
- Very high power efficiency

MPI (The Standard) Can Scale Beyond Exascale

- MPI implementations already supporting more than 1M processes
 - Several systems (including Blue Waters) with over 0.5M independent cores
- Many Exascale designs have a similar number of nodes as today's systems
 - MPI as the internode programming system seems likely
- There are challenges
 - Connection management
 - Buffer management
 - Memory footprint
 - Fast collective operations
 - .
 - And no implementation is as good as it needs to be, but
 - There are no intractable problems here MPI implementations can be engineered to support Exascale systems, even in the MPIeverywhere

Applications Still Mostly MPI-Everywhere

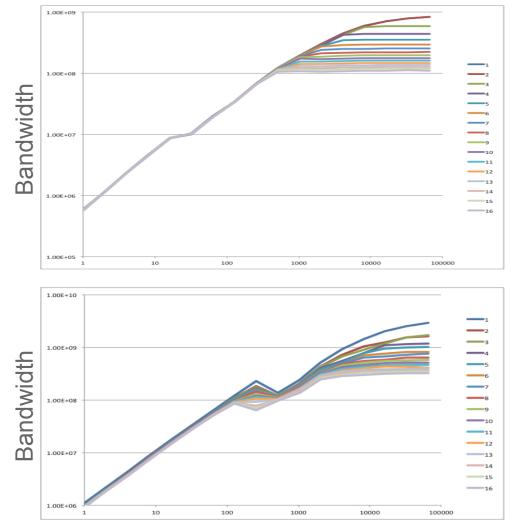
- "the larger jobs (> 4096 nodes) mostly use message passing with no threading." – Blue Waters Workload study, <u>https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf</u>
- Benefit of programmer-managed locality
 - Memory performance nearly stagnant
 - Parallelism for performance implies locality must be managed effectively
- Benefit of a single programming system
 - Often stated as desirable but with little evidence
 - Common to mix Fortran, C, Python, etc.
 - But...Interface between systems must work well, and often don't
 - E.g., for MPI+OpenMP, who manages the cores and how is that negotiated?



Why Do Anything Else?

- Performance
 - May avoid memory (though usually not cache) copies
- Easier load balance
 - Shift work among cores with shared memory
- More efficient fine-grain algorithms
 - Load/store rather than routine calls
 - Option for algorithms that include races (asynchronous iteration, ILU approximations)
- Adapt to modern node architecture...

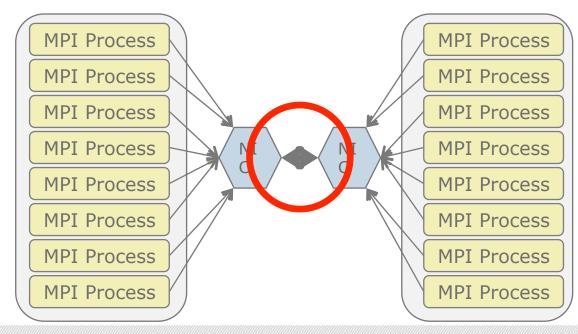
SMP Nodes: One Model



Classic Performance Model

- •s + r n
 - Sometimes called the "postal model"
- Model combines overhead and network latency (s) and a single communication rate 1/r for n bytes of data
- Good fit to machines when it was introduced
- But does it match modern SMP-based machines?
 - Let's look at the the communication rate per process with processes communicating between two nodes

Rates Per MPI Process



- Ping-pong between 2 nodes using 1-16 cores on each node
- Top is BG/Q, bottom Cray XE6
- "Classic" model predicts a single curve – rates independent of the number of communicating processes

Why this Behavior?

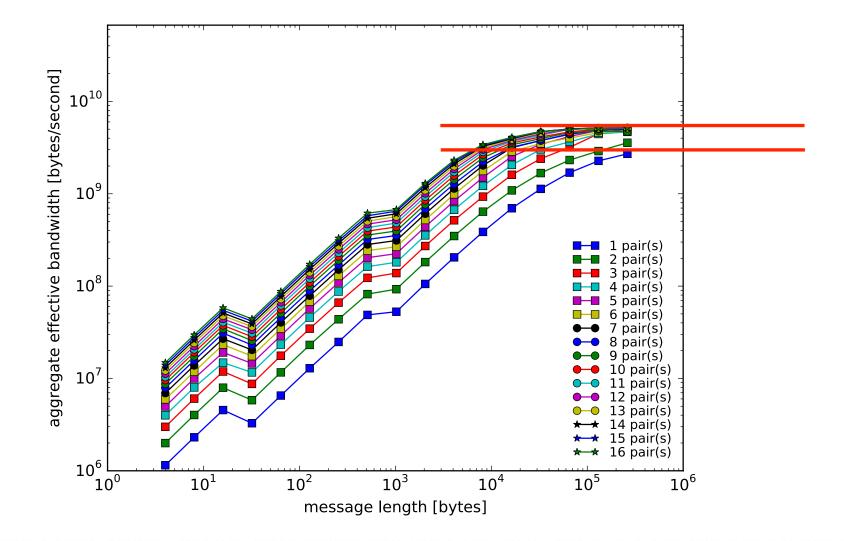
- The T = s + r n model predicts the *same* performance independent of the number of communicating processes
 - What is going on?
 - How should we model the time for communication?

Modeling the Communication

- Each link can support a rate $r_{\rm L}$ of data
- Data is pipelined (Logp model)
 - Store and forward analysis is different
- Overhead is completely parallel
 - k processes sending one short message each takes the same time as one process sending one short message

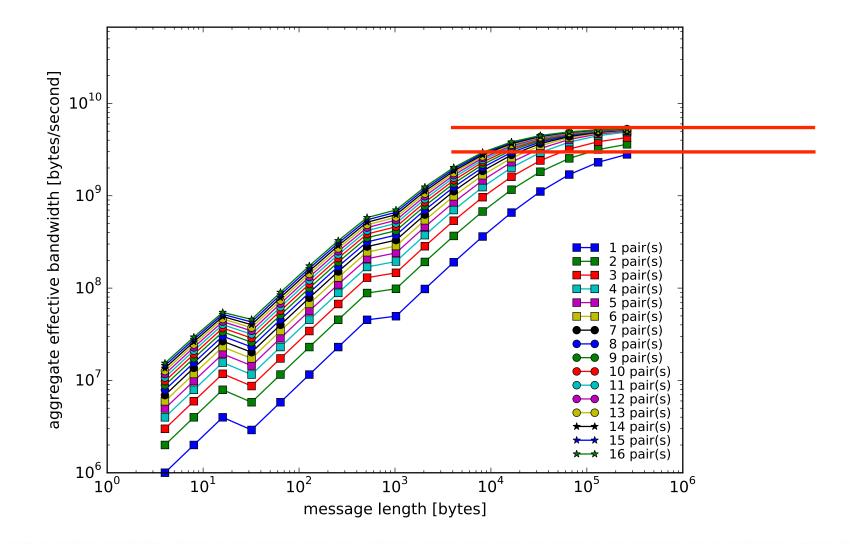
A Slightly Better Model

- For k processes sending messages, the sustained rate is
 - min(R_{NIC-NIC}, k R_{CORE-NIC})
- Thus
 - T = s + k n/min($R_{NIC-NIC}$, k $R_{CORE-NIC}$)
- -Note if $R_{\mbox{NIC-NIC}}$ is very large (very fast network), this reduces to
 - T = s + k n/(k $R_{CORE-NIC}$) = s + n/ $R_{CORE-NIC}$

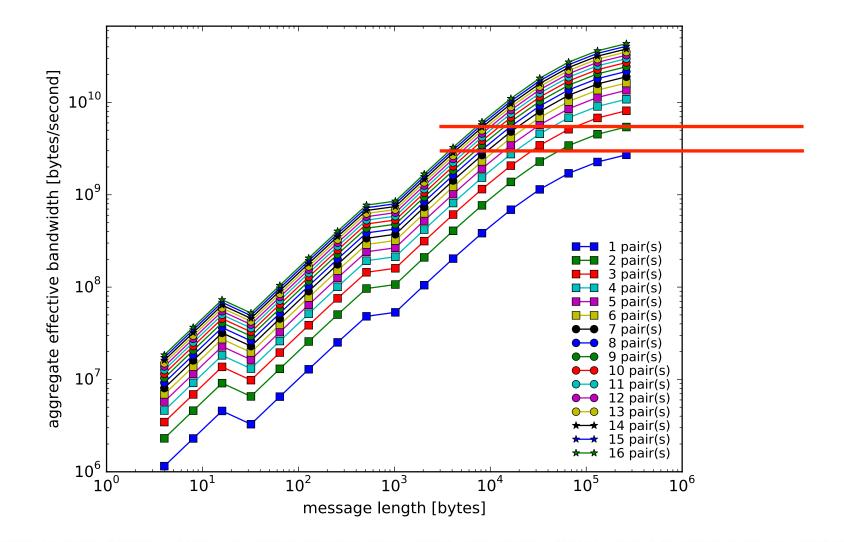


How Well Does this Model Work?

- Tested on a wide range of systems:
 - Cray XE6 with Gemini network
 - IBM BG/Q
 - Cluster with InfiniBand
 - Cluster with another network
- Results in
 - Modeling MPI Communication Performance on SMP Nodes: Is it Time to Retire the Ping Pong Test
 - W Gropp, L Olson, P Samfass
 - Proceedings of EuroMPI 16
 - https://doi.org/10.1145/2966884.2966919
- Cray XE6 results follow



Cray: Measured Data



Cray: 3 parameter (new) model

Cray: 2 parameter model

Implications

- Simple "BSP" style programming will often be communication limited
- MPI supports many more flexible and general communication approaches
 - But users must use them
- (Relatively) Simple
 - Use communication/computation overlap
 - MPI must implement at least limited asynchronous progress
 - Exercise care in mapping MPI processes to cores/chips/nodes
- Use one-sided programming
 - Mostly non-blocking by design
 - MPI Forum continuing to look at extensions, such as one-sided notification and non-blocking synchronization
- Use lightweight threads with over-decomposition
 - Let thread scheduler switch between communication and compute

What To Use as X in MPI + X?

- Threads and Tasks
 - OpenMP, pthreads, TBB, OmpSs, StarPU, ...
- Streams (esp for accelerators)
 - OpenCL, OpenACC, CUDA, ...
- Alternative distributed memory system
 - UPC, CAF, Global Arrays, GASPI/GPI
- MPI shared memory

$X = MPI (or X = \varphi)$

- MPI 3.1 features esp. important for Exascale
 - Generalize collectives to encourage post BSP (Bulk Synchronous Programming) approach:
 - Nonblocking collectives
 - Neighbor including nonblocking collectives
 - Enhanced one-sided
 - Precisely specified (see "Remote Memory Access Programming in MPI-3," Hoefler et at, in ACM TOPC)
 - http://dl.acm.org/citation.cfm?doid=2780584
 - Many more operations including RMW
 - Enhanced thread safety

X = Programming with Threads

- Many choices, different user targets and performance goals
 - Libraries: Pthreads, TBB
 - Languages: OpenMP 4, C11/C++11
- C11 provides an adequate (and thus complex) memory model to write portable thread code
 - Also needed for MPI-3 shared memory; see "Threads cannot be implemented as a library", <u>http://www.hpl.hp.com/techreports/2004/</u> <u>HPL-2004-209.html</u>

What are the Issues?

- Isn't the beauty of MPI + X that MPI and X can be learned (by users) and implemented (by developers) independently?
 - Yes (sort of) for users
 - No for developers
- MPI and X must either partition or share resources
 - User must not blindly oversubscribe
 - Developers must negotiate

More Effort needed on the "+"

- •MPI+X won't be enough for Exascale if the work for "+" is not done very well
 - Some of this may be language specification:
 - User-provided guidance on resource allocation, e.g., MPI_Info hints; thread-based endpoints
 - Some is developer-level standardization
 - A simple example is the MPI ABI specification users should ignore but benefit from developers supporting

Some Resources to Negotiate

- CPU resources
 - Threads and contexts
 - Cores (incl placement)
 - Cache
- Memory resources
 - Prefetch, outstanding load/ stores
 - Pinned pages or equivalent NIC needs
 - Transactional memory regions
 - Memory use (buffers)

- NIC resources
 - Collective groups
 - Routes
 - Power
- OS resources
 - Synchronization hardware
 - Scheduling
 - Virtual memory
 - Cores (dark silicon)

Summary

- Multi- and Many-core nodes require a new communication performance model
 - Implies a different approach to algorithms and increased emphasis on support for asynchronous progress
- Intra-node communication with shared memory can improve performance, but
 - Locality remains critical
 - Fast memory synchronization, signaling essential
 - Implementation is tricky, for example:
 - Most (all?) current MPI implementations have very slow intranode MPI_Barrier.

Thanks!

- Philipp Samfass
- Luke Olson
- Pavan Balaji, Rajeev Thakur, Torsten Hoefler
- ExxonMobile Upstream Research
- Blue Waters Sustained Petascale Project, supported by the National Science Foundation (award number OCI 07– 25070) and the state of Illinois.
- Cisco Systems for access to the Arcetri UCS Balanced
 Technical Computing Cluster

