
Performance, Portability, and Dreams

William Gropp
wgropp.cs.illinois.edu

Why Performance Portability?

• HPC is Performance
• A big part of the programming crisis is caused by the
challenge of obtaining performance (even) on a single
platform

•  This is an unsolved problem
•  Easy example: Implement a barrier. Communicates a single bit of information.

•  Easy to write a simple implementation (e.g., use an atomic counter).
•  Efficient implementations require clever algorithms, attention to memory

hierarchies, special instructions, and are still publishable
•  “Algorithms for Scalable Synchronization on Shared-Memory

Multiprocessors”, ACM TOCS, 1991
•  Recent results such as “Efficient Barrier Implementation on the POWER8

Processor”, HiPC 2015
• Performance portability related to programming productivity

•  And a harder problem that is getting even harder
Platform-
specific

Why Is Performance Portability so Hard

• Its been hard
• Predicting performance for a single system is very difficult

•  Systems are complex
•  Behavior has random elements
•  Interactions between parts is hard to predict

• After more than 20 years of stability, processor
architectures are diversifying and changing

• More types of systems – e.g., vectors/streams in GPUs
• Rapid innovation – new instructions, memory architectures, …
• Effective* use of these requires someone to adapt to the differences

•  Please make it someone else!

• Even if it is someone else
• Many costs and risks to maintaining multiple versions

Tradeoffs

• Implicitly, performance portability is intended to reduce the
amount of work needed to achieve adequate performance
to meet the needs that the computing serves

• How much (programmer re-) work is acceptable to achieve
performance portability?

• What constraints or other limitations are acceptable?
• Choices of data structure, code complexity, reproducibility, compile

time, sensitivity to changes in input data, …

What is the Problem Statement?

• General case (strong performance portability) – get the fastest
solution to the problem on all systems – is far too hard – requires
picking model, algorithm, data structure, and implementation

•  Best algorithm/data structure choice often unknown
•  Algorithm may depend on platform

•  Proof – parallel algorithms that trade less synchronization against more work vs.
sequential algorithms

• Given a family of data structures and an algorithm, choose the data
structure instance and implementation

•  E.g., Array index ordering; Structure of arrays vs array of structures vs
structure of arrays of structures; sparse matrix ordering

• Given a data structure and an algorithm, generate “good” code that
performs well

•  Problem: choices here are important for performance
•  Problem: Still hard even in simple cases
•  Problem: “Extra” semantics in language – e.g., order of operations for

floating point, e.g. in dense matrix-matrix multiply, can limit options even if
not intended by programmer

Metrics for Success

• What is success?
• Need to quantify both portability and performance
• Should include impact on productivity

• A performance portable code that is no longer maintainable or that
is too brittle for further development is probably not an improvement

• Not an easy linear function
• Different users and communities may choose different weights for

the metric

Productivity and Performance

and is close to native performance (geometric mean of 1.1-1.2X
for pagerank, BFS and collaborative filtering, and 2.5X for triangle
counting). (3) Giraph, on the other hand, is 2-3 orders of magnitude
slower than native code (4) CombBLAS and GraphLab perform
well on average. CombBLAS is very good for all algorithms except
for Triangle Counting, where it ran out of memory for real-world
inputs while computing the A2 matrix product. This is an express-
ibility problem in CombBLAS. GraphLab is 3-9X off from native
code, but performs reasonably consistently across algorithms. (5)
SociaLite performance is typically comparable to GraphLab (some-
times slightly better and sometimes slightly worse).

Finally, note that the trends on the synthetic dataset are in line
with real-world data, showing that our synthetic generators are ef-
fective in modeling real-world data.

5.3 Multi node results
We first show our scaling results of our frameworks on multiple

nodes. A major reason for using multiple nodes to process graph
data is to store the data in memory across the nodes. Hence a com-
mon use case is weak-scaling, where the data per node is kept con-
stant (and hence total data set size increases with number of nodes).
If we obtain perfect performance scaling, then the runtime should
be constant as we increase node count and data set size. In this
study, we include CombBLAS, GraphLab, SociaLite and Giraph
frameworks. Galois is currently only a single node framework and
we hence do not include results here.

Figures 4(a), 4(b), 4(c) and 4(d) show the results of multi node
runs on synthetically generated data sets for our benchmarks. The
data sizes are chosen so that all frameworks could complete without
running out of memory. Figure 5 shows the corresponding perfor-
mance results for larger real-world graphs. We run each algorithm
using one large dataset – we use the Twitter dataset [20] for Pager-
ank, BFS and Triangle Counting and the Yahoo Music KDDCup
dataset 2011 dataset for Collaborative Filtering [7].

Algorithm CombBLAS GraphLab SociaLite Giraph
PageRank 2.5 12.1 7.9 74.4

BFS 7.1 29.5 18.9 494.3
Coll. Filtering 3.5 7.1 7.0 87.9

Triangle Count. 13.1 3.6 1.5 54.4

Table 6: Summary of performance differences for multi node bench-
marks on different frameworks. Each entry is a slowdown factor from
native code, hence lower numbers indicate better performance.

As a convenient summary of performance, Table 6 shows the
geometric mean of the performance differences between our frame-
works combining real-world and synthetic datasets at different scales.
The table shows performance slowdowns of different frameworks
for specific algorithms compared to the native code for that algo-
rithm – hence lower numbers are better.

We note the following trends in our multi-node results. (1) There
is wide variability in our multi node results; as an example, na-
tive code performs anywhere between 2X to more than 560X better
than other frameworks on multi node runs (still up to 30X discount-
ing Giraph runtimes). (2) Giraph performs worse by far than other
frameworks and is frequently 2-3 orders magnitude off from na-
tive performance. (3) CombBLAS is competitive for Pagerank (ge-
omean of 2.5X native performance), BFS (7.1X off native) and Col-
laborative Filtering (3.5X off native). However, it performs poorly
on Triangle Counting due to extra computations performed as a re-
sult of framework expressibility issues. CombBLAS also runs out
of memory for the Twitter data set and hence this data point is not
plotted. (4) GraphLab performs well for Triangle Counting, due
to data structure optimizations performed for this case, namely the

1

10

100

at
io
n
�(s
ec
on

ds
)

Pagerank�(Weak�scaling,�128M�edges/node)

Native Combblas Graphlab Socialite Giraph

0.1

1

1 2 4 8 16 32 64

Ti
m
e�
pe

r�
it
er
a

Number�of�nodes
(a) PageRank

10

100

1000

ti
m
e�
(s
ec
on

ds
)

BFS�(Weak�scaling,�128M�undirected�edges/node)

Native Combblas Graphlab Socialite Giraph

0

1

1 2 4 8 16 32 64

O
ve
ra
ll�

Number�of�nodes
(b) Breadth-First Search

100

1000

10000

at
io
n
�(s
ec
on

ds
)

Collaborative�Filtering�(Weak�scaling,�250�M�edges/node)

Native Combblas Graphlab Socialite Giraph

1

10

1 2 4 8 16 32 64

Ti
m
e�
pe

r�
it
er
a

Number�of�nodes
(c) Collaborative Filtering

10

100

1000

m
e�
(s
ec
on

ds
)

Triangle�Counting�(Weak�scaling,�32M�edges/node)

Native Combblas Graphlab Socialite Giraph

0

1
1 2 4 8 16 32 64O

ve
ra
ll�
Ti
m

Number�of�nodes
(d) Triangle Counting

Figure 4: Performance results for different algorithms on large scale
synthetic graphs. The y-axis represents runtime in log-scale. We per-
form weak-scaling, where the amount of graph data per node is kept
constant, (a) 128 M edges/node for pagerank, (b) 128 M edges/node for
BFS, (c) 256M ratings/node for SGD, and (d) 32M edges/node for tri-
angle counting. Horizontal lines represent perfect scaling.

986

Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets
Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo, Jongsoo Park, M. Amber
Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep Dubey

Factor of
100!

MPI

Dangers in Performance Portability

• One easy way – make all performance mediocre
•  One vendor did this in the ‘80s with their vector hardware, to avoid too large

a variability in performance
•  Goal was no performance “surprises”

•  Related – predictable performance – a goal and elegant feature of BSP
(Bulk Synchronous Programming)

•  How much opportunity for higher but less predictable performance are you willing to
give up for predictable performance? Do your users agree with you?

• Another easy way – claim that it can be reduced to a previously
solved problem

•  E.g., Claim the compiler can take care of it
•  This is a fantasy

• We clearly need a good definition…

One Definition

• An application is performance portable if it achieves a
consistent ratio of the actual time to solution to either the best-
known or the theoretical best time to solution on each platform
with minimal platform specific code required.

•  From http://performanceportability.org/perfport/definition/
•  Note that other definitions are mentioned with different focus and levels of

precision

•  “Best-known” time to solution is a big loophole
•  For a new system, best known is your own best time
•  If there is only one code, and it runs and there is no theoretical best time,

the code is performance portable, regardless of the actual performance
•  That consistent ratio is 1 J

• See more on one view of performance portability at
•  http://performanceportability.org/

What Is Performance Portability?

•  Is it:
•  A code is performance portable if it achieves at least 100-X% of the

achievable performance on all platforms

• Do I need to add constraints?
•  with the same algorithm
•  and the same data structures
•  and the same input and output data organization and format
•  and the same build system (e.g., makefile)

• How large can X be for this definition to be useful?
•  1? 10? 50? 99? 99.99999?

•  Is X the same for all platforms?
•  Alternately, is there an absolute performance target, and the code is

performance portable if the code meets or exceeds that performance on all
platforms of interest?

•  Is there a scaling of X based on the cost ($) of the platform?

Defining Performance Portability

• And what about the correctness constraints
•  Is the output strongly or weakly deterministic?
•  Is bitwise identical output required?

• What is the definition of achievable performance?
•  FLOPS?
•  FLOPS and Memory Bandwidth (“roofline”

https://dl.acm.org/citation.cfm?id=1498785)
•  FLOPS and Memory Bandwidth and Latency (Execution-Cache-Memory

(ECM) model
https://link.springer.com/chapter/
10.1007%2F978-3-642-14390-8_64)

•  FLOPS and Memory Bandwidth and Instruction Rate (“Achieving high
sustained performance in an unstructured mesh CFD application”
https://dl.acm.org/citation.cfm?id=331600 , 1999)

What Is Performance Portability?

• Is it:
• A code is performance portable if it runs with acceptable

performance without any source code change (or architecture-
specific directives) on the platforms of interest

• This is squishy. What is
• Acceptable performance
• Without any source code change
• Platforms of interest

• What if I make this more squishy
• A code is performance portable if it runs with acceptable

performance with no onerous source code or build system changes
on most of the platforms of interest

Some Performance Portability Questions

• “How much performance would you be willing to give up by
replacing the two optimal applications by a single one?”

•  https://software.intel.com/en-us/blogs/2017/03/30/rainbows-
unicorns-and-performance-portability (Robert Geva, Intel)

• How much are you willing to spend to achieve performance
portability

• E.g., if maintaining two codes takes 100 FTE/each and recasting a
code in a new system takes 250 FTE, is that acceptable? What if it
costs 2500 FTE?

• These ask quantitative questions about performance
portability

• They also get to the heart of why someone might want
performance portability

Some Different Approaches to Performance
Portability
• Language based

• Existing languages, possibly with additional information
•  Info from pragmas (e.g., align) or compile flags (assume associative)

• Extensions, especially for parallelism
•  Directives + runtimes, e.g., OpenMP/OpenCL/OpenACC
•  May also relax constraints, e.g., for operation order, bitwise reproducibility

• New languages, especially targeted at
•  Specific data structures and operations
•  Specific problem domains

• Library based (define mathematical operators and
implement those efficiently)

• Specific data structure/operations (e.g., DGEMM)
• Specific operations with families of data structures (e.g., PETSc)

•  This is likely the most practical way to include data-structure and even algorithm
choice

•  At the cost of pushing the performance portability problem onto the library
developers

Some Different Approaches to Performance
Portability
•  Tools based

•  Recognize that the user can always write poorly-performing code
•  Support programming in finding and fixing performance problems
•  Example: Early vectorizing compilers gave feedback about missed vectorization

opportunities; trained programmer to write “better” code

• Programmer support and solution components
•  Work with programmer to develop code
•  Source-to-source tools to transform and to generate code under programmer

guidance
•  Autotuning to select from families of code
•  Database systems to manage architecture and/or system-specific derivatives

• Magic
•  Any sufficiently advanced technology is indistinguishable from magic. (Clarke’s 3rd

law)
•  Any sufficiently advanced technology is indistinguishable from a rigged demo.

• Note these approaches are not orthogonal
•  Successful performance portability requires many approaches, working together

“Domain-specific” languages

•  (First – think abstract data-structure specific, not science domain)
• A possible solution, particularly when mixed with adaptable

runtimes
• Exploit composition of software (e.g., work with existing compilers,

don’t try to duplicate/replace them)
• Example: mesh handling

•  Standard rules can define mesh
•  Including “new” meshes, such as C-grids

•  Alternate mappings easily applied (e.g., Morton orderings)
•  Careful source-to-source methods can preserve human-readable code
•  In the longer term, debuggers could learn to handle programs built with

language composition (they already handle 2 languages – assembly and C/
Fortran/…)

• Provides a single “user abstraction” whose implementation may
use the composition of hierarchical models

•  Also provides a good way to integrate performance engineering into the
application

Let The Compiler Do It

• This is the right answer …
• If only the compiler could do it

• Lets look at one of the simplest operations for a
single core, dense matrix transpose

• Transpose involves only data motion; no floating point
order to respect

• Only a double loop (fewer options to consider)

A Simple Example: Dense Matrix Transpose

• do j=1,n
 do i=1,n
 b(i,j) = a(j,i)
 enddo
enddo

• No temporal locality (data
used once)

• Spatial locality only if
(words/cacheline) * n fits in
cache

•  Performance plummets
when matrices no longer
fit in cache

Perf limit based
on STREAM

Blocking for cache helps

• do jj=1,n,stridej
 do ii=1,n,stridei
 do j=jj,min(n,jj+stridej-1)
 do i=ii,min(n,ii+stridei-1)
 b(i,j) = a(j,i)

• Good choices of stridei and stridej can improve
performance by a factor of 5 or more

• But what are the choices of stridei and stridej?

Results: Blue Waters O1

1 2 3 4 5 6 7 8 9

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9

1600-1800

1400-1600

1200-1400

1000-1200

800-1000

600-800

400-600

200-400

0-200
1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1500-2000

1000-1500

500-1000

0-500

Results: Blue Waters O3

1 2 3 4 5 6 7 8 9

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9

1800-2000

1600-1800

1400-1600

1200-1400

1000-1200

800-1000

600-800

400-600

200-400

0-200 1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1500-2000

1000-1500

500-1000

0-500

Simple, unblocked code compiled
with O3 – 709MB/s

An Example: Stencil Code from a Real
Application

• Stencil for CFD code
• Supports 2D and 3D
• Supports different
stencil widths

• Matches computational
scientists’ view of the
mathematics

Another Version of the Same Code

•  This version is 4X
as fast as the
simpler, easier to
read code

•  Less general code
(subset to stencil,
problem
dimension)

• Same algorithm,
data structure,
and operations,
but transformed to
aid compiler in
generating fast
(and vectorized)
code

Illinois Coding Environment (ICE)

•  One pragmatic approach
•  Assumptions

•  Fast code requires some expert
intervention

•  Can’t all be done at compile time
•  Original code (in standard language)

is maintained as reference
•  Can add information about

computation to code

•  Center for Exascale Simulation of
Plasma-Coupled Combustion

•  http://xpacc.illinois.edu

• Approach
•  Annotations provide additional

descriptive information
•  Block name, expected loop sizes, etc.

•  Source-to-source transformations
used to create code for compiler

•  Exploit tool ecosystem – interface to
existing tools

•  Original “Golden Copy” used for
development, correctness checks

•  Database used to manage platform-
specific versions; detect changes that
invalidate transformed versions

Example: Dense Matrix Multiply

Performance Results

• Dense matrix-matrix
multiply

• 302,680 total variants
• Subset evaluated (based

on results-so-far)
• 8.2x speedup over gcc

compiler with optimization
• Small but consistent

speedup over icc –O3
• Different parameters can
be selected/remembered
for each platform

• Within the constraints of
the performance
parameters considered

Performance Results

• 3-D Stencil
• 11,664 variants
• Max 12.6 sec
• Min 3.68 sec
• Speedup over simple
code

•  icc: 1.12x
•  gcc: 1.21x

Other Dangers

• How do we know that the performance portable code is correct?
•  Or even if it will compute the same result as the original code

•  And what is “the same result”?

•  It is not enough to prove that any code transformations are correct
•  MPICH used to test whether the compiler returned the same result in a and

c for these two statements:
•  a = joe->array[OFF+b+1];

c = joe->array[OFF+1+b];
•  Because one major vendor compiler got this wrong.

• And you still need to prove that the hardware implements all of the
operations correctly

•  And vectorization is already likely to produce results that are not bitwise
identical to the non-vector version (which might depend on how data is
aligned at runtime)

• Question: How do you test that the performance portable code is
computing what is intended?

• Proving code transformations correct is necessary but not sufficient

So What Is Performance Portability?

• Rather than define whether a code is (or is not)
performance portable, look at the goals

• Make it easier for end users to run an application code
effectively on different systems

•  for some set of systems – not necessarily every possible
system

• May focus on the workflow or the I/O performance, rather
than any single code

• Make it easier for developers to write, tune, and maintain
an application for multiple systems

• Allows a tradeoff between one code and several, based on
what’s easier

Summary

• Don’t underestimate the difficulty
• I don’t believe “strong” performance portability is
possible

• Don’t give up
• There is a lot that can be done to support users and
improve performance resilience

• Accept different approaches
• Different communities, expectations, goals

• Be precise about your goal and accomplishment
• Let this be a No Hype zone

