MPI+X on The Way to Exascale

William Gropp
http://wgropp.cs.illinois.edu

PYNCSA

Likely Exascale Architectures

(Low Capacity, High Bandwidth)

4)
3D Stacked (High Capacity,
Low Bandwidth)

= =) — S
Thin Cores / Accelerators

Integrated NIC) Note: not fU”y cache
for Off-Chip

Communication coherent

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

* From “Abstract Machine Models and Proxy Architectures

for Exascale Computing Rev 1.1,” J Ang et al
INNCSA

Another Pre-Exascale Architecture

Main memory Main memory
MC MC
CPE CPE T
cluster cluster
= — Sunway TaihuLight
Group Group ¢ Hete rOgene()US
Processors
Tmm——— N Sl f—
— =—h (MPE, CPE)
Group Group * No data cache
MPE MPE
CPE CPE FiF
cluster cluster —T—
MC MC
Main memory Main memory

IYNCSA

MPI (The Standard) Can Scale Beyond Exascale

* MP| implementations already supporting more than 1M

processes
» Several systems (including Blue Waters) with over 0.5M independent cores

* Many Exascale designs have a similar number of nodes as
today’s systems
* MPI as the internode programming system seems likely

* There are challenges
« Connection management
» Buffer management
* Memory footprint
* Fast collective operations
* And no implementation is as good as it needs to be, but

* There are no intractable problems here - MP| implementations can
be engineered to support Exascale systems, even in the MPI-
everywhere

IYNCSA

Applications Still Mostly MPI-Everywhere

* “the larger jobs (> 4096 nodes) mostly use message
passing with no threading.” - BW Workload study,
https://arxiv.org/ftp/arxiv/papers/1703/1703.00924 .pdf

 Benefit of programmer-managed locality
* Memory performance nearly stagnant

 Parallelism for performance implies locality must be managed
effectively

 Benefit of a single programming system
 Often stated as desirable but with little evidence

« Common to mix Fortran, C, Python, etc.

 But...Interface between systems must work well, and often
don't
* E.g., for MPI+OpenMP, who manages the cores and how is that
negotiated?

IYNCSA

Why Do Anything Else?

* Performance
« May avoid memory (though usually not cache) copies

- Easier load balance
« Shift work among cores with shared memory

* More efficient fine-grain algorithms
» Load/store rather than routine calls

 Option for algorithms that include races (asynchronous
iteration, ILU approximations)

* Adapt to modern node architecture...

IYNCSA

SMP Nodes: One Model

.

/ MPI Process

N

\ MPI Process

' MPI Process

77

: MPI Process

' MPI Process

: MPI Process

: MPI Process

K:MPI Process

N

\

Vs
.

MPI Process\:

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

APV ININNNN

MPI Process

Ve

.

’

MPI Process/:

IYNCSA

Classic Performance Model

es+rn
« Sometimes called the “postal model”
* Model combines overhead and network latency (s)

and a single communication rate 1/r for n bytes of
data

* Good fit to machines when it was introduced

* But does it match modern SMP-based machines?

* Let’s look at the the communication rate per process
with processes communicating between two nodes

IYNCSA

Rates Per MPI| Process

é * Ping-pong between 2
~~ = nodes using 1-16

< =
3 P = cores on each node
g yd = <Top is BG/Q, bottom
At — Cray XEG6
. *"Classic” model
= . predicts a single curve
= - rates independent of
= — the number of
3 = communicating
S —X processes

Why this Behavior?

*The T = s + r n model predicts the same
performance independent of the number of
communicating processes

* What is going on?
* How should we model the time for communication?

SMP Nodes: One Model

.

/ MPI Process

N

\ MPI Process

' MPI Process

77

: MPI Process

' MPI Process

: MPI Process

: MPI Process

K:MPI Process

N

\

Vs
.

MPI Process\:

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

APV ININNNN

MPI Process

Ve

.

’

MPI Process/:

IYNCSA

Modeling the Communication

« Each link can support a rate r, of data
« Data is pipelined (Logp model)

 Store and forward analysis is different

*Overhead is completely parallel

* K processes sending one short message each takes the
same time as one process sending one short message

A Slightly Better Model

 Assume that the
sustained

communication rate Is

limited by

e The maximum rate

along any shared link

* The link between NICs

* The aggregate rate
along parallel links

« Each of the “links” from an
MPI process to/from the NIC

7.00E+09

6.00E+09

5.00E+09 -

AN

4.00E+09

3.00E+09

2.00E+09 -

1.00E+09

0.00E+00

Aggregate Bandwidth

AN

Reached

——n=256k gingle
—n=512k Process rate
Iy data rate

n=2M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IYNCSA

A Slightly Better Model

* For k processes sending messages, the sustained
rate is
* Min(Ryic-nics K Reorenic)
* Thus

*T=s+kn/min(Ryc.nic KReorenic)

*Note if Ry c.nic IS very large (very fast network), this
reduces to
*T=s+kn/(kRcorenic) = S + N/Reorenic

IYNCSA

Two Examples

« Two simplified examples:
Blue Gene/Q Cray XE6

Aﬂ Node Node

* Note differences:
« BG/Q : Multiple paths into the network
« Cray XEG6: Single path to NIC (shared by 2 nodes)
* Multiple processes on a node sending can exceed the available

bandwidth of the single path

IYNCSA

The Test

* Nodecomm discovers the underlying physical topology

* Performs point-to-point communication (ping-pong) using 1
to # cores per node to another node (or another chip if a
node has multiple chips)

* Outputs communication time for 1 to # cores along a single
channel
* Note that hardware may route some communication along a longer
path to avoid contention.
* The following results use the code available soon at
* https://bitbucket.org/william gropp/baseenv

IYNCSA

How Well Does this Model Work?

 Tested on a wide range of systems:
* Cray XE6 with Gemini network
* IBM BG/Q
* Cluster with InfiniBand
e Cluster with another network

* Results Iin

* Modeling MPI Communication Performance on SMP

Nodes: Is it Time to Retire the Ping Pong Test
W Gropp, L Olson, P Samfass

» Proceedings of EuroMPI 16
* https://doi.org/10.1145/2966884.2966919

* Cray XEG results follow

IYNCSA

Cray: Measured Data

I\
i\

—~e~ e~~~ e~~~

TCOOCOTOCOCOOOCOA0O0000 |

ppppppppp0123456
AANNTNONOO A

PTI98 0 008

////////
,,,___,
<
N[
N
i

10°

N

10° 10* 10
message length [bytes]

102

10t

10°

o

—
o
—

(<)) [ee] ~ O

o o o
— — —

[puodas/sa1Aq] yipimpueq aAI11D3))a a1ebaibbe

10

IYNCSA

Cray: 3 parameter (new) model

| e A BT E
L\ Tlacancdddddelll B
\\ |
N .

//// . 40

AN 5
AN 5
AN
g

—l

[puod3as/sa1Aq] yipimpueq aAI303)40 aiebalbbe

IYNCSA

message length [bytes]

Cray: 2 parameter model

[puodas/sa1Aq] yipimpueq aAI11D3))a a1ebaibbe

| ///M//z/— ’ muwmmmmmwmmmmmmmu
N 1158dd 15
e / 1999999) |
LN
R .
/%// |
NN
N\)
L z_i E
AN
N
///// 'S
N
Vi
N ks
AN\ “

message length [bytes]

IYNCSA

Notes

* Both Cray XE6 and IBM BG/Q have inadequate
bandwidth to support each core sending data

along the same link

» But BG/Q has more independent links, so it is able to sustain a
higher effective “halo exchange”

Ensuring Application Performance and Scalability

« Defer synchronization and overlap communication
and computation
* Need to support asynchronous progress
* Avoid busy-wait/polling

* Reduce off-node communication
 Careful mapping of processes/threads to nodes/cores

* Reduce intranode message copies...

IYNCSA

What To Use as X in MP| + X?

* Threads and Tasks
* OpenMP, pthreads, TBB, OmpSs, StarPU, ...

« Streams (esp for accelerators)
* OpenCL, OpenACC, CUDA, ...

* Alternative distributed memory system
« UPC, CAF, Global Arrays, GASPI/GPI

* MP| shared memory

X =MPI (or X = @)

* MPI 3.1 features esp. important for Exascale
» Generalize collectives to encourage post BSP (Bulk
Synchronous Programming) approach:
« Nonblocking collectives
* Neighbor — including nonblocking — collectives
* Enhanced one-sided

* Precisely specified (see “Remote Memory Access Programming
in MPI-3,” Hoefler et at, to appear in ACM TOPC)

* Many more operations including RMW
« Enhanced thread safety

IYNCSA

X = Programming with Threads

* Many choices, different user targets and
performance goals
 Libraries: Pthreads, TBB
» Languages: OpenMP 4, C11/C++11

*C11 provides an adequate (and thus complex)
memory model to write portable thread code

 Also needed for MPI-3 shared memory; see “Threads
cannot be implemented as a library”,
http://www.hpl.hp.com/techreports/2004/
HPL-2004-209.html

IYNCSA

X=UPC (or CAF or ...)

e \)
* MPI Processes are UPC) {[Memory]} {[Memory]}

programs (not threads), ceu| [ory] [eru] ceu] [oru] [ory]
spanning multiple Q J
-

coherence domains.

counterpart to the
MPI+OpenMP model,
using PGAS to extend

This model is the closest {[Memow]} {[Memory] T

the “process” beyond a

single coherence
domain.

_
-

J
~

{[Memory] } {[Memory] }
cpu] (cru| ey cpu] (cru| ey

_

J

e Could be PGAS across
chip

| MPI Process/
UPC Program

IYNCSA

What are the Issues?

*|sn’t the beauty of MPI| + X that MPI and X can be
learned (by users) and implemented (by
developers) independently?

* Yes (sort of) for users
* No for developers

 MPI and X must either partition or share resources
« User must not blindly oversubscribe
* Developers must negotiate

IYNCSA

More Effort needed on the “+”

MPI+X won’t be enough for Exascale if the
work for “+” is not done very well

« Some of this may be language specification:

« User-provided guidance on resource allocation, e.g., MPI_Info
hints; thread-based endpoints

* Some is developer-level standardization

« A simple example is the MPI ABI specification — users should
ignore but benefit from developers supporting

IYNCSA

Some Resources to Negotiate

« CPU resources * NIC resources
* Threads and contexts * Collective groups
 Cores (incl placement) * Routes
» Cache * Power
* Memory resources * OS resources
* Prefetch, outstanding load/ » Synchronization hardware
stores » Scheduling
* Pinned pages or equivalent * Virtual memory
NIC needs » Cores (dark silicon)
» Transactional memory
regions

* Memory use (buffers)

IYNCSA

Hybrid Programming with Shared Memory

* MPI-3 allows different processes to allocate shared
memory through MPI

« MPl_Win_allocate shared
» Uses many of the concepts of one-sided communication

 Applications can do hybrid programming using MPI or load/
store accesses on the shared memory window

« Other MPI functions can be used to synchronize access to
shared memory regions

« Can be simpler to program for both correctness and
performance than threads because of clearer locality
model

IYNCSA

A Hybrid Thread-Multiple Ping Pong Benchmark

* In a hybrid thread-multiple approach, what if t threads
communicate instead of t processes?

* The benchmark was extended towards a multithreaded version
where t threads do the ping pong exchange for a single process per
node (i.e., k=1)

 Results for Blue Waters (Cray XEG)

* The number t of threads and message sizes n are varied

* Results show
« Our performance model no longer applies ...
» Performance of multithreaded version is poor

 This is due to excessive spin and wait times spent in the MPI library
* Not an MPI problem but a problem in the implementation of MPI

IYNCSA

Results for Multithreaded Ping Pong Benchmark
Coarse-Grained Locking

aggregate effective bandwidth [bytes/second]

1010 |

10°}

108}

107}

10°}

10°

1

2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6

7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)

PILLILLILNLNE

13 pair(s)

*— 14 pair(s)

*— 15 pair(s)

*—& 16 pair(s)
L

pair(s) 7

pair(s)

12 pair(s)

10°

v

10° 10° 10*
message length [bytes]

10

Measurements for single-threaded
benchmark

10°

aggregate effective bandwidth [bytes/second]

1010 |

10°}

108}

107}

10°}

PILLILLILNINE

d—k

F—k

F—k
L

10°

1 pair(s) 7
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)

8 pair(s)

9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)
13 pair(s)
14 pair(s)
15 pair(s)
16 pair(s)

v

10° 10° 10*
message length [bytes]

10° 10* 10

10°

Measurements for multi-threaded
benchmark

Results for Multithreaded Ping Pong Benchmark
Fine-Grained Locking

aggregate effective bandwidth [bytes/second]

1010 |

10°}

108}

107}

10°}

10°

1

2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6

7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)

PILLILLILNLNE

13 pair(s)

*— 14 pair(s)

*— 15 pair(s)

*—& 16 pair(s)
L

pair(s) 7

pair(s)

12 pair(s)

10°

v

10° 10° 10*
message length [bytes]

10

Measurements for single-threaded
benchmark

10°

aggregate effective bandwidth [bytes/second]

1010 |

10°}

108}

107}

PILLILLILIINL

d—k

F—k

F—k
L

1 pair(s) 7
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)

8 pair(s)

9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s) §
13 pair(s)
14 pair(s)
15 pair(s)
16 pair(s)

v

102 10° 10*
message length [bytes]

10

10°

Measurements for multi-threaded
benchmark

Implications For Hybrid Programming

* Model and measurements on Blue Waters suggest that if a
fixed amount of data needs to be transferred from one
node to another, the hybrid master-only style will have a
disadvantage compared to pure MPI

* The disadvantage might not be visible for very large
messages where a single thread (calling MPI in the
master-only style) might be able to saturate the NIC

* In addition, a thread-multiple hybrid approach seems to be
currently infeasible because of a severe performance
decline in the current MP| implementations

« Again, not a fundamental problem in MPI; rather, an example of the
difficulty of achieving high performance with general threads

IYNCSA

Lessons Learned

* Achieving good performance with hybrid parallelism
requires careful management of concurrency, locality

* Fine-grain approach has potential but suffers in practice;
coarse-grain approach requires more programmer effort
but gives better performance

* MPI+MPI and MPI+OpenMP both practical

« Concurrent processing of non-contiguous data also
important (gives advantage to multiple MPI processes;
competes with load balancing

* Problem decomposition and (hybrid) parallel
communication performance are interdependent, a holistic
approach is therefore essential

IYNCSA

Summary

* Multi- and Many-core nodes require a new
communication performance model

* Implies a different approach to algorithms and increased
emphasis on support for asynchronous progress

* Intra-node communication with shared memory
can improve performance, but
* Locality remains critical

* Fast memory synchronization, signaling essential

* Most (all?) current MPIl implementations have very slow intra-
node MPI_Barrier.

IYNCSA

Thanks!

* Philipp Samfass

 Luke Olson

« Pavan Balaji, Rajeev Thakur, Torsten Hoefler
« ExxonMobile Upstream Research

* Blue Waters Sustained Petascale Project, supported by the
National Science Foundation (award number OCI| 07—
25070) and the state of lllinois.

* Cisco Systems for access to the Arcetri UCS Balanced
Technical Computing Cluster

IYNCSA

